高考数学压轴专题《平面向量及其应用》难题汇编 百度文库

合集下载

高考数学压轴专题(易错题)备战高考《平面向量》难题汇编附答案

高考数学压轴专题(易错题)备战高考《平面向量》难题汇编附答案

数学高考《平面向量》复习资料一、选择题1.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C在AB 边上的射影为D ,则CD =( ) A .4 B .22C .2D .2【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A 【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题2.已知5MN a b =+u u u u rr r,28NP a b =-+u u u rrr,3()PQ a b =-u u u rrr,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.3.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u ur 方向上的投影为4-,则向量BA u u u r 与AC u u ur 的夹角为( )A .45°B .60°C .120°D .150°【答案】C 【解析】 【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r方向上的投影为cos =4BD α-u u u r,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==, 向量BD u u u r 在AC u u u r方向上的投影为4-, 设BDA α∠=,向量BA u u u r 与AC u u u r的夹角为θ,则cos =4BD α-u u u r,∴()cos ===BD DA AC BA AC BD AC DA ACBA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r()()cos cos180444211===1242BD AC DA AC AB ACα⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u ru ur r u, 故夹角为120°, 故选:C . 【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.4.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,∴|||3302|326BD CD BD CD cos =⨯⨯︒==⋅u u u r u u u r u u u r u u u r, 故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..5.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u vC .5163BD OA OC =-u u u v u u u v u u u vD .1163BD OA OC =+u u u v u u u v u u u v【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v ,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.6.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r( )A .3144AB AC -u u ur u u u r B .1136AB AC -u u u r u u u rC .2133AB AC -u u u r u u u rD .3144AB AC +u u ur u u u r【答案】A 【解析】 【分析】根据MD MA AB BD =++u u u r u u u u u u r u r u u u r,化简得到答案. 【详解】 ()11312444MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u uu u u u r r u u u r .故选:A . 【点睛】本题考查了向量的运算,意在考查学生的计算能力.7.已知向量,a b r r 满足||a =r ||4=r b ,且()4a b b +⋅=r r r,则a r 与b r的夹角为( ) A .6π B .3π C .23π D .56π 【答案】D 【解析】 【分析】由()4a b b +⋅=r r r ,求得12a b ⋅=-r r ,再结合向量的夹角公式,求得cos ,a b 〈〉=r r 可求得向量a r 与b r的夹角.【详解】由题意,向量,a b r r 满足||a =r||4=r b ,因为()4a b b +⋅=r r r,可得2164a b b a b ⋅+=⋅+=r r r r r,解得12a b ⋅=-r r,所以cos ,||||a b a b a b ⋅〈〉===r rr r r r又因a r 与b r 的夹角[0,]π∈,所以a r 与b r 的夹角为56π. 故选:D . 【点睛】本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.8.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C 【解析】 【分析】先计算出16a b r r⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r rr 可得【详解】()4,3a =r Q ,()5,12b =-r,4531216a b ⋅=⨯-⨯=-r r,则向量a r 在b r方向上的投影为1613a b b⋅-=r rr ,故选:C. 【点睛】本题考查平面向量的数量积投影的知识点. 若,a b r r的夹角为θ,向量a r 在b r 方向上的投影为cos a θ⋅r 或a b b⋅r rr9.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.10.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为A 13B .22C .1D .655【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.12.已知椭圆2222:1(0)x y T a b a b +=>>的离心率为32,过右焦点F 且斜率为()0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r,则k =( )A .2 BCD .1【答案】C 【解析】 【分析】由2e =可得a =,b =,可设椭圆的方程为222334x y c +=,()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r得到12123430x x c y y +=⎧⎨+=⎩,再由22211334x y c +=,22222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】因为c e a ===,所以2a b =,所以a =,b =,则椭圆方程22221x y a b+=变为222334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><,又3AF FB =uu u r uu r,所以()()1122,3,c x y x c y --=-,所以()121233c x x c y y ⎧-=-⎨-=⎩,12123430x x cy y +=⎧⎨+=⎩因为A ,B 在椭圆上,所以22211334x y c +=,① 22222334x y c +=②. 由①—9×②,得2121212123(3)(3)3(3)(3)84x x x x y y y y c +-++-=-,所以21234(3)84c x x c ⨯-=-,所以12833x x c -=-, 所以123x c =,2109x c =,从而13y =-,29y c =所以2(,)33A c -,10(,)99B c c,故9102393c k c c +==- 故选:C. 【点睛】本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.13.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.14.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r,则λμ+等于( )A .333-+ B .333+ C 31 D 31+【答案】B【解析】 【分析】建立坐标系,求出D 点坐标,从而得出λ,μ的值. 【详解】解:1AC =Q ,3AB =,30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛⎫+ ⎪ ⎪⎝⎭. ()3,0AB =u u u r,()0,1AC =uu u r ,∴13,12AD ⎛⎫=+⎪ ⎪⎝⎭u u u r. Q AD AB AC λμ=+u u u r u u u r u u u r ,∴132312λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴331λμ⎧=⎪⎪⎨⎪=+⎪⎩,231λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.15.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u v B .2155AB AC +u u uv u u u vC .481515AB AC +u u u v u u u v D .841515AB AC +u u u v u u u v 【答案】D【解析】【分析】 设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r ,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r 为基底来表示的形式. 【详解】设6BC =,则2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u u r u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r . 故选:D【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.16.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数;②若0a b ⋅=r r ,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题; ④函数()x xe ef x x--=是偶函数. A .1B .2C .3D .4【答案】B【解析】【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.【详解】对于①中,当2x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确. 综上,真命题的个数是2.故选:B.【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x + (,AM x ∴=+u u u u r(1E x M -=--u u u r()1AM ME x x -∴⋅=--++u u u u r u u u r 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.19.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( ) A .843+B .843-C .12 D .4【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.20.在四边形ABCD 中,若12DC AB =u u u r u u u r ,且|AD u u u r |=|BC uuu r |,则这个四边形是( )A.平行四边形B.矩形C.等腰梯形D.菱形【答案】C【解析】由12DC ABu u u r u u u r知DC∥AB,且|DC|=12|AB|,因此四边形ABCD是梯形.又因为|ADu u u r|=|BCuuu r|,所以四边形ABCD是等腰梯形.选C。

高考数学压轴专题专题备战高考《平面向量》难题汇编含答案

高考数学压轴专题专题备战高考《平面向量》难题汇编含答案

【高中数学】《平面向量》知识点汇总(1)一、选择题1.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.2.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C 【解析】 【分析】先计算出16a b r r⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r rr 可得【详解】()4,3a =r Q ,()5,12b =-r,4531216a b ⋅=⨯-⨯=-r r,则向量a r 在b r方向上的投影为1613a b b⋅-=r rr ,故选:C. 【点睛】本题考查平面向量的数量积投影的知识点. 若,a b r r的夹角为θ,向量a r 在b r方向上的投影为cos a θ⋅r 或a b b⋅r rr3.在ABC ∆中,已知AB =AC =D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v的取值范围为( )A .()3,5 B.(C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()11213333AC AB AC AC AB AC AB AC AB u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅u u ur u u u r u u u r u u u r =8﹣113BAC -∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.4.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r 在向量BC uuu r方向上的投影为( )A .2B .32C .1D .3【答案】A 【解析】 【分析】由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BCBC ⋅=u u u r u u u ru u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r,又因为EF BC ⊥,所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BCBC ⋅=u u u r u u u ru u u r . 故选:A. 【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.5.已知向量a r 与向量b r满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r,则向量a r与向量b r的夹角为( )A .4π或34πB .6π或56πC .3π或23π D .2π【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||12a b θ+=+r r ,2||12a b θ-=-r r,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 48a b a b a b θθ+=++=++r r r r r r12θ=+,222||||||2||||cos 4812a b a b a b θθθ-=+-=+-=-r r r r r,所以2222||||144128cos 80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.6.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( ) A .13- B .13C .12-D .12【答案】C 【解析】 【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-.故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.7.在菱形ABCD中,4AC=,2BD=,E,F分别为AB,BC的中点,则DE DF⋅=u u u r u u u r()A.134-B.54C.5 D.154【答案】B【解析】【分析】据题意以菱形对角线交点O为坐标原点建立平面直角坐标系,用坐标表示出,DE DFu u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果.【详解】设AC与BD交于点O,以O为原点,BDu u u r的方向为x轴,CAu u u r的方向为y轴,建立直角坐标系,则1,12E⎛⎫-⎪⎝⎭,1,12F⎛⎫--⎪⎝⎭,(1,0)D,3,12DE⎛⎫=-⎪⎝⎭u u u r,3,12DF⎛⎫=--⎪⎝⎭u u u r,所以95144DE DF ⋅=-=u u u r u u u r .故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.8.已知向量a v ,b v 满足a b a b +=-r rv v ,且||3a =v ,||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3π B .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.9.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v( )A .229B .229-C .169D .89-【答案】A 【解析】 【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果. 【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u uv u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v .∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v22242999AB AC AB AC =-⋅+⋅-⋅⋅u u uv u u u v u u u v u u u v24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u uv u u u v82423cos 993π=-+-⋅⋅⋅229=. 故选A . 【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.10.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( ) A .4 B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则 22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6 故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.11.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.12.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.13.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.15.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r的值为( ).A 3B .3C .2D .3【答案】D 【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u uu u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.16.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x + (,AM x ∴=+u u u u r(1E x M -=--u u u r()1AM ME x x -∴⋅=--++u u u u r u u u r 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.17.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.18.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ⋅=u u u r u u u r ,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述均不是【答案】B【解析】【分析】 取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r代入计算,再利用向量的线性运算求解.【详解】如图,取BC 中点D ,连接,OD AD ,则G 在AD 上,13GD AD =,OD BC ^, ()GO BC GD DO BC GD BC DO BC ⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221111()()()53326GD BC AD BC AB AC AC AB AC AB =⋅=⋅=⨯+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<,由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形.故选:B .【点睛】本题考查平面向量的数量积,考查向量的线性表示,考查余弦定理.解题关键是取BC 中点D ,用,AB AC u u u r u u u r 表示出,GD BC u u u r u u u r .19.已知向量(),1a x =-r , (3b =r ,若a b ⊥r r ,则a =r ( ) A 2B 3C .2D .4 【答案】C【解析】 由a b r r ⊥,(),1a x =-r , (3b r =,可得:x 30x 3,==,即)3,1a =-r所以()()22312a =+-=r 故选C 20.在OAB ∆中,已知2OB =u u u v ,1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A .355 B .25 C .6 D .62【答案】A【解析】【分析】 根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r .再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以OA =⎝⎭u u u r,)OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)22OP λμ⎛ =+ ⎝⎭u u ur ,22λλ⎛⎫ ⎪ ⎪⎝⎭=则OP =u u u r=因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

高考数学压轴专题《平面向量及其应用》难题汇编

高考数学压轴专题《平面向量及其应用》难题汇编
A. B. C. D.
35.在矩形 中, ,点 在边 上,若 ,则 的值为( )
A.0B. C.-4D.4
【参考答案】***试卷处理标记,请不要删除
一、多选题
1.无
2.AD
【分析】
利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得.
【详解】
∵,
5.已知向量 (2,1), (1,﹣1), (m﹣2,﹣n),其中m,n均为正数,且( )∥ ,下列说法正确的是()
A.a与b的夹角为钝角
B.向量a在b方向上的投影为
C.2m+n=4
D.mn的最大值为2
6.设P是 所在平面内的一点, 则()
A. B.
C. D.
7. 中, , ,则下列叙述正确的是( )
A.若 ,则 与 方向相同
B.若 ,则 与 方向相反
C.若 ,则 与 有相等的模
D.若 ,则 与 方向相同
14.化简以下各式,结果为 的有( )
A. B.
C. D. 15.题目文件丢失!
二、平BC的边BC,CA,AB的中点,且 , ,则① =- - ;② = + ;③ =- + ;④ + + =0.其中正确的等式的个数为( )
A. B.
C.若 ,则 D.若 ,则
11.设 是两个非零向量,则下列描述正确的有()
A.若 ,则存在实数 使得
B.若 ,则
C.若 ,则 在 方向上的投影为
D.若存在实数 使得 ,则
12.已知 中,角A,B,C的对边分别为a,b,c,且满足 ,则 ( )
A.2B.3C. D.
13.已知 为非零向量,则下列命题中正确的是( )
A. B. C. D.

河北省衡水市衡水中学高考数学压轴专题《平面向量及其应用》难题汇编doc

河北省衡水市衡水中学高考数学压轴专题《平面向量及其应用》难题汇编doc

一、多选题1.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=-⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 2.在ABC 中,3AB =,1AC =,6B π=,则角A 的可能取值为( )A .6π B .3π C .23π D .2π 3.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,2b =,30A =︒,则B =( )A .30B .45︒C .135︒D .150︒4.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AFCE G =,则( )A .12AF AD AB =+B .1()2EF AD AB =+ C .2133AG AD AB =-D .3BG GD =5.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥B .2a b +=C .2a b -=D .,60a b =︒6.在ABC 中,15a =,20b =,30A =,则cos B =( ) A .5B .23C .23-D .537.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 8.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ= 9.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形11.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)12.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-13.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=14.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形15.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶218.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin lg 2a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形19.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=20.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对21.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .122.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定23.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .63C .12D .18324.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且303aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A B .1C .12D 26.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形27.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)28.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .等腰直角三角形D .直角三角形29.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形30.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心D .外心重心内心31.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .12B .-12C .13D .-1332.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅= 33.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式ac bd T -+-≥恒成立,则实数T 的取值范围为( ) A .(32-∞B .)32,⎡+∞⎣C .(32-∞D .)32,⎡+∞⎣34.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B 33C .33D 335.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵,,与的夹角为锐角, ∴,且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,2||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.2.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得,即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即21322BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.3.BC 【分析】用正弦定理求得的值,由此得出正确选项. 【详解】解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC 【分析】用正弦定理求得sin B 的值,由此得出正确选项. 【详解】解:根据正弦定理sin sin a b A B=得:1sin 2sin 12b A B a ===,由于1b a =>=,所以45B =或135B =.故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.4.AB 【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA =+=+,即1()3GD AD AB =- ∴2BG GD =,即D 错误 故选:AB 【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系5.AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】解析:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】1a b ==,且25b a -=,平方得22445b a a b +-⋅=,即0a b ⋅=,可得a b ⊥,故A正确;()22222a ba b a b +=++⋅=,可得2a b +=,故B 错误; ()22222a b a b a b -=+-⋅=,可得2a b -=,故C 正确;由0a b ⋅=可得,90a b =︒,故D 错误; 故选:AC 【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题.6.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得,,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.7.BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确;故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.8.AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.9.BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确;故选:BCD【点睛】本题考查了向量的定义和性质,属于简单题.10.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.11.ABC【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解.【详解】第四个顶点为,当时,,解得,此时第四个顶点的坐标为;当时,,解得解析:ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.12.AB【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】当时,则、方向相反且,则存在负实数解析:AB【分析】 根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】 当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误; 若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确.故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题. 13.ABD【分析】根据平行四边形及向量的加法法则即可判断. 【详解】 由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】 本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知a b c +=成立,故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.14.AD【解析】【分析】由条件可得,再两边平方即可得答案.【详解】∵P 是所在平面内一点,且,∴,即,∴,两边平方并化简得,∴,∴,则一定是直角三角形,也有可能是等腰直角三角形,故解析:AD【解析】【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案.【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=,∴|||()()|0CB PB PA PC PA --+-=,即||||CB AC AB =+,∴||||AB AC AC AB -=+,两边平方并化简得0AC AB ⋅=,∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形,故不可能是钝角三角形,等边三角形,故选:AD.【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.15.AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据解析:AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.二、平面向量及其应用选择题16.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.17.B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。

高考数学压轴专题最新备战高考《平面向量》难题汇编及答案

高考数学压轴专题最新备战高考《平面向量》难题汇编及答案

【高中数学】高中数学《平面向量》期末考知识点一、选择题1.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA ⋅BC =2,则△ABC 的面积为( )A B .32C .D .【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB 222123a c b ac +-==,则sinB 3=BA ⋅BC =2,可得cacosB =2,则ac =6,∴△ABC 的面积为:11622acsinB =⨯=. 故选C . 【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.2.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( )A .3B .2C D .2【答案】D 【解析】 【分析】将AO 、EC 用AB 、AC 表示,再代入9AB AC AO EC ⋅=⋅中计算即可. 【详解】由0OA OB OC ++=,知O 为ABC ∆的重心, 所以211()323AO AB AC =⨯+=()AB AC +,又2AE EB =, 所以23EC AC AE AC AB =-=-,93()AO EC AB AC ⋅=+⋅2()3AC AB -2223AB AC AB AC AB AC =⋅-+=⋅,所以2223AB AC =,||32||AB AC λ===. 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3.延长线段AB 到点C ,使得2AB BC =,O AB ∉,2OD OA =,则( ) A .1263BD OA OC =- B .5263BD OA OC =- C .5163BD OA OC =- D .1163BD OA OC =+ 【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】BD OD OB =-,()22123333OB OA AC OA OC OA OA OC =+=+-=+,12OD OA =,∴1263BD OA OC =-,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.4.在ABC ∆中,已知AB =AC =D 为BC 的三等分点(靠近C),则AD BC ⋅的取值范围为( )A .()3,5B .(C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC ,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅-⎪⎝⎭()()11213333AC AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅ =8﹣113233cos BAC -⨯⨯∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.5.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为23,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅的最小值为( )A .18122-B .19122-C .18122+D .19122+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+,求得23MP MQ MD ⋅=-,再利用圆与圆的位置关系,即可求解故()23223MP MQ ⋅≥-,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+,所以23MP MQ MD ⋅=-,22222()12PQ C D QC =-=,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥,1221min min MD C C C D MC ∴=--故()2322319122MP MQ ⋅≥--=-.【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.6.已知向量(1,2)a =,(3,4)b =-,则a 在b 方向上的投影为 A 13B .22C .1D 65 【答案】C 【解析】 【分析】根据a 在b 方向上的投影定义求解. 【详解】a 在b 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-,选C. 【点睛】本题考查a 在b 方向上的投影定义,考查基本求解能力.7.在ABC 中,AD AB ⊥,3,BC BD =||1AD =,则AC AD ⋅的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅,利用数量积的分配律即得解. 【详解】AD AB ⊥,3,BC BD =||1AD =,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅2333AB AD BD AD AD =⋅+⋅==故选:C 【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.8.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=( )A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB 表示CP ,再利用数量积的定义得解. 【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+.所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅ 221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.9.已知向量()()75751515a b ︒︒︒︒==cos ,sin ,cos ,sin ,则a b -的值为A .12B .1C .2D .3【答案】B 【解析】 【分析】 【详解】因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=,所以2221||()12112a b a b -=-=-⨯+=,故选B.点睛:在向量问题中,注意利用22||a a =,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.10.如图,在圆O 中,若弦AB =3,弦AC =5,则AO ·BC 的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+,所以1()2AO AC BO AB CO =+++, 而BC AC AB BO CO =-=-,所以1()2BC AC AB BO CO =-+-,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+- 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++- ()()CO BO BO CO ++-221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅ 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+- 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅ 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅ 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅ 2211(||)42AC AB AO BC =-+⋅ 所以221(||)82AO BC AC AB ⋅=-=,故选D11.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =( )A .3155AB AC + B .2155AB AC + C .481515AB AC + D .841515AB AC + 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =,进而利用平面向量加法和减法的线性运算,将45AF AD =表示为以,AB AC 为基底来表示的形式. 【详解】设6BC =,则32,2AB AC BD DE EC =====,22π2cos4AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯,所以45AF AF AD AE ==,所以45AF AD =. 因为()1133AD AB BC AB AC AB =+=+-2133AB AC =+, 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.12.设()1,a m =,()2,2b =,若()2a mb b +⊥,则实数m 的值为( ) A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+,根据向量垂直公式计算得到答案. 【详解】()222,4a mb m m +=+,∵()2a mb b +⊥,∴()20a mb b +⋅=,即()22280m m ⋅++=,解得13m =-. 故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.13.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数; ②若0a b ⋅=,则0a =或0b =;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x xe ef x x--=是偶函数.A .1B .2C .3D .4【答案】B 【解析】 【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论. 【详解】对于①中,当2x =时,22x =为有理数,故①错误;对于②中,若0a b ⋅=,可以有a b ⊥,不一定要0a =或0b =,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-,且函数的定义域是(,0)(0,)-∞+∞,定义域关于原点对称, 所以函数()x xe ef x x--=是偶函数,故④正确.综上,真命题的个数是2. 故选:B. 【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.14.已知平面向量,,a b c 满足||||2a b ==,a b ⊥,()()a c b c -⊥-,则(ab c ⋅+)的取值范围是( ) A .[0,2] B .[0,C .[0,4]D .[0,8]【答案】D 【解析】 【分析】以点O 为原点,OA ,OB 分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解. 【详解】设,,OA a OB b OC c ===,以点O 为原点,OA ,OB 分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动, 设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+,由圆心到直线22x y t +=的距离d =≤,可得[0,8]t ∈.故选:D . 【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.15.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =,1233OC OA OB =+,若M 是线段AB 的中点,则OC OM ⋅的值为( ).A .3B .23C .2D .3【答案】D 【解析】 【分析】判断出OAB ∆是等边三角形,以,OA OB 为基底表示出OM ,由此求得OC OM ⋅的值. 【详解】圆O 圆心为()0,0,半径为2,而||2AB =,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+.所以OC OM ⋅12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭22111623OA OA OB OB =+⋅⋅+21422cos603323=+⨯⨯⨯+=. 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.16.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =()222001x x +=-解得01x =-(E ∴- (4,3C ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x +(,AM x ∴=+ (1E x M -=--()1AM ME x x -∴⋅=--++ 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=- 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.17.已知向量(sin ,cos )a αα=,(1,2)b =,则以下说法不正确的是( )A .若//a b ,则1tan 2α=B .若a b ⊥,则1tan 2α= C .若()f a b α=⋅取得最大值,则1tan 2α=D .||a b -51 【答案】B【解析】【分析】 A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b ,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥,则sin 2cos 0αα+=,则tan 2α,B 不正确.C 选项,si (n )52cos in()f a b ααααϕ+==⋅=+,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -1,此时55a b =-,,a b 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.18.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( )A .2B .3C .8D .4【答案】D【解析】【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,422a ba b a b ⋅∴<>===本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.19.已知向量()1,3a =-,()3,b m =,若a b ⊥,则2a b +等于( )A .10B .16C .D .【答案】C 【解析】【分析】先利用向量垂直的坐标表示求出实数m 的值,得出向量b 的坐标,并计算出向量2a b +,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-,()3,b m =,a b ⊥,则1330a b m ⋅=⨯-=,得1m =,()3,1b ∴=,则()()()221,33,15,5a b +=-+=-,因此,()2225552a b +=+-=,故选C. 【点睛】 本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.在OAB ∆中,已知2OB =,1AB =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R ,其中λ,μ满足23λμ+=,则OP 的最小值为( ) A .35 B .25 C .6 D .62【答案】A【解析】【分析】根据2OB =,1AB =,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP .再由23λμ+=,将OP 化为关于λ的二次表达式,由二次函数性质即可求得OP 的最小值.【详解】在OAB ∆中,已知2OB =,1AB =,45AOB ∠=︒ 由正弦定理可得sin sin ABOBAOB OAB =∠∠代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A坐标为⎝⎭所以222OA ⎛= ⎝⎭,()2,0OB =因为(),OP OAOB λμλμ=+∈R则)22OP λμ⎛ =+ ⎝⎭,22λλ⎛⎫ ⎪ ⎪⎝⎭= 则OP ⎛==因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min 5OP == 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

高考数学压轴专题专题备战高考《平面向量》难题汇编及答案解析

高考数学压轴专题专题备战高考《平面向量》难题汇编及答案解析

【最新】数学《平面向量》复习知识点(1)一、选择题1.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )A .65B .85C .2D .83【答案】B【解析】【分析】 建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u r CA CE DB λμ=+u u u r u u u r u u u r Q∴(-2,2)=λ(-2,1)+μ(1,2), 2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=. 故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.2.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r 方向上的投影为4-,则向量BA u u u r 与AC u u u r 的夹角为( )A .45°B .60°C .120°D .150°【答案】C【解析】【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r 方向上的投影为cos =4BD α-u u u r,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u u r 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u u r的夹角为θ, 则cos =4BD α-u u u r ,∴()cos ===BD DA AC BA AC BD AC DA AC BA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r ()()cos cos180444211===1242BD AC DA AC AB AC α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r u ur r u , 故夹角为120°,故选:C .【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.3.如图,在ABC ∆中,12AN NC =u u u r u u u r ,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B【解析】【分析】根据题意,以AB u u u r ,AC u u u r 为基底表示出AP u u u r即可得到结论.【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r , 所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 又15AP mAB AC =+u u u r u u u r u u u r , 所以,1135λ-=,且m λ=,解得25m λ==. 故选:B.【点睛】 本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.4.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .12- B .12 C.2 D. 【答案】A【解析】【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ⋅+⋅=r r r ,即可得出答案.【详解】由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r . 即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r ,即20t a a b ⋅+⋅=r r r . 所以2221122b a b t a b⋅=-=-=-r r r r r 故选:A【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.5.已知O 是平面上一定点,满足()||cos ||cos AB AC OP OA AB B AC Cλ=++u u u r u u u r u u u r u u u r u u u r u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( )A .外心B .垂心C .重心D .内心【答案】B【解析】【分析】 可先根据数量积为零得出BC uuu r 与()||cos ||cos AB AC AB B AC C λ+u u u ru u u r u u ur u u u r 垂直,可得点P 在BC 的高线上,从而得到结论. 【详解】 Q ()||cos ||cos AB AC OP OA AB B AC Cλ=++u u u r u u u r u u u r u u u r u u u r u u u r , ∴()||cos ||cos AB AC OP OA AB B AC Cλ-=+u u u r u u u r u u u r u u u r u u u r u u u r , 即()||cos ||cos AB AC AP AB B AC C λ=+u u u r u u u r u u u r u u u r u u u r , Q cos BA BC B BA BC ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB⋅=u u u r u u u r u u u r u u u r , ∴()0||cos ||cos AB AC BC BC BC AB B AC C⋅+=-+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴BC uuu r 与()||cos ||cos AB AC AB B AC Cλ+u u u r u u u r u u u r u u u r 垂直, 即AP BC ⊥uu u r uu u r, ∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.故选:B .【点睛】本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.6.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r ,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+ 【答案】D【解析】【分析】 先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r ,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r 的最大值为.【详解】如图所示,由2OA =,6AOC π∠=, 由余弦定理得234+32231,12AC AC =-⨯⨯⨯=∴=, ∴90OCA BAC ∠=∠=o ,∴圆B 与AC 相切于点A , 又OP OA OC λμ=+u u u r u u u r u u u r ,∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r ;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ; 如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以22333333,,(2)()1322222AD DB OB =⨯==∴=++=, 所以72cos 13213BOA ∠==, 所以1327213OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r 的最大值为32cos023⨯⨯=o ,∴43λμ+的最大值是723+.故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v() A .4 B .6 C .23D .43【答案】B【解析】【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =,且30BDC ∠=︒, ∴|||3 302|3262BD CD BD CD cos =⨯⨯︒=⨯⨯=⋅u u u r u u u r u u u r u u u r , 故选B .【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..8.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ⋅u u u r u u u r 的值为( )A .83-B .1-C .1D .3【答案】B【解析】【分析】由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可.【详解】由已知可得:7 ,又23tan BED 3BD ED ∠===所以221tan1 cos1tan7BEDBECBED-∠∠==-+∠所以1||cos7717EB EC EB EC BEC⎛⎫⋅=∠=⨯⨯-=-⎪⎝⎭u u u r u u u r u u u r u u u r‖故选B.【点睛】本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题.9.如图,在梯形ABCD中, 2DC AB=u u u r u u u r, P为线段CD上一点,且12DP PC=,E为BC的中点, 若EP AB ADλμ=+u u u r u u u r u u u r(λ,Rμ∈),则λμ+的值为()A.13B.13-C.0D.12【答案】B【解析】【分析】直接利用向量的线性运算,化简求得1526EP AD AB=-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得:()1214111232326EP EC CP BC CD AC AB AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB=+-=-u u u v u u u v u u u v u u u v u u u v又因为EP AB ADλμ=+u u u v u u u v u u u v,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B.【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EPu u u v是解答的关键,着重考查了运算与求解能力,属于基础题.10.在复平面内,虚数z对应的点为A,其共轭复数z对应的点为B,若点A与B分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32 【答案】B【解析】【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.在ABC ∆中,已知AB =AC =D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v 的取值范围为( ) A .()3,5B.( C .()5,9 D .()5,7【答案】C【解析】【分析】 利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解.【详解】 如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()()11213333AC AB AC AC AB AC AB AC AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭ 22211333AC AB AB AC =--⋅u u u r u u u r u u u r u u u r =8﹣113BAC -∠=7﹣2cos ∠BAC∵∠BAC ∈(0,π),∴cos ∠BAC ∈(﹣1,1),∴7﹣2cos ∠BAC ∈(5,9),故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.12.平面向量a →与b →的夹角为π3,()2,0a →=,1b →=,则2a b →→-=( ) A .3B 6 C .0 D .2【答案】D【解析】【分析】 根据向量的模的计算和向量的数量积的运算即可求出答案.【详解】()2,0a →=Q ,||2a →∴=22222(2)||4||444421cos 43a b a b a b a b π→→→→∴-=-=+-⋅=+-⨯⨯⨯=r r r r , |2|2a b ∴-=r r , 故选:D【点睛】本题考查了向量的模的计算和向量的数量积的运算,属于中档题.13.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v 4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则m n等于( )A.5 7B.75C.37D.73【答案】A【解析】【分析】依题意建立直角坐标系,根据已知角,可得点B、C的坐标,利用向量相等建立关于m、n 的方程,求解即可.【详解】以OA所在的直线为x轴,过O作与OA垂直的直线为y轴,建立直角坐标系如图所示:因为1OA OB==u u u r u u u r,且4tan3AOB∠=-,∴34cos sin55AOB AOB∠=-∠=,,∴A(1,0),B(3455-,),又令θAOC∠=,则θ=AOB BOC∠-∠,∴413tanθ413--=-=7,又如图点C在∠AOB内,∴cosθ=210,sinθ=7210,又2OCu u u v=C(1755,),∵OC mOA nOB=+u u u r u u u r u u u r,(m,n∈R),∴(1755,)=(m,0)+(3455n n-,)=(m35n-,45n)即15= m35n-,7455n=,解得n=74,m=54,∴57mn=,故选A.【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.14.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r ,则z 的最大值是( )A .2B .3C .4D .5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】 解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r ,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.15.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v ,则λ=( )A .14B .14-C .13D .13- 【答案】B【解析】【分析】 由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u u r u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出. 【详解】13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-, 故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.16.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v ( )A .229B .229-C .169D .89-【答案】A【解析】【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果.【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u u v u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v . ∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v 22242999AB AC AB AC =-⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v 24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u u v u u u v 82423cos 993π=-+-⋅⋅⋅ 229=. 故选A .【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.17.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v ,则AB BC=u u u v u u u v ( ) A .1B .22C .32D .62【答案】C【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v 可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠, 又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B CBC A BC A BC ⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuv uu u v uu u v uu u v uu u v uu u v ()所以2AB BC =uu u v uu u v . 【点睛】本题主要考查平面向量的线性运算.18.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( )A .4B .5C .6D .7 【答案】C【解析】【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值.【详解】设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则22OP FP x x y ⋅=++u u u r u u u r ,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-, 所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ⋅u u u r u u u r 的最大值为6故选:C【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.19.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( )A B C D .4【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EB =u u u r , 故选:A【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

高考数学压轴专题《平面向量及其应用》难题汇编 百度文库

高考数学压轴专题《平面向量及其应用》难题汇编 百度文库

一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +4.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为76.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-8.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D9.给出下列命题正确的是( ) A .一个向量在另一个向量上的投影是向量 B .a b a b a +=+⇔与b 方向相同 C .两个有共同起点的相等向量,其终点必定相同D .若向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一直线上 10.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-11.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=12.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形13.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-17.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( )A .23π B .43π C .6π D .3π 18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭19.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是()3+∞,.以上结论中正确的有( )A .1个B .2个C .3个D .4个20.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形21.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若22sin cos sin a b cA B B===,则ABC ∆的面积为( ) A .2B .4C .2D .2222.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=23.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4324.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶225.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A .62-B .1(62)2- C .62+D .1(62)2+26.题目文件丢失!27.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A 3B .1C .12D .3228.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .429.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A 5B 10C .4D .530.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心31.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆,则2sin 2sin sin a b cA B C++=++( ) A 239B 263C 83D .2332.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( ) A .(32-∞B .)32,⎡+∞⎣C .(32-∞D .)32,⎡+∞⎣33.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A 15B .14C 3D 334.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ).A .钝角三角形B .等边三角形C .直角三角形D .不确定35.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .421【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD.本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.3.AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;2cos ,21a b a b a b⋅<>===⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.4.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.5.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确;由正弦定理得:2sin c R C =,又237sin 1cos 8C C =-= 所以62378R =,解得:877R =,所以D 正确. 故选:ACD. 【点睛】本题考查了正弦定理和与余弦定理,属于基础题.6.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°7.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.8.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值.由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos 3B ==±. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.9.C 【分析】对A ,一个向量在另一个向量上的投影是数量; 对B ,两边平方化简;对C ,根据向量相等的定义判断; 对D ,根据向量共线的定义判断. 【详解】A 中,一个向量在另一个向量上的投影是数量,A解析:C 【分析】对A ,一个向量在另一个向量上的投影是数量; 对B ,两边平方化简a b a b +=+; 对C ,根据向量相等的定义判断; 对D ,根据向量共线的定义判断. 【详解】A 中,一个向量在另一个向量上的投影是数量,A 错误;B 中,由a b a b +=+,得2||||2a b a b ⋅=⋅,得||||(1cos )0a b θ⋅-=, 则||0a =或||0b =或cos 1θ=,当两个向量一个为零向量,一个为非零向量时,a 与b 方向不一定相同,B 错误;C 中,根据向量相等的定义,且有共同起点可得,其终点必定相同,C 正确;D 中,由共线向量的定义可知点,,,A B C D 不一定在同一直线上,D 错误. 故选:C 【点睛】本题考查了对向量共线,向量相等,向量的投影等概念的理解,属于容易题.10.AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确. 故选:AB. 【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.11.AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为,正确;,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】本题主要考查了向量加法的解析:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为0ABBA AB AB,正确;AB BCAC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B . 【点睛】本题主要考查了向量加法的运算,属于容易题.12.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论. 【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.13.AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.14.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.D 【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可. 【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=, 因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D . 【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题. 17.A 【分析】 根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长. 【详解】0a OA b OB c OC ⋅+⋅+⋅=,a bOC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c Cb Bc C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===,设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.C 【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 19.B 【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误. 【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=, 结合()sin sin sin cos sin cos C A B A B B A =+=+ 可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =, 因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin 2A ⎛⎫∈ ⎪ ⎪⎝⎭,即)b ∈,故④错误.故选:B 【点睛】本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题. 20.A 【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<< 90A ∴=︒,则此三角形形状为直角三角形. 故选:A 【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 21.A 【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b cr A B C===已知sin cos sin a b cA B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC,即等腰直角三角形的斜边长为所以122ABCS=⨯=. 故选:A 【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 22.C 【分析】 取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】 取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C . 【点睛】本题考查了单位向量,意在考查学生的推断能力. 23.A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A .【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 24.B 【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。

河北省衡水市衡水中学高考数学压轴专题《平面向量及其应用》难题汇编doc

河北省衡水市衡水中学高考数学压轴专题《平面向量及其应用》难题汇编doc

一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=-2.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 3.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =34.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<5.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒ 6.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量9.给出下列命题正确的是( ) A .一个向量在另一个向量上的投影是向量 B .a b a b a +=+⇔与b 方向相同C .两个有共同起点的相等向量,其终点必定相同D .若向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一直线上10.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-11.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-12.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3B a c π=+=,则ac=( ) A .2B .3C .12 D .1313.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .314.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==二、平面向量及其应用选择题16.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-17.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记ii S Sλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1B .1C .32-D .3218.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶219.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭20.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心21.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .421 22.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-23.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( ) A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.题目文件丢失!27.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .528.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n+的最大值为 ABC .4D .529.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b =②ABC ∆③ABC ∆的周长为4+ ④ABC ∆外接圆半径3R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个30.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-431.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35 C .34D .14 32.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A .13+ B .13+C .23+ D .23+33.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A 3B 2C 31- D 21 34.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC -C .1233AB AC -D .2133AB AC -+35.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a b a b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案.【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.3.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴132392sin sin 603a R A ===︒,393R =,D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.4.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.5.BC【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 1B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.ABCD【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理 ,即. , 或.即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°7.AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒= 所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确;对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.8.AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意; 对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意; 对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.9.C【分析】对A ,一个向量在另一个向量上的投影是数量;对B ,两边平方化简;对C ,根据向量相等的定义判断;对D ,根据向量共线的定义判断.【详解】A 中,一个向量在另一个向量上的投影是数量,A解析:C【分析】对A ,一个向量在另一个向量上的投影是数量;对B ,两边平方化简a b a b +=+;对C ,根据向量相等的定义判断;对D ,根据向量共线的定义判断.【详解】 A 中,一个向量在另一个向量上的投影是数量,A 错误;B 中,由a b a b +=+,得2||||2a b a b ⋅=⋅,得||||(1cos )0a b θ⋅-=,则||0a =或||0b =或cos 1θ=,当两个向量一个为零向量,一个为非零向量时,a 与b 方向不一定相同,B 错误; C 中,根据向量相等的定义,且有共同起点可得,其终点必定相同,C 正确;D 中,由共线向量的定义可知点,,,A B C D 不一定在同一直线上,D 错误.故选:C【点睛】本题考查了对向量共线,向量相等,向量的投影等概念的理解,属于容易题.10.CD 【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案. 【详解】分析知,,与的夹角是. 由,故B 错误,D 正确;由,所以,故A 错误;由,所以,故C 正确.故选:CD【点睛】解析:CD【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】分析知1a =,2=b ,a 与b 的夹角是120︒. 由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.11.AB【分析】若,则反向,从而;若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB.【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.12.AC【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,∴①,由余弦定理可得,②,联立①②,可得,即,解得或.故选:AC.【点睛】本题考查余弦定理的应解析:AC【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①,由余弦定理可得,2222cos 3a c ac b π+-=②,联立①②,可得222520a ac c -+=, 即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2a c =或12a c =. 故选:AC.【点睛】 本题考查余弦定理的应用,考查计算能力,是基础题.13.AB【分析】由余弦定理得,化简即得解.【详解】由题意得,由余弦定理得,解得或.故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 解析:AB【分析】 由余弦定理得293cos306x x︒+-=,化简即得解. 【详解】由题意得30ABC ︒∠=,由余弦定理得293cos306x x ︒+-=, 解得23x =或3x =.故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 14.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.15.AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确.由平面向量基本定理可知,A 、D 是正确的.对于B,由平面向量基本解析:AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的,所以不正确;对于C ,当两向量的系数均为零,即12120λλμμ====时,这样的λ有无数个,所以不正确.故选:AD .【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.17.D【分析】根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312S SS S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=,根据平面向量基本定理可求得12x y ==,从而可求得结果. 【详解】如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半,所以12312S S S S ==+, 由此可得22232322322()1216S S S S S S S S S S λλ+=⨯=≤=, 当且仅当23S S =时,即P 为EF 的中点时,等号成立,所以0PE PF +=, 由平行四边形法则可得2PA PB PE +=,2PA PC PF +=,将以上两式相加可得22()0PA PB PC PE PF ++=+=,所以11022PA PB PC ++=, 又已知0PA xPB yPC ++=,根据平面向量基本定理可得12x y ==, 从而132122x y +=+=. 故选:D本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.18.B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。

高考数学压轴专题专题备战高考《平面向量》难题汇编附答案

高考数学压轴专题专题备战高考《平面向量》难题汇编附答案

【最新】数学复习题《平面向量》专题解析(1)一、选择题1.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.2.已知向量a v ,b v 满足a b a b +=-r rv v ,且||a =v ||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3π B .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.3.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u vC .5163BD OA OC =-u u u v u u u v u u u v D .1163BD OA OC =+u u u v u u u v u u u v【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案; 【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v ,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.4.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .33,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .2323,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .233⎛⎫+∞ ⎪⎪⎝⎭ D .3,3⎛⎫+∞ ⎪⎪⎝⎭【答案】B【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.5.已知点1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,过原点O 且倾斜角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,则椭圆C的离心率为( )A 1B .2C .12D .2【答案】A 【解析】 【分析】由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,,a c 的关系,求出离心率可得选项. 【详解】将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,即12121||2MF MF OM F F c ⊥==,.又60MOF ∠=︒,∴2MF c =,1MF =,∴2a c =+,∴1ce a==. 故选:A. 【点睛】考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.6.在ABC ∆中,已知3AB =,23AC =,点D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v的取值范围为( )A .()3,5B .()5,53C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()11213333AC AB AC AC AB AC AB AC AB u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅u u ur u u u r u u u r u u u r =8﹣113233cos BAC -⨯⨯∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.7.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12-【答案】C 【解析】 【分析】以,BA BC u u u r u u u r为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r,211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u ur u u u r u u u r u u u r22111362BC BC BA BA =-⋅-u u ur u u u r u u u r u u u r 111123622=-⨯⨯⨯=.故选:C. 【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.8.已知向量,a b r r 满足||3a =r ||4=r b ,且()4a b b +⋅=r r r ,则a r 与b r的夹角为( )A .6π B .3π C .23π D .56π 【答案】D 【解析】 【分析】由()4a b b +⋅=r r r ,求得12a b ⋅=-r r ,再结合向量的夹角公式,求得3cos ,2a b 〈〉=-r r ,即可求得向量a r 与b r的夹角.【详解】由题意,向量,a b r r 满足||3a =r||4=r b ,因为()4a b b +⋅=r r r ,可得2164a b b a b ⋅+=⋅+=r r r r r,解得12a b ⋅=-r r ,所以cos,||||a ba ba b⋅〈〉===r rr rr r又因ar与br的夹角[0,]π∈,所以ar与br的夹角为56π.故选:D.【点睛】本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.9.已知平面向量av,bv的夹角为3π,且||2a=v,||1b=v,则2a b-=vv( )A.4B.2C.1D.16【答案】B【解析】【分析】根据向量的数量积和向量的模的运算,即可求解.【详解】由题意,可得222|2|||4||4444||||cos43a b a b a b a bπ-=+-⋅=+-⋅=r r r r r r r r,所以|2|2a b-=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.10.在复平面内,虚数z对应的点为A,其共轭复数z对应的点为B,若点A与B分别在24y x=与y x=-上,且都不与原点O重合,则OA OB⋅=u u u v u u u v()A.-16 B.0 C.16 D.32【答案】B【解析】【分析】先求出(4,4)OA=u u u r,(4,4)OB=-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z与z对应的点关于x轴对称,∴z对应的点是24y x=与y x=-的交点.由24y xy x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i=-,则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知向量m =r(1,cosθ),(sin ,2)n θ=-r,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( )A .12B .2C .D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.13.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.14.在边长为2的等边三角形ABC 中,若1,3AE AC BF FC ==u u u v u u u v u u u v u u u v ,则BE AF ⋅=u u u v u u u v( )A .23-B .43-C .83-D .2-【答案】D 【解析】 【分析】运用向量的加减运算和向量数量积的定义计算可得所求值. 【详解】在边长为2的等边三角形ABC 中,若13AE AC =u u u r u u u r,则BE AF ⋅=u u u r u u u v (AE AB -u u u r u u u r )•12(AC AB +u u ur u u u r )=(13AC AB -u u u r u u u r )•12(AC AB +u u ur u u u r )1123AC =u u u r (2AB -u u u r 223AB -u u u r •AC =u u u r )142142222332⎛⎫--⨯⨯⨯=- ⎪⎝⎭故选:D 【点睛】本题考查向量的加减运算和向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.15.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r的最大值为( ) A .2 B .3C .2D .5【答案】D 【解析】 【分析】根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用22()1a tb a tb t -=-=+r r r r 求解.【详解】因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,所以1a =r ,1b =r ,0a b ⋅=r r ,所以22()1a tb a tb t -=-=+r r r r ,当[]2,1t ∈-时,max5a tb-=r r. 故选:D 【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.16.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v( ) A .229B .229-C .169D .89-【答案】A 【解析】 【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果. 【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u uv u u u v ,2233AD AB BD AB AB AC =+=-+u u u v u u u v u u uv u u u v u u u v u u u v 1233AB AC =+u u u v u u u v . ∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v 22242999AB AC AB AC =-⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v 24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u u v u u u v 82423cos 993π=-+-⋅⋅⋅ 229=. 故选A .【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.17.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D【解析】【分析】【详解】 因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v , 而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D18.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( ) A .1B .2C .3D .4 【答案】B【解析】【分析】设||n x →=,利用数量积的运算法则、性质计算即可.【详解】设||n x →=, 因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=,即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=.故选:B【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题. 19.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时5a =-r r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.20.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.。

高考数学压轴专题新备战高考《平面向量》难题汇编含答案解析

高考数学压轴专题新备战高考《平面向量》难题汇编含答案解析

【最新】数学《平面向量》复习知识点一、选择题1.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案. 【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.2.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.3.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.4.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以3,,222AD DB OB ===∴==, 所以7cosBOA ∠==,所以27OB OA ⋅==u u u r u u u r ,因为BP OA ⋅u u u r u u u r2cos0⨯=o ,∴43λμ+的最大值是7+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v ,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.6.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r满足(3)10a b c +⋅=rrr,则x =( )A .1B .2C .3D .4【答案】A 【解析】 【分析】根据向量的坐标运算,求得(3)(2,6)a b +=rr,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量(1,1)a =r,(1,3)b =-r ,(2,)c x =r,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=rr ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.7.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C 【解析】 【分析】先计算出16a b r r⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r rr 可得【详解】()4,3a =r Q ,()5,12b =-r,4531216a b ⋅=⨯-⨯=-r r,则向量a r 在b r方向上的投影为1613a b b⋅-=r rr ,故选:C. 【点睛】本题考查平面向量的数量积投影的知识点. 若,a b r r的夹角为θ,向量a r 在b r方向上的投影为cos a θ⋅r 或a b b⋅r rr8.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r的取值范围( ) A .(4,)+∞ B .[4,)+∞C .(0,4)D .(2,4)【答案】A 【解析】 【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u r u u u r u u u r,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u u r u u u r u u u r求解.【详解】因为,EF ED DC CF EF EA AB BF =++=++u u u ru u u ru u u ru u u r u u u ru u u r u u u ru u u r, 所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r ,所以24AB DC EF +==u u u r u u ,因为AB 不平行于CD ,所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r.故选:A 【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.9.已知向量(sin ,cos )a αα=r,(1,2)b =r , 则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -r r 1【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.10.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( )A .4B .C .2D【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A 【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题11.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为A 13B .22C .1D .655【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.12.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.13.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v,则λ=( )A.14B.14-C.13D.13-【答案】B【解析】【分析】由12AE AD=u u u r u u u r,AD BD BA=-u u u r u u u r u u u r,AC BC BA=-u u u r u u u r u u u r,32BD BC=u u u r u u u r,代入化简即可得出.【详解】13,,,22AE AD AD BD BA BD BC BC AC AB==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,带人可得()13132244AE AC AB AB AB AC⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v,可得14λ=-,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.14.已知椭圆C:2212xy+=的右焦点为F,直线l:2x=,点∈A l,线段AF交椭圆C 于点B,若3FA FB=u u u v u u u v,则AFu u u v=()A.2B.2C.3D.3【答案】A【解析】【分析】设点()2,A n,()00,B x y,易知F(1,0),根据3FA FB=u u u v u u u v,得43x=,13y n=,根据点B在椭圆上,求得n=1,进而可求得2AF=u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =, 即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v ,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=, 得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.15.已知a =r 2b =r ,且()(2)b a a b -⊥+r r r r ,则向量a r 在向量b r 方向上的投影为( )A .-4B .-2C .2D .4 【答案】D【解析】【分析】 根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r 方向上的投影a b b⋅r r r . 【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g ,即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r 方向上的投影为4a b b⋅=r r r . 故选:D .【点睛】本题考查向量的投影,属于基础题.16.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,17.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.18.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时a =r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.19.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u vu u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( ) A .843+B .843-C .12D .4【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.20.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ⋅=u u u r u u u r ,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述均不是 【答案】B【解析】【分析】 取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r 代入计算,再利用向量的线性运算求解.【详解】如图,取BC 中点D ,连接,OD AD ,则G 在AD 上,13GD AD =,OD BC ^, ()GO BC GD DO BC GD BC DO BC ⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221111()()()53326GD BC AD BC AB AC AC AB AC AB =⋅=⋅=⨯+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<,由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形.故选:B .【点睛】本题考查平面向量的数量积,考查向量的线性表示,考查余弦定理.解题关键是取BC 中点D ,用,AB AC u u u r u u u r 表示出,GD BC u u u r u u u r.。

安徽淮北市实验高级中学高考数学压轴专题《平面向量及其应用》难题汇编百度文库

安徽淮北市实验高级中学高考数学压轴专题《平面向量及其应用》难题汇编百度文库

一、多选题1.题目文件丢失! 2.题目文件丢失!3.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 4.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=5.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形6.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 7.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+8.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB +=D .0PA PB PC ++=9.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C10.下列命题中,正确的是( )A .在ABC ∆中,AB >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 11.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±12.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-13.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=14.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 15.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量二、平面向量及其应用选择题16.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A .5B .10C .4D .517.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形19.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形20.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m21.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-22.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( )A .垂心B .内心C .重心D . 外心23.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .524.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且30aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(),DE AB AD R λμλμ=+∈,则λμ⋅等于( )A .316- B .316C .12D .12-26.题目文件丢失!27.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8328.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤29.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( ) A .(32-∞B .)32,⎡+∞⎣C .(32-∞D .)32,⎡+∞⎣30.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°31.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭32.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形33.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .32B .22C .312D .212-34.题目文件丢失!35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.无 3.BD【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a b a b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.4.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, .,解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.5.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A B B A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a=, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-, 解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.6.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<,故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.7.ABD 【分析】 A.根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.8.CD 【分析】转化为,移项运算即得解 【详解】 由题意:故 即 , 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.9.ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.ABD 【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD 【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误. 【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确;对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =, sin 2sin 2A B ∴=,A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=,ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD . 【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.11.ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.12.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.13.AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为,正确;,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】本题主要考查了向量加法的解析:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为0ABBA AB AB,正确;AB BCAC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B . 【点睛】本题主要考查了向量加法的运算,属于容易题.14.BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,, 设,若, 所以解析:BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.15.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.二、平面向量及其应用选择题16.B 【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值. 【详解】()22224419||=1||3m m n m n n m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m nm m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x x n=<≤=,则()'1f x=,令()'0f x =,得2x =∴当02x <<时, ()'0f x >,当2x <<()'0f x <, ∴当x =时, ()f x 取得最大值f =⎝⎭,故选B. 【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 17.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

四川省南充高级中学高考数学压轴专题《平面向量及其应用》难题汇编doc

四川省南充高级中学高考数学压轴专题《平面向量及其应用》难题汇编doc

一、多选题1.题目文件丢失!2.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=3.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是45.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 6.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .3OA OB OC ++=D .ED 在BC 方向上的投影为767.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 8.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,则( )A .12AF AD AB =+ B .1()2EF AD AB =+ C .2133AG AD AB =- D .3BG GD =9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .22OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为22-10.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-11.设a 为非零向量,下列有关向量||aa 的描述正确的是( )A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=12.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ= 13.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±14.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =15.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3B a c π=+=,则ac=( ) A .2B .3C .12D .13二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形19.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对20.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .121.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,42c =,45B =︒,则sin C 的值等于( )A .441B .45C .425D .44122.在ABC 中,若A B >,则下列结论错误的是( ) A .sin sin A B >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <23.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形24.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且303aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4 B .3C .-4D .526.题目文件丢失!27.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .328.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(),DE AB AD R λμλμ=+∈,则λμ⋅等于( )A .316- B .316 C .12D .12-29.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b =②ABC ∆③ABC ∆的周长为4+④ABC ∆外接圆半径R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个30.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .431.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8332.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞33.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A B .14C D .题目文件丢失!35.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .300【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.3.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.4.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin 2C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin 2B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.5.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】 由正弦定理可得sin sin a c A C =,所以sin sin 2c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=, ∴sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.6.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),()3E A B C D -, 设123(0,),3),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO , 所以3133y y -=-,解得:32y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(,33ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确. 故选:BCD【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.7.ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对:因为,又,故可得,故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -, 则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形.故D 选项正确;综上所述,正确的有:ABD .故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.8.AB【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误【详解】,即A 正确,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有∴,即C 错误同理,解析:AB【分析】 由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确 连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA =+=+,即1()3GD AD AB =- ∴2BG GD =,即D 错误故选:AB【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系9.AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果.【详解】图2中的正八边形,其中,对于;故正确.对于,故正确.对于,,但对应向量的夹角不相等,所以不成立.故错误.对于解析:AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果.【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos 4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos||4AH AH π=-,||1AH ≠,故错误. 故选:AB .【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 10.BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确;对于C 选项:,故正确;对于D 选项:,而,故解析:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错;对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确; 对于C 选项:cos 248BD BA BC BA BC B BA BC BA ⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC.【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题. 11.ABD【分析】 首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确.故选:ABD解析:ABD 【分析】 首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1a a=正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.12.AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】 对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确; 对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.13.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.14.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.15.AC【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,∴①,由余弦定理可得,②,联立①②,可得,即,解得或.故选:AC.【点睛】本题考查余弦定理的应解析:AC【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①,由余弦定理可得,2222cos 3a c ac b π+-=②,联立①②,可得222520a ac c -+=, 即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2a c =或12a c =. 故选:AC.【点睛】 本题考查余弦定理的应用,考查计算能力,是基础题.二、平面向量及其应用选择题16.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.17.D先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形.故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.D【分析】 先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状.【详解】 解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直,AB AC ∴=, 1cos ||||2AB AC A AB AC ==, 3A π∴∠=,3B C A π∴∠=∠=∠=,∴三角形为等边三角形.故选:D .【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.19.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=. 设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.20.C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥, 所以()22++222M a b b c a c ==+=≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤, 所以()2++2224N a b a b ab ==+=≤(当且仅当a b =时,取等号), 当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为2(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.21.B【分析】在三角形ABC 中,根据1a =,42c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】 在三角形ABC 中, 1a =,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,13221252=+-⨯⨯=, 所以5b =, 由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 22.C【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD .【详解】设ABC 三边,,a b c 所对的角分别为,,A B C ,由A B >,则,a b >∴sin sin 0A B >>,A 正确;由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =,当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C .【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题.23.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】 由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形. 故选:D . 【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 24.D 【分析】由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入303aGA bGB cGC ++=中可得3()0b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭,由,GB GC 不共线可得003b a a -=⎧-=⎩,即可求得,,a bc 的关系,进而利用余弦定理求解即可 【详解】因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,代入30aGA bGB cGC ++=可得3()03b a GB c a GC ⎛⎫-+-=⎪ ⎪⎝⎭, 因为,GB GC 不共线,所以00b a a -=⎧-=,即b a c =⎧⎪⎨=⎪⎩,所以222cos 22b c a BAC bc +-∠==,故30BAC ︒∠=, 故选:D 【点睛】本题考查向量的线性运算,考查利用余弦定理求角 25.C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影. 【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CACAθ⋅⋅-⋅=⋅===-⋅, 故选C . 【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.26.无27.D 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记! 28.A 【分析】利用平面向量的线性运算,将DE 用AB 和AD 表示,可得出λ和μ的值,由此可计算出λμ⋅的值.【详解】E 为AO 的中点,且O 为AC 的中点,所以,()111244AE AO AC AB AD ===+, ()113444DE AE AD AB AD AD AB AD ∴=-=+-=-,14λ∴=,34μ=-.因此,1334416λμ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A. 【点睛】本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题. 29.C 【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论. 【详解】 4c =,3C π∠=,可得42sin sin 3c R C π===,可得ABC ∆外接圆半径R =④正确;()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =;若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得3a =,3b =,则三角形的周长为4+;面积为123bc =; 则②③成立;若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得3a =,3b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π===则②③成立①不成立;综上可得②③④一定成立,故选C . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 30.B 【解析】 【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数. 【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误; ②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确;③因为()(2)0OB OC OB OC OA -⋅+-=, 即()0CB AB AC ⋅+=; 又因为AB AC CB -=, 所以()()0AB AC AB AC -⋅+=, 即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误. 综上可得,正确的命题个数为2. 故选:B . 【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力. 31.C 【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 32.A 【分析】不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解. 【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N 则,A B 在单位圆上运动,且三角形OAB 是等边三角形,(.1),(,1)1CD C m m D n n k ,CD 所在直线方程为10x y +-=因为a c b d T -+-≥恒成立,+=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为2的一个圆.又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离32MN232T NM故选:A 【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. 33.B 【分析】利用正弦定理可得sin 2sin BC =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值.34.无35.B 【分析】首先利用三角函数的平方关系得到sin A ,然后根据平面向量的数量积公式得到所求. 【详解】解:因为ABC 的面积为30,且12cos 13A =,所以5sin 13A =,所以1||||sin 302AB AC A ⨯=,得到||||626AB AC ⨯=⨯, 所以12|||||cos 62614413AB AC AB AC A =⨯=⨯⨯=; 故选:B . 【点睛】本题考查了平面向量的数量积以及三角形的面积;属于中档题.。

四川省资阳中学高考数学压轴专题《平面向量及其应用》难题汇编doc

四川省资阳中学高考数学压轴专题《平面向量及其应用》难题汇编doc

一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是4 3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 4.ABC 中,4a =,5b =,面积53S =,则边c =( )A BC D .5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 6.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形7.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D .38.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形10.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=11.已知ABC ∆的面积为32,且2,b c ==,则A =( ) A .30°B .60°C .150°D .120°12.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .313.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同 14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=A BC .2D .317.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosCa b c==,则∠B 的大小是( )A .12πB .6π C .4πD .3π 19.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( )A .2B .4CD .20.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒21.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:522.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心23.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定24.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-25.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( )A .35 B .107C .57D .1426.题目文件丢失!27.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .428.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(),DE AB AD R λμλμ=+∈,则λμ⋅等于( )A .316- B .316 C .12D .12-29.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b = ②ABC ∆的面积为83③ABC ∆的周长为443+ ④ABC ∆外接圆半径433R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个30.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1431.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8332.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( )A B C .2D 33.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC - C .1233AB AC -D .2133AB AC -+34.题目文件丢失!35.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .300【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc ==因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以,所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.5.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又237sin 1cos C C =-= 所以237R =,解得:87R =,所以D 正确. 故选:ACD. 【点睛】本题考查了正弦定理和与余弦定理,属于基础题.6.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =,即sin 2sin 2A B =.2,2(0,2)A B π∈,22A B =或22A B π+=.即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形.故选:ABCD【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°7.AD【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值.【详解】由正弦定理,可得,,则,所以,为锐角或钝角.因此,.故选:AD.【点睛】本题考查利用正弦定理与同解析:AD【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值.【详解】由正弦定理sin sin b a B A =,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角. 因此,25cos 1sin B B =-=. 故选:AD.【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题. 8.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确,,所以D 正确.故选:ABD解析:ABD【分析】 首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】 a a 表示与向量a 同方向的单位向量,所以1a a =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.9.ABD 【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确;对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.11.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°. 故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.12.AB【分析】由余弦定理得,化简即得解.【详解】由题意得,由余弦定理得,解得或.故选:AB.本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 解析:AB【分析】 由余弦定理得293cos306x x︒+-=,化简即得解. 【详解】 由题意得30ABC ︒∠=,由余弦定理得293cos306x x ︒+-=,解得x =x故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 13.AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据解析:AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.D【详解】 由余弦定理得, 解得(舍去),故选D. 【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!17.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形.故选:D.【点睛】 本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.D【分析】 根据正弦定理,可得111tan tan tan 235A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得到B 的大小.【详解】 解:∵2cosA 3cosB 5cosC a b c ==, ∴sin sin sin 2cos 3cos 5cos A B C A B C ==, 即111tan tan tan 235A B C ==, 令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1A C B A C A C +=-+=-,∴273101k k k =-,解得k =∴tan 3B k ==B =3π. 故选:D .【点睛】本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键19.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】由正弦定理可知2sin sin sin a b c r A B C === 已知22sin cos sin a b c A B B===,所以sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC 外接圆的半径是2,即等腰直角三角形的斜边长为22, 所以122222ABC S =⨯⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 20.C【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=, 即22447a a b b +⋅+=,因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.21.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.22.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心.【详解】 ()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅ ()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME += 20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线M ∴轨迹必过ABC ∆的外心本题正确选项:D【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论. 23.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.24.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题. 25.C【分析】 利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出.【详解】解:3cos 5A =,(0,180)A∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b c B C =, ∴1sin 5sin 7c B b C ===.故选:C.【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.26.无27.D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD=AC+CD=AC+12CB=-CA-12BC=-b-12a,故①正确.②BE=BC+CE=BC+12 CA=a+12b,故②正确.③CF=CA+AE=CA+12AB=b+12(-a-b)=-12a+12b,故③正确.④AD+BE+CF=-DA+BE+CF =-(DC+CA)+BE+CF=-(12a+b)+a+12b-12a+12b=0,故④正确.故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.28.A【分析】利用平面向量的线性运算,将DE用AB和AD表示,可得出λ和μ的值,由此可计算出λμ⋅的值.【详解】 E 为AO 的中点,且O 为AC 的中点,所以,()111244AE AO AC AB AD ===+, ()113444DE AE AD AB AD AD AB AD ∴=-=+-=-,14λ∴=,34μ=-. 因此,1334416λμ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A. 【点睛】 本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题.29.C【分析】 由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论.【详解】4c =,3C π∠=,可得42sin sin 3c R C π===,可得ABC ∆外接圆半径R =④正确; ()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =; 若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得a =,b =4+;面积为12bc =; 则②③成立; 若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得a =,b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π=== 则②③成立①不成立;综上可得②③④一定成立,故选C .【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.30.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+ 又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14 故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.31.C【分析】 作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩, 解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C.【点睛】 本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 32.C【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值.【详解】 ()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭ 故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立.故选:C .【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力.33.A【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果.【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭, 故选:A.【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.34.无35.B【分析】首先利用三角函数的平方关系得到sin A ,然后根据平面向量的数量积公式得到所求.【详解】解:因为ABC 的面积为30,且12cos 13A =,所以5sin 13A =,所以1||||sin 302AB AC A ⨯=,得到||||626AB AC ⨯=⨯, 所以12|||||cos 62614413AB AC AB AC A =⨯=⨯⨯=; 故选:B .【点睛】 本题考查了平面向量的数量积以及三角形的面积;属于中档题.。

重庆市四川外国语大学高考数学压轴专题《平面向量及其应用》难题汇编

重庆市四川外国语大学高考数学压轴专题《平面向量及其应用》难题汇编

一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭3.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C5.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)6.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-7.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为28.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .3OA OB OC ++=D .ED 在BC 方向上的投影为769.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 11.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+12.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 13.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等14.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-15.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形二、平面向量及其应用选择题16.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 17.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若22sin cos sin a b cA B B===,则ABC ∆的面积为( ) A .2B .4C .2D .2218.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒19.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=20.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米21.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-22.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A .7B .3C .11D .1923.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7224.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心25.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106C .103D .1026.题目文件丢失!27.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( )A .3π B .23π C .56π D .6π 29.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .530.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b =②ABC ∆③ABC ∆的周长为4+④ABC ∆外接圆半径3R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( )A .()8bc b c +>B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A B .14C D 34.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1)B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD ,故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩,解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.3.ABD 【分析】 A.根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.4.ACD 【分析】根据正弦定理的性质即可判断.【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 5.ABC【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C .()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.6.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.7.CD 【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.8.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(,)33E A B C D -, 设123(0,),3),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO , 所以3133y y -=-,解得:32y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(,33ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.9.ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对:因为,又,故可得, 故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;综上所述,正确的有:ABD . 故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.10.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以237 R=,解得:87R=,所以D正确.故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.11.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A选项,根据向量加法的平行四边形法则易得,故A正确;对于B选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M为AD三等分点靠近D点的点.对于A选项,根据向量加法的平行四边形法则易得1122AD AB AC=+,故A正确;对于B选项,2MB MC MD+=,由于M为AD三等分点靠近D点的点,2MA MD=-,所以0MA MB MC++=,故正确;对于C选项,()2212=3333BM BA AD BA BD BA BA BD=+=+-+,故C错误;对于D选项,()22123333CM CA AD CA CD CA CA CD=+=+-=+,故D正确.故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.12.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD 【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.13.BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案. 【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案. 【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确; 故选:BCD 【点睛】本题考查了向量的定义和性质,属于简单题.14.AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确. 故选:AB. 【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.15.AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.二、平面向量及其应用选择题16.D 【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f (x )不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项. 17.A 【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】由正弦定理可知2sin sin sin a b cr A B C===已知sin cos sin a b cA B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABCS=⨯=. 故选:A 【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 18.C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 19.C 【分析】由三角形的重心定理和平面向量的共线定理可得答案. 【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++=故选:C 【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题. 20.D 【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC . 【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒, 在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒, 在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D . 【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题. 21.D 【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可. 【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=, 因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.22.A【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】 因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.23.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】 ()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】 本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.24.B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 25.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有x ,x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD = 可得,BC=10sin 45sin 303x ==. 则;所以塔AB 的高是米;故选B .【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.26.无27.D【分析】 过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n n n AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n +=,最后选出正确答案即可.【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n n n AB n n ==--+,因为AM mAB =,所以231n m n =-, 整理可得213m n +=.故选:D . 【点睛】 本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.28.D【分析】根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可.【详解】∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得22a b a b +=-,即2222||2||2a b a b a b a b ++⋅=+-⋅ , 则0a b ⋅=,由2a b b +=, 平方得222||24||a b a b b ++⋅=,得223a b =,即3a b =则2a b b +=,22|3|a b a a a b b +⋅=+⋅=(),则向量a b +与a 的夹角的余弦值23||323a b a b cos a b a b bθ+⋅===+⋅⋅(), ,0.6πθπθ≤≤∴=, ,故选D.【点睛】本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 29.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 30.C【分析】 由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论.【详解】4c =,3C π∠=,可得42sin sin 3c R C π===,可得ABC ∆外接圆半径R =④正确; ()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =; 若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得a =,b =4+;面积为12bc =; 则②③成立; 若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得a =,b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π=== 则②③成立①不成立;综上可得②③④一定成立,故选C .【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+, 即()()1sin 2sin sin 2A ABC A B C +-+++-=, 即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=, 即()()12sin cos 2sin cos 2A B C A B C -++-=, 即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=, 设ABC ∆的外接圆半径为R ,则2sin sin sin a b c R A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立.故选:A.【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=, 当2m =时,22(2)1717288t m +--+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.33.B【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案;【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=,∴2b c =,又a b =, ∴22222114cos 12422b ac b B ac b ⋅+-===⋅⋅, 故选:B.本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=, 所以AC AB CB →→→==,ABC 是等边三角形.故选:B【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题.35.B【分析】由向量相等的坐标表示,列方程组求解即可.【详解】 解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭, 故选B.【点睛】本题考查了平面向量的坐标运算,属基础题.。

湖北省鄂东南三校高考数学压轴专题《平面向量及其应用》难题汇编doc

湖北省鄂东南三校高考数学压轴专题《平面向量及其应用》难题汇编doc

一、多选题1.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( )A .::sin :sin :sin a b c ABC = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b c A B C5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+6.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++= 7.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形9.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D .310.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 11.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =14.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同15.题目文件丢失!二、平面向量及其应用选择题16.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .517.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( ) A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形18.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形19.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个20.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定21.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=22.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,c =45B =︒,则sin C 的值等于( )A .441B .45C .425D 23.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角 25.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形26.题目文件丢失!27.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .2B .106C .103D .1028.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .429.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形30.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .531.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A 239B 263C 83D .2332.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(,32⎤-∞+⎦B .)32,⎡++∞⎣C .(,32⎤-∞-⎦D .)32,⎡-+∞⎣33.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( )A .54B .2C .174D .4 34.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+ 35.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( ) A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦【参考答案】***试卷处理标记,请不要删除一、多选题 1.ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.2.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.3.BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确;因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.4.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 5.AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.6.CD 【分析】转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.7.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=.即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形.故选:ABCD【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°8.AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误.【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确;对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒=所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确; 对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.9.AD【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值.【详解】由正弦定理,可得,,则,所以,为锐角或钝角.因此,.故选:AD.【点睛】本题考查利用正弦定理与同解析:AD【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值.【详解】 由正弦定理sin sin b a B A =,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD.【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题. 10.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.11.AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.12.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且,所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.ABD【分析】 根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.14.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型. 15.无二、平面向量及其应用选择题16.C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影.【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CA CA θ⋅⋅-⋅=⋅===-⋅, 故选C .【点睛】 本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.17.C 【分析】化简条件可得sin 2a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=.由正弦定理,得sin sin 2a A c C ==,3sin 4C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.18.C【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案.【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+,所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=.所以0BC AE ⋅=,即BC AD ⊥,故AB AC =,ABC 是等腰三角形.故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题.19.B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=,结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =,因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin a B b A ==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin 2A ⎛⎫∈ ⎪⎪⎝⎭,即)b ∈,故④错误. 故选:B【点睛】 本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.20.B【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.21.C【分析】取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C .【点睛】本题考查了单位向量,意在考查学生的推断能力.22.B【分析】在三角形ABC 中,根据1a =,c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】 在三角形ABC 中, 1a =,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,1322125=+-⨯⨯=, 所以5b =, 由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 23.C【分析】由三角形的重心定理和平面向量的共线定理可得答案.【详解】 ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G 为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.24.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确;,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.25.D【分析】首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果.【详解】解:已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以:22A B =或21802A B =︒-,解得:A B =或90A B +=︒所以:ABC 的形状一定是等腰或直角三角形故选:D .【点评】本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题.26.无27.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,AC=3x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD =可得,BC=10sin 45sin 30x ==.则;所以塔AB 的高是106米;故选B . 【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解. 28.D【分析】 本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF=-(DC +CA )+BE +CF =-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D.【点睛】 本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.29.D【分析】由已知22:tan :tan a b A B ,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.30.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 31.A【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 424ABC S bc A c c ∆====利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b c A B C==故2sin 2sin sin sin 32a b c a A B C A ++===++故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 32.A【分析】 不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解.【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N则,A B 在单位圆上运动,且三角形OAB 是等边三角形,(.1),(,1)1CD C m m D n n k ,CD 所在直线方程为10x y +-=因为a c b d T -+-≥恒成立,+=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为3的一个圆. 又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离322MN 232T NM故选:A【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. 33.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=, 即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,x ≤≤(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.34.C【分析】根据平面向量的三角形法则和共线定理即可得答案.【详解】 解:111222BF BA AF BA AE AB AD AB CE ⎛⎫=+=+=-+++ ⎪⎝⎭ 111223AB AD AB CB ⎛⎫=-+++ ⎪⎝⎭ 111246AB AD AB CB =-+++ ()111246AB AD AB CD DA AB =-+++++ 11112462AB AD AB AB AD AB ⎛⎫=-+++--+ ⎪⎝⎭ 111124126AB AD AB AB AD =-+++- 2133AB AD =-+ 故选:C .【点睛】本题考查用基底表示向量,向量的线性运算,是中档题.35.B【分析】 根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果.【详解】关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥ 设a 与b 的夹角为θ,则24cos 0a a b θ-≥又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦本题正确选项:B【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.。

高考数学压轴专题(易错题)备战高考《平面向量》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《平面向量》难题汇编及答案解析

新数学《平面向量》高考知识点一、选择题1.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.2.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.3.已知,a r b r 是平面向量,满足||4a =r ,||1b ≤r 且|3|2b a -≤r r ,则cos ,a b 〈〉rr 的最小值是( ) A .1116B .78C .15 D .315【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】 设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.4.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.5.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .33,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .2323,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪⎪⎝⎭D .⎫+∞⎪⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.6.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( )A .4B .2C .1D .16【答案】B 【解析】 【分析】根据向量的数量积和向量的模的运算,即可求解. 【详解】由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.7.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuur =2,则△ABC 的面积为( )A B .32C .D .【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB 222123a c b ac +-==,则sinB =BA u u u r ⋅BC =u u ur 2,可得cacosB =2,则ac =6,∴△ABC 的面积为:116223acsinB =⨯⨯=. 故选C . 【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.8.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.9.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.10.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v的值是( )A .45-B .1516-C .14-D .58-【答案】B 【解析】 【分析】根据向量表示化简数量积,即得结果. 【详解】()()()()•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2221151416EO OC ⎛⎫=-=-=- ⎪⎝⎭u u u v u u u v ,选B.【点睛】本题考查向量数量积,考查基本分析求解能力,属基础题.11.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r【答案】A 【解析】 【分析】由平面向量的加法法则运算即可. 【详解】如图,过E 作//,EF BC 由向量加法的平行四边形法则可知1.2BE BF BC AB AD =+=-+u u u v u u u v u u u v u u uv u u u v故选A.【点睛】本题考查平面向量的加法法则,属基础题.12.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v ( ) A .229B .229-C .169D .89-【答案】A 【解析】 【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果. 【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u uv u u u v ,2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v .∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v22242999AB AC AB AC =-⋅+⋅-⋅⋅u u uv u u u v u u u v u u u v24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u uv u u u v82423cos 993π=-+-⋅⋅⋅229=. 故选A . 【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.13.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u v u u u v ( )A .1B .22C .32D .62【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠, 又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v 即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B CBC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以3AB BC=uu u v uu u v. 【点睛】本题主要考查平面向量的线性运算.14.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u uv u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D15.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( ) A .4 B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则22OP FP x x y ⋅=++u u u r u u u r ,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-, 所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ⋅u u u r u u u r 的最大值为6故选:C【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.16.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( ) A .1B .2C .3D .4 【答案】B【解析】【分析】设||n x →=,利用数量积的运算法则、性质计算即可.【详解】设||n x →=, 因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=,即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=.故选:B【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题. 17.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D【解析】【分析】根据题意,易知a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为12⎛ ⎝⎭,,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )A .714-B .24-C .514-D .30-【答案】A【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x + (,AM x ∴=+u u u u r(1E x M -=--u u u r()1AM ME x x -∴⋅=--++u u u u r u u u r 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.19.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.20.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.。

广东省深圳市耀华实验学校高考数学压轴专题《平面向量及其应用》难题汇编

广东省深圳市耀华实验学校高考数学压轴专题《平面向量及其应用》难题汇编

一、多选题1.题目文件丢失!2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,32sin a c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是23,则该三角形外接圆半径为43.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+4.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD5.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,则( )A .12AF AD AB =+B .1()2EF AD AB =+ C .2133AG AD AB =-D .3BG GD =6.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 7.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量9.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-11.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形12.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形13.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3B a c π=+=,则ac=( ) A .2B .3C .12 D .1314.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同15.题目文件丢失!二、平面向量及其应用选择题16.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 17.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形18.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对19.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4320.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒21.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:522.在ABC 中,若A B >,则下列结论错误的是( )A .sin sin AB >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <23.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .63C .12D .18324.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形25.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106C .103D .1026.题目文件丢失!27.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .228.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 29.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .430.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .4 31.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°32.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭33.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形34.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .32B 2C .312D 21 35.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .72【参考答案】***试卷处理标记,请不要删除一、多选题 1.无2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利 解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin 2B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得2221 2cos416224122c a b ab C=+-=+-⨯⨯⨯=,即23c=设三角形的外接圆半径是R,由正弦定理可得2324sin3cRC===,则该三角形外接圆半径为2,故D错误,故选:AC.【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可.【详解】如图:根据三角形中线性质和平行四边形法则知,, A是正确的;因为EF是中位线,所以B是正确的;根据三角形重心解析:AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可.【详解】如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB→→→→→→→→→→=+=+=+-=+, A是正确的;因为EF是中位线,所以B是正确的;根据三角形重心性质知,CP=2PG,所以22113323CP CG CA CB CA CB→→→→→→⎛⎫⎛⎫==⨯+=+⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.4.AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BDBD BA,2cos BD BC BDBC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.5.AB 【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG ==∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=- 211()333DG DF DA AB DA =+=+,即1()3GD AD AB =-∴2BG GD =,即D 错误 故选:AB 【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系6.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b xa c xbc x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以28R =,解得:7R =,所以D 正确. 故选:ACD. 【点睛】本题考查了正弦定理和与余弦定理,属于基础题.7.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.8.AC 【分析】根据共线向量的定义判断即可. 【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;对于B选项,若a b=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.9.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB正确,当不是单位向量时,不正确,,所以D正确.故选:ABD解析:ABD【分析】首先理解aa表示与向量a同方向的单位向量,然后分别判断选项.【详解】aa表示与向量a同方向的单位向量,所以1aa=正确,//aaa正确,所以AB正确,当a不是单位向量时,aaa=不正确,cos0aa aa a a aa a a⋅==⨯=,所以D正确.故选:ABD【点睛】本题重点考查向量aa的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a同方向的单位向量.【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.11.BD 【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在中,对于A ,若,则或, 当A =解析:BD 【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=,当A =B 时,△ABC 为等腰三角形; 当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B=,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确;综上,正确的判断为选项B 和D . 故选:BD . 【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.12.AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=,即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.13.AC 【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】 ∵, ∴①,由余弦定理可得,②, 联立①②,可得, 即, 解得或. 故选:AC. 【点睛】本题考查余弦定理的应解析:AC 【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①, 由余弦定理可得,2222cos3a c acb π+-=②,联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2ac =或12a c =.故选:AC. 【点睛】本题考查余弦定理的应用,考查计算能力,是基础题.14.AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.15.无二、平面向量及其应用选择题16.D 【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n nn AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n+=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n nn AB n n ==--+,因为AM mAB =,所以231nm n =-, 整理可得213m n+=.故选:D . 【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题. 17.D 【分析】先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状. 【详解】解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直, AB AC ∴=,1cos ||||2AB AC A AB AC ==,3A π∴∠=,3B C A π∴∠=∠=∠=,∴三角形为等边三角形.故选:D . 【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题. 18.B 【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形. 故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力. 19.A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 20.C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 21.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 22.C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题.23.A 【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值 【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab abb =+-⨯≥-=,当且仅当3a b =时等号成立∴有48ab ≤∴113sin 48123222ABC S ab C ∆=≤⨯⨯=故选:A 【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值 24.A 【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<< 90A ∴=︒,则此三角形形状为直角三角形.【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题.25.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,AC=3x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD =可得,BC=10sin 45sin 30x ==.则;所以塔AB 的高是米;故选B .【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.26.无27.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.28.D【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】 利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).29.D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF=-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.30.B【解析】【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数.【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误;②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确;③因为()(2)0OB OC OB OC OA -⋅+-=,即()0CB AB AC ⋅+=;又因为AB AC CB -=,所以()()0AB AC AB AC -⋅+=,即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误.综上可得,正确的命题个数为2.【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力.31.D【分析】由正弦定理可得,sin 2B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin sin b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =.故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目. 32.D【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x 的取值范围.【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.故选:D【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.33.B【分析】利用两角和与差公式化简原式,可得答案.因为sin 2sin cos B A C =,所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C +=所以sin cos cos sin 0A C A C -=所以sin()0A C -=,所以0A C -=,所以A C =.所以三角形是等腰三角形.故选:B.【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.34.C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得BC =-,在BCD 中,由正弦定理,得sin sin BC CD BDC CBD =∠∠50sin 45=︒,sin BDC ∴∠=sin(90)θ+︒=cos θ∴= 故选:C .【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 35.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.。

高考数学压轴专题新备战高考《平面向量》难题汇编及答案解析

高考数学压轴专题新备战高考《平面向量》难题汇编及答案解析

新数学《平面向量》期末复习知识要点一、选择题 1.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r ( )A .1B .2-C .12D .12- 【答案】C 【解析】 【分析】 以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r , 211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622=-⨯⨯⨯=. 故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.2.如图,在ABC ∆中,12AN NC =u u u r u u u r ,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B【解析】【分析】根据题意,以AB u u u r ,AC u u u r 为基底表示出AP u u u r 即可得到结论.【详解】 由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r , 所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 又15AP mAB AC =+u u u r u u u r u u u r , 所以,1135λ-=,且m λ=,解得25m λ==. 故选:B.【点睛】 本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.3.下列说法中说法正确的有( ) ①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r ④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;A .①④B .①②④C .①②⑤D .③⑥ 【答案】A【解析】【分析】直接利用向量的基础知识的应用求出结果.【详解】对于①:零向量与任一向量平行,故①正确; 对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r ,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误; 对于④:a b a b +≥+r r r r ,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r ,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.4.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( ) A .22B .19C .-19D .-22 【答案】D【解析】 由余弦定理可得22211cos 216AB BC AC B ABBC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D. 【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc +-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用. 5.如图,在ABC V 中,AD AB ⊥,3BC BD =u u u v u u u v ,1AD =u u u v ,则AC AD ⋅=u u u v u u u v ( )A .3B 3C 3D 3【答案】D【解析】 ∵3AC AB BC AB =+=u u u v u u u v u u u v u u u v u u v,∴(3)3AC AD AB AD AB AD BD AD ⋅=+⋅=⋅⋅u u u v u u u v u u u v u u v u u u v u u u v u u u v u u u v ,又∵AB AD ⊥,∴0AB AD ⋅=uuu r ,∴33cos 3cos 33AC AD AD AD ADB BD ADB AD u u u v u u u v u u u v u u u v u u v u u u v u u u v u u u v ⋅=⋅=⋅∠=⋅∠==,故选D .6.已知向量a r 与向量b r 满足||2a =r ,||b =r ||||a b a b +⋅-=r r r r ,则向量a r 与向量b r 的夹角为( )A .4π或34π B .6π或56π C .3π或23π D .2π 【答案】A【解析】【分析】设向量a r ,b r 的夹角为θ,则2||12a b θ+=+r r ,2||12a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角;【详解】解:设向量a r ,b r 的夹角为θ,222||||||2||||cos 48a b a b a b θθ+=++=++r r r r r r12θ=+,222||||||2||||cos 4812a b a b a b θθθ-=+-=+-=-r r r r r ,所以2222||||144128cos 80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.7.已知a =r 2b =r ,且()(2)b a a b -⊥+r r r r ,则向量a r 在向量b r 方向上的投影为( )A .-4B .-2C .2D .4 【答案】D【解析】【分析】 根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r 方向上的投影a b b⋅r r r . 【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g ,即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r 方向上的投影为4a b b ⋅=r r r . 故选:D .【点睛】本题考查向量的投影,属于基础题.8.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u u u r u u u rB .2133BA AC -u u u r u u u r C .1233BA AC +u u u r u u u rD .4233BA AC +u u u r u u u r 【答案】A【解析】【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论.【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.9.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r 方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C【解析】【分析】先计算出16a b r r ⋅=-,再求出b r ,代入向量a r 在b r方向上的投影a b b⋅r r r 可得 【详解】 ()4,3a =r Q ,()5,12b =-r ,4531216a b ⋅=⨯-⨯=-r r , 则向量a r 在b r 方向上的投影为1613a b b⋅-=r r r , 故选:C.【点睛】 本题考查平面向量的数量积投影的知识点. 若,a b r r 的夹角为θ,向量a r 在b r 方向上的投影为cos a θ⋅r 或a b b⋅r r r 10.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为( )A .1-B .3-C .12-D .32- 【答案】A【解析】【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解.【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以 (2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r ,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭ 所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-. 故选:A .【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.11.平面向量a →与b →的夹角为π3,()2,0a →=,1b →=,则2a b →→-=( )A .BC .0D .2【答案】D【解析】【分析】 根据向量的模的计算和向量的数量积的运算即可求出答案.【详解】()2,0a →=Q ,||2a →∴=22222(2)||4||444421cos 43a b a b a b a b π→→→→∴-=-=+-⋅=+-⨯⨯⨯=r r r r , |2|2a b ∴-=r r , 故选:D【点睛】本题考查了向量的模的计算和向量的数量积的运算,属于中档题.12.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( ) A .4B .2C .1D .16【答案】B【解析】【分析】根据向量的数量积和向量的模的运算,即可求解.【详解】 由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.13.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .13-B .13C .12-D .12【答案】C【解析】【分析】 由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r ,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点,由向量的加减法运算,得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r, 2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r , 又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩, 则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.14.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( ) A .12 B .2 C .22 D .﹣2 【答案】B【解析】【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案.【详解】 因为向量m =r (1,cosθ),n =r (sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r 因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.15.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+等于( )A 323-+B 323+C 31D 31+【答案】B【解析】【分析】建立坐标系,求出D 点坐标,从而得出λ,μ的值.【详解】解:1AC =Q ,3AB =,30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛⎫+ ⎪ ⎪⎝⎭. ()3,0AB =u u u r ,()0,1AC =uu u r , ∴13,12AD ⎛⎫=+⎪ ⎪⎝⎭u u u r . Q AD AB AC λμ=+u u u r u u u r u u u r , ∴132312λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴331λμ⎧=⎪⎪⎨⎪=+⎪⎩,231λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.16.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r 的取值范围( )A .(4,)+∞B .[4,)+∞C .(0,4)D .(2,4) 【答案】A【解析】【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u r u u u r u u u r ,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r ,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u u r u u u r u u u r 求解.【详解】 因为,EF ED DC CF EF EA AB BF =++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r ,所以24AB DC EF +==u u u r u u , 因为AB 不平行于CD , 所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r .故选:A【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.17.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.18.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时5a =-r r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.19.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )AB C .2 D .4 【答案】C【解析】由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r所以2a ==r 故选C20.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122210F F c ==.∵120MF MF ⋅=u u u u v u u u u v , ∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =,设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.。

高考数学压轴专题新备战高考《平面向量》难题汇编含答案

高考数学压轴专题新备战高考《平面向量》难题汇编含答案

数学高考《平面向量》复习资料一、选择题1.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.2.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.3.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r的最小值是( )A .0B .1CD .2【答案】B 【解析】 【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r, ()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B . 【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属4.已知向量a r 与向量b r 满足||2a =r ,||b =r ||||a b a b +⋅-=r r r r ,则向量a r与向量b r的夹角为( )A .4π或34π B .6π或56πC .3π或23πD .2π 【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||12a b θ+=+r r ,2||12a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 48a b a b a b θθ+=++=++r r r r r r12θ=+,222||||||2||||cos 4812a b a b a b θθθ-=+-=+-=-r r r r r,所以2222||||144128cos 80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.5.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r( )A .3144AB AC -u u ur u u u r B .1136AB AC -u u u r u u u rC .2133AB AC -u u u r u u u rD .3144AB AC +u u ur u u u r【答案】A 【解析】 【分析】根据MD MA AB BD =++u u u r u u u u u u r u r u u u r,化简得到答案. 【详解】 ()11312444MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u uu u u u r r u u u r .故选:A . 【点睛】本题考查了向量的运算,意在考查学生的计算能力.6.已知a =r 2b =r ,且()(2)b a a b -⊥+r rr r ,则向量a r 在向量b r 方向上的投影为( ) A .-4 B .-2C .2D .4【答案】D 【解析】 【分析】根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r方向上的投影a b b ⋅r r r .【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g , 即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r方向上的投影为4a b b⋅=r r r .故选:D . 【点睛】本题考查向量的投影,属于基础题.7.已知点1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,过原点O 且倾斜角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,则椭圆C的离心率为( )A 1B .2C .12D .2【答案】A 【解析】 【分析】由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,,a c 的关系,求出离心率可得选项. 【详解】将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,即12121||2MF MF OM F F c ⊥==,.又60MOF ∠=︒,∴2MF c =,1MF =,∴2a c =+,∴1ce a==. 故选:A. 【点睛】考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.8.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为AB.2C .1 D【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.9.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.11.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v,则λ=( )A .14B .14-C .13D .13-【答案】B【分析】由12AE AD=u u u r u u u r,AD BD BA=-u u u r u u u r u u u r,AC BC BA=-u u u r u u u r u u u r,32BD BC=u u u r u u u r,代入化简即可得出.【详解】13,,,22AE AD AD BD BA BD BC BC AC AB==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,带人可得()13132244AE AC AB AB AB AC⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v,可得14λ=-,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.12.已知椭圆C:2212xy+=的右焦点为F,直线l:2x=,点∈A l,线段AF交椭圆C 于点B,若3FA FB=u u u v u u u v,则AFu u u v=()A.2B.2C.3D.3【答案】A【解析】【分析】设点()2,A n,()00,B x y,易知F(1,0),根据3FA FB=u u u v u u u v,得43x=,13y n=,根据点B在椭圆上,求得n=1,进而可求得2AF=u u u v【详解】根据题意作图:设点()2,A n,()00,B x y.由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=.故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.13.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v( )A .229B .229-C .169D .89-【答案】A 【解析】 【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果. 【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u uv u u u v ,2233AD AB BD AB AB AC =+=-+u u u v u u u v u u uv u u u v u u u v u u u v 1233AB AC =+u u u v u u u v .∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v22242999AB AC AB AC =-⋅+⋅-⋅⋅u u uv u u u v u u u v u u u v24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u uv u u u v82423cos 993π=-+-⋅⋅⋅229=. 故选A . 【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.14.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u uv u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D15.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A .2B .2CD .12【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 又圆2212302x y x y +--+=的圆心坐标为312⎛⎫ ⎪ ⎪⎝⎭,,半径为5,所以点()20,与圆2212302x y x y +--+=上一动点距离的最小值为()223575212⎛⎫--+-= ⎪ ⎪⎝⎭. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.16.设()1,a m =r ,()2,2b =r ,若()2a mb b +⊥r r r ,则实数m 的值为( ) A .12 B .2 C .13- D .-3【答案】C【解析】【分析】 计算()222,4a mb m m +=+r r ,根据向量垂直公式计算得到答案.【详解】 ()222,4a mb m m +=+r r ,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-. 故选:C .【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.17.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则m n等于( )A.5 7B.75C.37D.73【答案】A【解析】【分析】依题意建立直角坐标系,根据已知角,可得点B、C的坐标,利用向量相等建立关于m、n 的方程,求解即可.【详解】以OA所在的直线为x轴,过O作与OA垂直的直线为y轴,建立直角坐标系如图所示:因为1OA OB==u u u r u u u r,且4tan3AOB∠=-,∴34cos sin55AOB AOB∠=-∠=,,∴A(1,0),B(3455-,),又令θAOC∠=,则θ=AOB BOC∠-∠,∴413tanθ413--=-=7,又如图点C在∠AOB内,∴cosθ2,sinθ72,又2OCu u u v=C(1755,),∵OC mOA nOB=+u u u r u u u r u u u r,(m,n∈R),∴(1755,)=(m,0)+(3455n n-,)=(m35n-,45n)即15= m35n-,7455n=,解得n=74,m=54,∴57mn=,故选A.【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.18.已知平面向量,,a b cr r r满足||||2a b==r r,a b⊥r r,()()a cb c-⊥-r r r r,则(a b c⋅r r r+)的取值范围是( )A .[0,2]B.[0, C .[0,4] D .[0,8] 【答案】D【解析】【分析】 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解.【详解】 设,,OA a OB b OC c ===u u u r r u u u r r u u u r r ,以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动,设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,由圆心到直线22x y t +=的距离d =≤,可得[0,8]t ∈.故选:D .【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力. 19.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A.5 BC.3 D.2【答案】A【解析】【分析】根据OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r .再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知OB =u u u r ,1AB =uu u r ,45AOB ∠=︒ 由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u rsin OAB =∠,解得sin 1OAB ∠= 即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫ ⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得 ()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 9355OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

高考数学压轴专题《平面向量及其应用》难题汇编 百度文库

高考数学压轴专题《平面向量及其应用》难题汇编 百度文库

一、多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是3.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C5.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<6.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-7.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( )A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量9.有下列说法,其中错误的说法为( ).A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ= 10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 11.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-12.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使()11122122e e e e λμλλμ+=+D .若存在实数λ,μ,使120e e λμ+=,则0λμ==13.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥14.下列命题中正确的是( )A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同 15.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量二、平面向量及其应用选择题16.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .323D .832317.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形18.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形19.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;A .①④B .①②④C .①②⑤D .③⑥20.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4C .2D .2221.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对22.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( )A .MB .NC .D .123.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4324.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形25.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.题目文件丢失!27.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)28.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(2a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .3)2B .C .3(,3]2D .3(,3)229.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心D .外心重心内心30.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .12B .-12C .13D .-1331.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤D .1224abc ≤≤32.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=33.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ).A .钝角三角形B .等边三角形C .直角三角形D .不确定34.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-【参考答案】***试卷处理标记,请不要删除一、多选题 1.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a=,由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-, 解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()223B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD.本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin 2c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ACD 【分析】根据正弦定理的性质即可判断.对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 5.ABD【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.6.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.7.ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.8.AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意; 对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意; 对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.9.AD分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.10.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.11.AB【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】当时,则、方向相反且,则存在负实数解析:AB【分析】 根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】 当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误; 若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误;若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确.故选:AB.【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.12.BC【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否.【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确,对于C ,当时,这样的有无数个,故C解析:BC【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否.【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确,对于C ,当12120λλμμ====时,这样的λ有无数个,故C 说法不正确.故选:BC【点睛】若1e ,2e 是平面α内两个不共线的向量,则对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ存在且唯一.13.BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确;向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;,故B正确;AB与DC表示等腰梯形两腰的长度,所以AB DC向量无法比较大小,只能比较向量模的大小,故C错误;等腰梯形的上底BC与下底AD平行,所以//BC AD,故D正确;故选:BD.【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.14.AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A正确;向量共线包括同向和反向,故B不正确;向量是矢量,不能比较大小,故C不正确;根据解析:AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A正确;向量共线包括同向和反向,故B不正确;向量是矢量,不能比较大小,故C不正确;根据相等向量的概念知,D正确.故选:AD【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.15.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A,B,C,D四点不一定在一条直线上,故A错误;零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.二、平面向量及其应用选择题16.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45HB =︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,103534623v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.17.A【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简.【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+, 整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =, cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<<90A ∴=︒,则此三角形形状为直角三角形.故选:A【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题.18.D【分析】 先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状.【详解】 解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直,AB AC ∴=, 1cos ||||2AB AC A AB AC ==, 3A π∴∠=,3B C A π∴∠=∠=∠=,∴三角形为等边三角形.故选:D .【点睛】 本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.19.A【分析】直接利用向量的基础知识的应用求出结果.【详解】对于①:零向量与任一向量平行,故①正确; 对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误;对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.20.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sin sin a b c r A B C === 已知22sin cos sin a b c A B B===,所以sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC 外接圆的半径是2,即等腰直角三角形的斜边长为22, 所以122222ABC S =⨯⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=. 设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.22.C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥,所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.23.A【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan 2C ,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-, 又222sin 2sin cos 1222a b c ab C ab C C ab ab +-⋅-===-,∴sin cos 12C C +=,即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A .【点睛】 本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.24.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形. 故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 25.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 26.无27.B【分析】由向量相等的坐标表示,列方程组求解即可.【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭,所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭,故选B. 【点睛】本题考查了平面向量的坐标运算,属基础题. 28.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.29.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++=,则NA NB NC +=-,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN =,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用. 30.A 【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【详解】法一:由题意可得BA ·BC =2×2cos3π=2, BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3, ∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-3)·(x -1=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解. 设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C 【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案. 【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅,所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C3.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-4.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+5.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6πB .3π C .23π D .2π 6.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +7.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒8.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD9.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 10.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,2b =30A =︒,则B =( )A .30B .45︒C .135︒D .150︒11.ABC 中,4a =,5b =,面积3S =c =( ) A 21B 61C 41D .2512.下列命题中,结论正确的有( )A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 13.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等14.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-15.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°二、平面向量及其应用选择题16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D.1417.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能18.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶219.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a Bb Ac +=.若2a =,ABC 的面积为1),则b c +=( )A .5B .C .4D .1620.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对22.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .D .123.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4324.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角 25.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .30026.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A .13+ B .13+C .23+ D .23+27.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7228.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .2B .106C .103D .1029.已知向量(22cos 3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 30.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(),DE AB AD R λμλμ=+∈,则λμ⋅等于( )A .316- B .316 C .12D .12-31.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心32.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .73B .273C .2D 21 33.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A 15B .14C 3D 334.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定35.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD ,故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 3.ACD【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立; 若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.4.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.5.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅, 即231323BC BC =+-,解得1BC =或2BC =.当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.6.AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;解析:AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;2cos ,21a b a b a b⋅<>===⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.7.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 1B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.AD【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确.故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BD BD BA,2cos BD BC BDBC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.9.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC .【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.10.BC 【分析】用正弦定理求得的值,由此得出正确选项. 【详解】解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC 【分析】用正弦定理求得sin B 的值,由此得出正确选项. 【详解】解:根据正弦定理sin sin a b A B=得:1sin 2sin 12b A B a ===,由于1b a =>=,所以45B =或135B =.故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.11.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以, 所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.12.BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确;故选:BD 【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.13.BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案. 【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案. 【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确; 故选:BCD 【点睛】本题考查了向量的定义和性质,属于简单题.14.CD 【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案. 【详解】分析知,,与的夹角是. 由,故B 错误,D 正确; 由,所以,故A 错误; 由,所以,故C 正确. 故选:CD 【点睛】解析:CD 【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案. 【详解】分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a ba ab b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确.故选:CD 【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.15.BD 【分析】由三角形的面积公式求出即得解. 【详解】 因为, 所以, 所以,因为, 所以或120°. 故选:BD 【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.解析:BD 【分析】由三角形的面积公式求出sin A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin 2A =,因为0180A ︒︒<<, 所以60A =或120°. 故选:BD 【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.二、平面向量及其应用选择题16.C 【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出. 【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b cB C=,∴1sin 5sin 7c B b C ===. 故选:C . 【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题. 17.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

相关文档
最新文档