考研数学概率与数理统计真题:2005年

合集下载

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学一试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 曲线122+=x x y 的斜渐近线方程为(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为._____ (3) 设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则 )3,2,1(nu∂∂=_______________.(4) 设Ω是由锥面z =与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ___________________.(5) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .(6) 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则{2}P Y == ___________ .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在(,)-∞+∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. (8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数.(C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A) 2222yux u ∂∂-=∂∂. (B) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. (10) 设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域, 在此邻域内该方程( )(A) 只能确定一个具有连续偏导数的隐函数(,)z z x y =.(B) 可确定两个具有连续偏导数的隐函数和(,)y y x z =和(,)z z x y =. (C) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y =.(D) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =. (11) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.(12) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为A ,B 的伴随矩阵,则( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. (13) 设二维随机变量(,)X Y 的概率分布为( )X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则 (A) 0.2,0.3a b == (B) 0.4,0.1a b ==(C) 0.3,0.2a b == (D) 0.1,0.4a b ==(14) 设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则( )(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I)证明:对右半平面0x >内的任意分段光滑简单闭曲线C ,有022)(42=++⎰C y x xydydx y ϕ;(II)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I) 求a 的值;(II) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III) 求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0Ax =的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I) i Y 的方差n i DY i ,,2,1, =; (II)1Y 与n Y 的协方差).,(1n Y Y Cov2005年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【答案】.4121-=x y 【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:a =22()1limlim 22x x f x x x x x →∞→∞==+, []1lim ()lim2(21)4x x x b f x ax x →∞→∞-=-==-+,所以所求斜渐近线方程为.4121-=x y(2)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx+=的解,有公式 ()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数). 将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dxx x y e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x -+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(3)【详解】设(,,)f x yz 有连续的一阶偏导数,{}0cos ,cos ,cos l αβγ=为给定的向量l 的单位向量,则(,,)f x y z 沿l 方向的方向导数计算公式为cos cos cos f f f fl x y zαβγ∂∂∂∂=++∂∂∂∂. 因为181261),,(222z y x z y x u +++=,所以3x x u =∂∂,6y y u =∂∂,9z z u =∂∂,且向量n 的cos αβγ===于是所求方向导数为(1,2,3)ul∂∂=.33313131313131=⋅+⋅+⋅(4)【答案】3(2R π【详解】如果设函数(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有:()P Q Rdv Pdydz Qdxdz Rdxdy x y zΩ∑∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰,其中∑是Ω的整个边界曲面的外侧.以Ω表示由22y x z +=与222y xR z --=所围成的有界闭区域,由高斯公式得⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3利用球面坐标得⎰⎰⎰Ωdxdydz 3=2233403sin 2(1(22Rd d d R R ππρρϕϕθππ=-=⎰⎰⎰(5)【答案】2 【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦, 1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 12312312(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=. (6)【答案】4813 【详解】 由全概率公式:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X PX 表示从数1,2,3,4中任取一个数,故X 是等可能取到1,2,3,4,所以1()4P X i ==,1,2,3,4i = 而Y 表示从X ,,2,1 中任取一个数,也就是说Y 是等可能取到X ,,2,1 也就是说Y X 在的条件下等可能取值,即{21}0P Y X ===(X 取1的条件下,Y 取2是不可能事件)1{22}2P Y X ===(X 取2的条件下,Y 在1,2等可能取值) 1{23}3P Y X ===(X 取3的条件下,Y 在1,2,3等可能取值)1{24}4P Y X ===(X 取4的条件下,Y 在1,2,3,4等可能取值)故 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P 111113(0).423448=⨯+++=二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <时,≤≤,命n →∞取极限,得1n =,lim 1n →∞=,由夹逼准则得()1n f x ==;当||1x =时,()1n n f x ===;当||1x >时,33||||x x =<≤,命n →∞取极限,得3||n x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+= 所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 0()()()()()xxxF x f t dt C f k dk C f k dk C F x --=+=--+=+=⎰⎰⎰,从而 ⎰+=x C dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D);(9)【答案】B 【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y u x u ∂∂=∂∂,应选(B).(10)【答案】D【详解】隐函数存在定理:设(,,)F x y z 在点0000(,,)M x y z 的某领域内具有连续的一阶偏导数,且000000(,,)0,(,,)0z F x y z F x y z '=≠.则存在点0M 的某邻域,在此邻域内由方程(,,)0F x y z =可以确定唯一的连续偏导数的函数(,)z z x y =满足000(,)z x y z =,且(,,)(,,),(,,)(,,)y x M M z z M M F x y z F x y z zz x yF x y z F x y z ''∂∂=-=-∂∂''同理,如果000000(,,)0,(,,)0y F x y z F x y z '=≠,可确定(,)y y x z =满足000(,)y y x z =;000000(,,)0,(,,)0x F x y z F x y z '=≠,可确定(,)x x y z =满足000(,)x x y z =.本题中可令(,,)ln 1xzF x y z xy z y e =-+-, 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 所以 (0,1,1)20x F '=≠,(0,1,1)10y F '=-≠,0)1,1,0(='z F .由于0)1,1,0(='z F ,所以由隐函数存在定理知,不一定能确定具有连续偏导数的函数(,)z z x y =,所以排除(A)、(B)、(C),而(0,1,1)20x F '=≠和(0,1,1)10y F '=-≠,所以可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =,故应选(D).(11)【答案】B 【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+= ⎪⎝⎭,因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭,故121220r λλ⎛⎫≤≤⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则 ()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭ ⇔()1112221,00x x λααλ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B)方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(12)【答案】(C) 【详解】方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E ==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()B E A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.(13)【答案】B 【详解】方法1:由二维离散型随机变量联合概率分布的性质1ijijp=∑∑,有0.40.11a b +++=, 可知0.5a b +=,又事件}0{=X 与}1{=+Y X 相互独立,于是由独立的定义有:}1{}0{}1,0{=+===+=Y X P X P Y X X P ,而 {0,1}{0,1}P X X Y P X Y a =+====={1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=由边缘分布的定义:{0}{0,0}{0,1}0.4P X P X Y P X Y a ====+===+代入独立等式,得(0.4)0.5a a =+⨯,解得0.4,0.1a b ==,方法2:如果把独立性理解为:{10}{1}P X Y X P X Y +===+=(因为独立,所以}1{=+Y X 发生与}0{=X 发不发生没有关系),即{1|0}{1}0.5;P Y X P X Y a b ===+==+=所以 {00}1{10}10.50.5P Y X P Y X ===-===-=; 因此 {1|0}{00}0.5P Y X P Y X ======上式两边同乘以{}0P X =,有{}{}{1|0}0{00}0P Y X P X P Y X P X =======由乘法公式:()(|)()P AB P A B P B =,上式即为{0,0}{0,1}P X Y P X Y ===== 即0.4a =. 又因为0.5a b +=,得0.1b =.(14)【答案】D【概念】F 分布的定义:若21~()X n χ,22~()Y n χ,则1122(,)X n F n n Y n2χ分布的定义:若1,,n Z Z 相互独立,且都服从标准正态分布(0,1)N ,则221~()ni i Z n χ=∑ 正态分布标准化的定义:若2~(,)Z N μσ,则~(0,1)Z uN σ-【详解】因)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,独立正态分布的线性组合也服从正态分布,故111~(0,)n i i X X N n n==∑.~(0,1)X N =,故(A)错~(1)X t n S =-,故(C)错;而222222(1)(1)(1)~(1)1n S n S n S n χσ--==--,不能断定(B)是正确选项. 又 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是221122221(1)~(1,1).(1)nniii i X n X F n Xn X==-=--∑∑ 故应选(D).三、解答题 (15)【详解】方法1:令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .于是有 12221,,)[1]2,,)x y D x y x y D ∈⎧++=⎨∈⎩当(当(从而⎰⎰++Ddxdy y x xy ]1[22=122D D xydxdy xydxdy +⎰⎰⎰⎰(二重积分对区域的可加性) 122D D xydxdy xydxdy =+⎰⎰⎰⎰(用极坐标把不同区域上的二重积分化为累次积分)1332201sin cos 2sin cos d r dr d dr ππθθθθθθ=+⎰⎰⎰(根据牛—莱公式)44122000sin cos |2sin cos 44r r d d ππθθθθθθ=+⎰⎰ 220011sin cos 2sin cos 44d d ππθθθθθθ=+⨯⎰⎰ (凑微分) 2222001111sin |sin |4222ππθθ=⨯+⨯=113.848+=方法2:用极坐标⎰⎰++Ddxdy y x xy ]1[22322sin cos [1]d r dr πθθθ=+⎰322sin cos [1]d r dr πθθθ=+⎰(根据牛—莱公式)2322001sin |[1]2r dr πθ=+3201[1]2r dr =+.而2101[1]21r r r ≤<⎧⎪+=⎨≤<⎪⎩从而 ⎰⎰++Ddxdy y x xy ]1[2213311()2r dr r dr =+⎰(定积分对区域的可加性)44101(|2244r r =+⨯(根据牛—莱公式) 111((21))242=+-38=(16)【详解】因为2222121(1)(1)(1)(21)1(21)(1)(21)limlim 1(1)(21)(21)1(1)(1)(21)n n n n n nx n n n n n n x x n n n n x n n +→∞→∞--++++-++==++-+-+-, 所以,由比值判别法知,当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1). 另外,当1x =±时由于通项极限不为零,故原幂级数在1x =±处为发散的.212121111()(1)(1)(1)(1)(21)(21)n n n n n n n n x f x x x n n n n ∞∞---===-+=-+---∑∑ 1221211(1)()()()(21)n nnn n x x S x S x n n -∞∞==-=--+=+-∑∑,(1,1)x ∈-对1()S x ,由等比级数求和公式2011,(1,1)1n n n x x x x x x∞==+++++=∈--∑得 1()S x 222111()1()1n n x x x∞=-=--=-=--+∑, (1,1)x ∈- 对2()S x ,则由幂级数在收敛区间上可导并有逐项求导公式得121212()(1),(1,1)21n n n S x x x n ∞--='=-∈--∑,同理可得1222122111()(1)22()21n n n n n S x xx x ∞∞---==''=-=-=⋅+∑∑,(1,1)x ∈- 可得22(0)0,(0)0,S S '== 所以,由牛—莱公式得222202()(0)()2arctan ,1xxS x S S t dt dt x t ''''=+==+⎰⎰(1,1)x ∈-同理得2220()(0)()2arctan x xS x S S t dt tdt '=+=⎰⎰2arctan |2arctan xx t t td t =-⎰ (分部积分)20=2arctan 21xtx x dt t -+⎰(计算出微分)2201=2arctan (1)1x x x d t t-++⎰ (凑微分)20=2arctan ln(1)|xx x t -+ (基本积分表中的公式) 22arctan ln(1)x x x =-+ (1,1)x ∈-从而 22122()()()2arctan ln(1)1x f x S x S x x x x x=+=+-++ , (1,1)x ∈-.(17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的一个拐点知(3)0.f ''=由分部积分公式,332200()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰ 322(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(3(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(19)【详解】(I) 如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则24()22Cy dx xydyx y φ++⎰1324()22l l y dx xydyx yφ++=+⎰2324()202l l y dx xydyx yφ++-=+⎰.(II) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(I)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 经计算, 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4()(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2()4()2 y yy y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)【详解】 (I) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知()23r A =<,所以0A =,110110002a a A a a -+=+-33112(1)11a a a a⨯-+ ⋅-⋅+-按第3行展开③ ④221122[(1)(1)]11a aa a a a-+==⨯--++-80a =-=,得0a =.(II) 当0a =时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 所以 110110110110002002E A λλλλλλλ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 两边取行列式,E A λ-1111002λλλ--=---3311(2)(1)11λλλ⨯--=-⋅-⋅--2(2)[(1)1]λλ=--- 22(2)(2)(2)λλλλλ=--=-令0E A λ-=,解得0,2321===λλλ,故A 有特征值为0,2321===λλλ.当122λλ==时,根据特征值的定义,有(2)0E A X -=,即1231101100000x x x -⎛⎫⎛⎫ ⎪⎪-=⎪⎪ ⎪⎪⎝⎭⎝⎭,1101101000r -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,因为未知数个数为3,故1231101100000x x x -⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪⎝⎭⎝⎭的基础解系中含有2个(未知数的个数-系数矩阵的秩)线性无关的解,同解方程组为120x x -=,选23,x x 为自由未知量,分别取231,0x x ==和230,1x x ==,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,(根据特征向量的定义,12,αα即为特征值12,λλ所对应的特征向量)因为120αα⋅=,故12,αα正交.当30λ=时,由(0)000E A X AX AX -=⇒-=⇒=,即1231101100002x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭, 对系数矩阵作初等行变换,11011011021000002002⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭行行, 故1101101100002002002r r ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 基础解系中含有1个(未知量的个数—系数矩阵的秩)线性无关的解向量,同解方程组12320x x x +=⎧⎨=⎩, 选1x 为自由未知量,取11x = (选取任意非零常数都可,因为特征向量必须为非零向量,不能选0) ,得特征向量为:.0113⎪⎪⎪⎭⎫⎝⎛-=α由于实对称矩阵对应于不同特征值的特征向量是相互正交的,故21,αα,3α两两正交,将21,αα,3α单位化,3121231231011,0,1010αααηηηααα⎛⎫⎛⎫⎛⎫⎪ ⎪⎪======-⎪ ⎪⎪⎪ ⎪⎪⎭⎝⎭⎭,其中1α==21α==,α 3==取[]123Q ηηη=,即为所求的正交变换矩阵,故T Q Q E =,则1Q Q -=,令x Qy =,则1123220T Q AQ Q AQ diag λλλ-⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 可化原二次型为标准形:1232(,,)()20T T T T T f x x x x Ax Qy AQy y Q AQy y y ⎡⎤⎢⎥====⎢⎥⎢⎥⎣⎦=.222221y y +(III) 方法1:由),,(321x x x f ==+222122y y 0,得120,0y y ==(因为方程中不含有3y )则3y k =(k 为任意常数). 从而所求解为:x Qy ==[]12312330110001100k k k k ηηηηηηη⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'=⋅+⋅+==-=-⎪ ⎪⎢⎥⎪ ⎪⎢⎥⎣⎦⎭⎝⎭,其中k '=为任意常数. 方法2:用配方法,方程2222212312312122(,,)22()0f x x x x x x x x x x x =+++=++=,得1230x x x +=⎧⎨=⎩ , 系数矩阵110001000⎛⎫ ⎪⎪ ⎪⎝⎭的秩为2,因为未知数的个数为3,故它的基础解系中含有1个(未知数的个数—系数矩阵的秩)线性无关的解向量,选13,x x 为自由未知量,取11x =,解得[1,1,0]T-,所以,0f =的解为[1,1,0]Tk -,k 为任意常数.(21)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠,13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.(22)【详解】(I)由边缘密度函数的定义:()(,)X f x f x y dy +∞-∞=⎰,()(,)Y f y f x y dx +∞-∞=⎰则关于X 的边缘概率密度为:)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (因为01,02x y x <<<<,故x 的取值范围为12yx <<) (II)由分布函数的定义: }2{}{)(z Y X P z Z P z F Z ≤-=≤=(1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z (由定义域为01x <<,02y x <<,故20X Y ->,则{20}X Y -≤是不可能事件)(2) 当20<≤z 时, 如图转换成阴影部分的二重积分(){2}Z F z P X Y z =-≤2-(,)x y zf x y dxdy ≤=⎰⎰2-1(,)x y zf x y dxdy >=-⎰⎰=12-021x zz dx dy -⎰⎰=241z z -; (3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z (因X 最大取1,Y 最小取0,故2X Y -最大就只能取到2,所以22X Y -≤是必然事件)所以分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z由密度函数与分布函数的关系:()()f x F x '=故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(23)【详解】由题设)2(,,,21>n X X X n 为来自总体2(0,)N σ的简单随机样本,知)2(,,,21>n X X X n 相互独立,且20,(1,2,,)i i EX DX i n σ===,11100nin i i i EX n E X E X n n n ==⨯⎛⎫==== ⎪⎝⎭∑∑222111111()n nn i i i i i i DX DX D X D X DX n n n n n σ===⎛⎫=====⎪⎝⎭∑∑∑ (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))()0,1,2,,.i i i EY E X X EX EX i n =-=-==(根据期望的性质:,()EcX cEX E X Y EX EY =+=+)y -(I)111()[(1)]ni i i j j j iDY D X X D X X n n =≠=-=--∑(由于i X X 与不独立,所以把X 中含有i X 的剔出来,则i X 与剩下的就相互独立)=22111(1)n i j j j iDX DX n n =≠-+∑=222222(1)1(1)n n n n n n σσσ--+⋅-= (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))(II)由协方差的定义:)])([(),(111n n n EY Y EY Y E Y Y Cov --==1()n E YY (0i EY = ,1,2,,i n =)1[()()]n E X X X X =--=)(211X X X X X X X E n n +-- 211()()()n n E X X E X X E X X EX =--+又 11()000n n E X X EX EX ==⨯=(因1,n X X 独立)2222()0EX DX E X nnσσ=+=+=2211111112211111()[][]n n n j j j j j j E X X E X X E X X X EX EX EX n n n n n =====+=+∑∑∑2221111(())0(0)DX EX n n nσσ=++=+=同理 2()n E X X nσ=(因1j X X 与独立 2,j n =)所以 22222111(,)()()()0n n nC o vY Y E X X E X X E X X E X nnnnσσσσ=--+=--+=-。

2005年考研数学一真题及答案

2005年考研数学一真题及答案

2005年考研数学一真题及答案2005年考研数学一真题及答案2005年的考研数学一真题是考生们备战考研的重要参考资料之一。

在这篇文章中,我们将回顾一下这份真题的内容,同时给出对应的答案解析,帮助考生们更好地理解和掌握数学一的考试要点。

第一道题目是一道选择题,考察的是线性代数的知识。

题目要求求解一个线性方程组,考生需要根据矩阵的基本性质和行列式的计算方法,进行变换和计算,最终得到方程组的解。

接下来是一道解析几何的题目,考察的是平面与直线的交点。

考生需要根据平面和直线的方程,进行联立,解得交点的坐标。

这道题目需要考生对解析几何的基本概念和计算方法有一定的掌握。

第三道题目是一道概率统计的题目,考察的是随机变量的期望值和方差。

考生需要根据题目给出的概率密度函数,计算随机变量的期望值和方差。

这道题目需要考生对概率统计的基本概念和计算方法有一定的了解。

第四道题目是一道微积分的题目,考察的是函数的极值。

考生需要根据函数的导数和二阶导数的性质,求出函数的极值点和极值。

这道题目需要考生对微积分的基本概念和计算方法有一定的熟悉程度。

第五道题目是一道复变函数的题目,考察的是复数的运算和函数的性质。

考生需要根据题目给出的复数和函数的定义,进行复数的运算和函数的计算。

这道题目需要考生对复变函数的基本概念和计算方法有一定的掌握。

以上是2005年考研数学一真题的内容和解答,通过对这些题目的学习和理解,考生们可以更好地了解数学一的考试要点,提高自己的解题能力和应试水平。

总结起来,2005年考研数学一真题涵盖了线性代数、解析几何、概率统计、微积分和复变函数等多个数学领域的知识点。

通过对这些题目的分析和解答,考生们可以更好地掌握数学一的考试内容和解题技巧。

希望本文对考生们备战考研有所帮助,祝愿大家取得优异的成绩!。

2005年全国硕士研究生入学统一考试(数一)试题及答案

2005年全国硕士研究生入学统一考试(数一)试题及答案

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________。

(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________。

二、选择题(本题共8小题,每小题4分,满分32分。

每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A )处处可导 (B )恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数(B )()F x 是奇函数()f x ⇔是偶函数(C )()F x 是周期函数()f x ⇔是周期函数 (D )()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A )2222y ux u ∂∂-=∂∂(B )2222y u x u ∂∂=∂∂(C )222yu y x u ∂∂=∂∂∂(D)222xu y x u ∂∂=∂∂∂(10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B)02≠λ(C )01=λ(D )02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A )交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D )交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为10 0。

浙江工商大学 概率论与数理统计2005

浙江工商大学 概率论与数理统计2005

浙江工商大学05年硕士研究生入学考试试卷(A 卷)招生专业:数量经济学考试科目:概率论与数理统计考试时间:3小时1、(12分)甲给乙发送Email ,但是没收到回音。

假设:收到Email 必回音,途中丢失Email 概率1/n 。

讨论:Email 是在发送途中丢失,还是回收途中丢失,哪种情形可能性更大?2、(15分)由计算机控制,对宇宙空间发射人类信号,在时刻1/2时,发射编码为1-10的信号,在时刻3/4时,发射编码为11-20的信号,但同时回收编码1信号,如此下去,即在时刻1-2-n 时,发射编码为10(n-1)+1至10n 的信号,但同时回收编码为10(n-2)+1的信号,n=2,3…问:在到达时刻1时,宇宙空间中,还有多少个没有被回收的信号? 同样的问题:讨论下面信号回收方法的更改:(1)发射编码为10(n-1)+1至10n 的信号,同时回收编码为n-1的信号,n=2,3,4…(2)发射编码为10(n-1)+1至10n 的信号,同时随机地回收编码为n-1的信号,n=2,3,4…3、(13分)设λ>0,随机变量 ξ的密度涵数是p 1(x )=λ2xe -λx x >0随机变量η服从(0,ξ)上的均匀分布,求(1)随机向量(ξ,η)的联合分布;(2)随机变量η的密度函数。

4、(13分)设总体X ~N (μ,σ2),X 1,…,X 2n 为其简单随机样本, 记X =∑=n i i X n 2121,()212∑=+--=n i i n i X X X Y ,求EY 。

5、(12分)若{X i }是独立同分布,具有有限二阶距的随机变量序列,试证11)1(2EX iX n n P n i i −→−+∑= 6、(13分)若a X P n −→−,b Y P n −→−,证明 ab Y X P n n −→−7、(15分)假设:产品失效时间服从θ未知的指数分布,密度为 ⎩⎨⎧=--0)(1θθt e t f 00<>t t 随机抽取n 个产品,在时刻t=0时投入试验,分别就,a )当出现m (<n )个产品失效时,停止试验。

2005考研数学一真题及答案

2005考研数学一真题及答案

2005考研数学一真题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1 (C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ] (14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解.(21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov参考答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'の通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}の方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.[ C ]【分析】 先求出f(x)の表达式,再讨论其可导情形.【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(E) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(F) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(H) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应の隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应の隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(B) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B .(C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -. [ C ]【分析】 本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵の第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可.【详解】 由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '== 所以 2001()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0の函数值与导数值,在x=3处の函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式.【分析】 证明(I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而(II )中求)(y ϕの表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ022)(3242=++⎰+l l yx xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式の右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形;③ ④(III ) 求方程),,(321x x x f =0の解.【分析】 (I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步の结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型の秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求の正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解.【分析】 AB=O, 相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】 由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0の基础解系所含解向量の个数为3-r(A)=2, 矩阵B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0の通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 の同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解】 (I ) 关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求の概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求1Y 与n Y の协方差),(1n Y Y Cov ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005年考研数学一真题(含解析)

2005年考研数学一真题(含解析)

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(F) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t S X n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x x x x ∞-=-=∈-+∑从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005【考研数学一】真题及答案解析

2005【考研数学一】真题及答案解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.834381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,应用零点定理,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx x y d ydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005年考研数学一真题(含解析)

2005年考研数学一真题(含解析)

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)(4)则⎰⎰∑(5) 如果=A (6)}2{=Y P (7(8)(A) (B )(C) (D) F(x)是单调函数⇔f(x)是单调函数. [ ] (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yux u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12(A)(13 (A)(14 (A)三 (15设}0,0,2),{(22≥≥≤+=y x y x y x D,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121)12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)の值恒(I (II (20(I )(II )(III (21已知程组Ax=0(22求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z-=2の概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-= 求:(I ) i Y の方差n i DY i ,,2,1, =;(II )1Y 与n Y の协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x ,(2)【 【由)1(=y (3)【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}の方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z+=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】=++zdxdy ydzdx xdydz dxdydz 3(5) 如果=A 【【 于是有 (6){Y P 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)の表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;即(f (8)(B) (B )(C) (D)【【当F(x))(x f -=,可见f(x)可见(A)(9)有(C) 222y uy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22y u∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x u-'-+'+-''++''=∂ψψϕϕ,y x F F ,,再且 (D).线性无关の【分析】 讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则 (B)****[ C ]【【B =,于是12*(E B = 12*E A =(13 (B)【a,b の取值. 【 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则 (B) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可. 【详解】 由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A);Xn X 2. ,于是求幂级数∑∞=--+-121)12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,由于 (0),(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰又2∞从而 (17 交点为【. 【 (18(I (II 【但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;24(2x xy x -=34()y y ϕ比较①、②两式の右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)③ ④已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I ) 求a の值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0の解.【分析】 (I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步の结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎤⎡+-011a a (II 解 解 由于1,αα令[1α=Q f (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解.【分析】 AB=O, 相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】 由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0の基础解系所含解向量の个数为21,,31k k ⎪⎪⎪⎭⎫⎛⎫⎛为任意常数.(2) 若1) 2) 通解为x (22 (II 【即先用定义【详解】 (I ) 关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z时,0}2{)(=≤-=z Y X P z F Z ;2)3) (23设1X .,,2,n (【n の协方差,(1Y Y Cov 【21n ),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)][()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-。

2005年考研数学二真题及答案解析

2005年考研数学二真题及答案解析

2005年数学二试题、答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy = .(2) 曲线xx y 23)1(+=的斜渐近线方程为. (3)=--⎰10221)2(x x xdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数.(B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b。

2005年考研数学一真题及答案

2005年考研数学一真题及答案

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分。

答案写在题中横线上)(1)曲线的斜渐近线方程为。

【答案】【解析】所以斜渐近线方程为。

综上所述,本题正确答案是。

【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)微分方程满足的解为。

【答案】【解析】原方程等价于所以通解为将代入可得综上所述,本题正确答案是。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设函数,单位向量,则。

【答案】【解析】因为所以综上所述,本题正确答案是。

【考点】高等数学—多元函数微分学—方向导数和梯度(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则。

【答案】。

【解析】综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(5)设均为三维列向量,记矩阵如果,那么。

【答案】2。

【解析】【方法一】【方法二】由于两列取行列式,并用行列式乘法公式,所以综上所述,本题正确答案是2。

【考点】线性代数—行列式—行列式的概念和基本性质,行列式按行(列)展开定理(6)从数中任取一个数,记为,再从中任一个数,记为,则。

【答案】。

【解析】【方法一】先求出的概率分布,因为是等可能的取,故关于的边缘分布必有,而只从中抽取,又是等可能抽取的概率为所以即:X Y 1 2 3 41 0 0 02 0 03 04所以【方法二】综上所述,本题正确答案是。

【考点】概率论与数理统计—多维随机变量及其分布—二维离散型随机变量的概率分布、边缘分布和条件分布二、选择题(本题共8小题,每小题4分,满分32分。

在每小题给出的四个选项中,只有一项符合题目要求。

)(7)设函数,则(A)处处可导(B)恰有一个不可导点(C)恰有两个不可导点(D)恰有三个不可导点【答案】C。

【解析】由知由的表达式和其图像可知在处不可导,在其余点均可导。

1综上所述,本题正确答案是C 。

【考点】高等数学—一元函数微分学—导数和微分的概念(8)设是连续函数的一个原函数,表示的充分必要条件是,则必有(A)是偶函数是奇函数(B)是奇函数是偶函数(C)是周期函数是周期函数(D)是单调函数是单调函数【答案】A。

2005年考研数学一试题及完全解析(Word版)

2005年考研数学一试题及完全解析(Word版)

2005年考研数学一试题及完全解析(Word版)2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ?表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ?是奇函数 (B)()F x 是奇函数()f x ?是偶函数(C)()F x 是周期函数()f x ?是周期函数 (D)()F x 是单调函数()f x ?是单调函数(9)设函数?+-+-++=yx y x dt t y x y x y x u )()()(),(ψ??, 其中函数?具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ??-=??(B)2222yu x u ??=??(C)222yu y x u ??=(D)222xuy x u ??= (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4ab ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分??++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ?具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++?的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+?.(2)求函数)(y ?的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ??=??B (k 为常数),且=AB O ,求线性方程组0x =A 的通解. (22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =101,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:+??=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】原方程等价为x y xy ln 2=+',于是通解为 ??+?=+=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-,由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu=33. 【分析】函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ??+??+??=?? 因此,本题直接用上述公式即可.【详解】因为3x x u =??,6y y u =??,9zz u =??,于是所求方向导数为)3,2,1(nu ??=.33313131313131=?+?+? (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则??∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】∑=++zdxdy ydzdx xdydz Ωdxdydz 3=.)221(2sin 3320402R d d d R-=πππθ??ρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有)93,42,(321321321ααααααααα++++++=B=941321111),,(321ααα,于是有 .221941321111=?=?=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++? 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】先求出f(x)的表达式,再讨论其可导情形. 【详解】当1→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<??-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数.(C) F(x)是周期函数?f(x)是周期函数.(D) F(x)是单调函数?f(x)是单调函数. [ A ] 【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为?+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则?xdt t f 0)(为偶函数,从而?+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数?+-+-++=yx yx dt t y x y x y x u )()()(),(ψ??, 其中函数?具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ??-=??. (B ) 2222yu x u ??=??.(C) 222yuy x u ??=. (D)222x u y x u ??=. [ B ] 【分析】先分别求出22x u ??、22y u、y x u 2,再比较答案即可.【详解】因为)()()()(y x y x y x y x xu--++-'++'=??ψψ??,)()()()(y x y x y x y x yu-+++-'-+'=??ψψ??,于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=??ψψ??,)()()()(2y x y x y x y x yx u-'++'+-''-+''=ψψ??, )()()()(22y x y x y x y x yu-'-+'+-''++''=??ψψ??,可见有2222yu x u ??=??,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xz ey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】方法一:令0)(21211=++αααA k k ,则022211211=++αλαλαk k k ,0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ??==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二:由于 ?=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=?===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t S Xn (D) ).1,1(~)1(2221--∑=n F X X n n i i[ D ] 【分析】利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SX n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设}0,0,2),{(2 2≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分++Ddxdy y x xy .]1[22 【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令}0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则++Ddxdy y xxy ]1[22=+122D D xydxdy xydxdydr r d dr r d+=202131320cos sin 2cos sin ππθθθθθθ=.834381=+ (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】因为11)12()12()12)(1(1)12)(1(lim=+--?+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+?2001()()arctan arctan ln(1).2xx S x S t dt tdt x x x '===-+?又21221(1),(1,1),1n nn x xx x∞-=-=∈-+∑ 从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x =-++∈-+(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分'''+32.)()(dx x f x x【分析】题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ??'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】(I )令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,应用零点定理,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-?-=--?=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ?具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分++Lyx xydydx y 4222)(?的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++?Cy x x y d ydx y ?;(II )求函数)(y ?的表达式.【分析】证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ?的表达式,显然应用积分与路径无关即可.【详解】(I )如图,将C 分解为:21l l C +=,另作一条曲线l=++?Cyx x y d ydx y 4222)(?-++?+314222)(l l yx x y d ydx y ?022)(3242=++?+l l yx x y d ydx y ?.(II )设2424()2,22y xyP Q x yx y ?==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y++?在该区域内与路径无关,故当0x >时,总有Q Px y=??. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ?+--+==?++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y '''?+-+-==?++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y '=-??'-=? 由③得2()y y c ?=-+,将()y ?代入④得 535242,y cy y -= 所以0c =,从而2().y y ?=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I )求a 的值;(II )求正交变换Qy x =,把),,(321x x x f 化成标准形;(III )求方程),,(321x x x f =0的解.【分析】(I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;(III )利用第二步的结果,通过标准形求解即可.【详解】(I )二次型对应矩阵为-++-=200011011a a a a A ,由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II )这里=200011011A ,可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:=????? ??=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④-=????? ??=????? ??=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III )由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]-==0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x+????? ??=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1)若r(A)=2, 则Ax=0的通解为:11,321k k x=为任意常数.2)若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x-+??????? ??-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<?=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】(I )关于X 的边缘概率密度)(x f X =?+∞∞-dy y x f ),(=.,10,0,20其他<=.,10,0,2其他<<?x x关于Y 的边缘概率密度)(y f Y =?+∞∞-dx y x f ),(=.,20,0,12其他<=.,20,0,21其他<2)当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤故所求的概率密度为:.,20,0,211)(其他<设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记。

2005数一考研真题答案

2005数一考研真题答案

2005数一考研真题答案2005年数一考研真题答案2005年数一考研真题是考研学子备考的重要参考资料之一,下面将对2005年数一考研的真题进行详细的答案解析,希望对广大考生有所帮助。

一、大题部分1.选择题解析选择题是考研数学中的基础题型,答题时需要注意细节和计算过程。

例如,在2005年数一考研真题中的选择题部分,涉及到概率、微积分、线性代数等多个知识点,考生需要综合运用各个知识点进行解答。

2.填空题解析填空题考察考生对数学知识的掌握程度和运用能力。

在2005年数一考研真题中,填空题可能涉及到几何、概率、代数等多个知识点,考生需要对各个知识点有全面的了解,并能够熟练运用。

3.解答题解析解答题是考察考生对数学问题的分析和解决能力的重要题型。

在2005年数一考研真题中,解答题部分可能会涉及到微积分、代数、概率等多个知识点,考生需要结合所学知识和解题技巧进行解答。

二、小题部分在2005年数一考研真题中,还包括了一些小题,这些题目可能是对某个知识点的温习和应用。

考生需要注意小题的细节要求,并结合所学知识进行解答。

三、总结通过对2005年数一考研真题的解答分析,可以帮助考生更好地了解考试内容和考点。

同时,也可以帮助考生查漏补缺,加强对知识点的理解和掌握。

总的来说,无论是选择题、填空题还是解答题,考生在答题时都应该注重理解题目意思,准确运用所学知识进行解答,同时注意解题过程和答案的简洁明了。

希望广大考生能够充分准备,取得优异的成绩。

以上为2005年数一考研真题答案的部分解析,希望能为考生提供一定的帮助。

再次提醒考生,在备考过程中要深入理解各个知识点,灵活运用解题方法,坚持练习和总结,相信一定能够取得好成绩。

祝愿所有参加考试的考生顺利通过。

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2007年] 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下X的条件密度fX|Y(x|y)为( ).A.fX(x)B.fY(y)C.fX(x)fY(y)D.fX(x)/fY(y)正确答案:A解析:解一仅(A)入选.因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立.设f(X,Y)为(X,Y)的联合概率密度,则f(X,Y)=fX(x)fY(y).因Y服从正态分布,则对任意y有fY(y)>0.故解二设(X,Y)服从二维正态分布N(μ1,μ2;σ12,σ22;ρ),则概率密度为且X~N(μ1,σ12),Y~N(μ2,σ22),即又因X,Y不相关,则ρ=0,于是知识模块:概率论与数理统计2.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布P(Y=0)=P(Y=1)=1/2.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点的个数为( ).A.0B.1C.2D.3正确答案:B解析:又X,Y相互独立,故当z<0时,当z≥0时,综上所述,所以FZ(z)只有一个间断点z=0.仅(B)入选.知识模块:概率论与数理统计3.[2012年] 设随机变量X与Y相互独立,且都服从区间(0,1)内的均匀分布,则P{X2+Y2≤1}=( ).A.1/4B.1/2C.π/8D.π/4正确答案:D解析:由题设有因X与Y相互独立,故从而或知识模块:概率论与数理统计4.[2016年] 设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( ).A.6B.8C.14D.15正确答案:C解析:解一直接利用命题3.4.1.1(1)求之.由X~N(1,2)得到E(X)=1,D(X)=2;由Y~N(1,4)得到E(Y)=1,D(Y)=4.故D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)=2×4+12×4+12×2=14.仅(C)入选.解二利用方差和期望的性质求之.D(XY)=E(XY)2-[E(XY)]2=E(X2Y2)=[E(XY)]2因X,Y相互独立,则E(X2Y2)=E(X2)E(Y2),而E(X2)=D(X)+[E(X)]2=3,E(Y2)=D(Y)+[E(Y)]2=1+4=5,即E(X2Y2)=15,又E(XY)=E(X)E(Y)=1×1=1,故D(XY)=E(X2Y2)-[E(XY)]2=15-1=14.仅(C)入选.注:命题3.4.1.1 (1)设随机变量X,Y相互独立,则D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)≥D(X)D(Y);知识模块:概率论与数理统计5.[2008年] 设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则( ).A.P(Y=-2X-1)=1B.P(Y=2X-1)=1C.P(Y=-2X+1)=1D.P(Y=2X+1)=1正确答案:D解析:解一因X~N(0,1),Y~N(1,4),故E(X)=0,D(X)=1,E(Y)=1,D(Y)=4.于是有又由ρXY=P(Y=aX+b)=1及命题3.4.2.3(4)得a>0,故a=2.于是a=2,b=1.仅(D)入选.解二设Y=aX+b(a≠0).由ρXY=1得a/|a|=1,因而a>0.排除(A)、(C).又因E(Y)=E(aX+b)=aE(X)+b=a·0+b=b=1.排除(B).仅(D)入选.注:命题3.4.2.3 相关系数的常用性质有(4)当Y 与X有线性关系Y=aX+b(a≠0,b为常数)时,则X和Y的相关系数ρXY=a/|a|.因而当a>0时,ρXY=1;当a<0时,ρXY=-1;知识模块:概率论与数理统计6.[2002年] 设随机变量X和Y都服从标准正态分布,则( ).A.X+Y服从正态分布B.X2+Y2服从χ2分布C.X2和Y2都服从χ2分布D.X2/Y2服从F分布正确答案:C解析:解一因X~N(0,1),Y~N(0,1),故X2~χ2(1),Y2~χ2(1).仅(C)入选.解二由于(X,Y)的联合分布是否为二维正态分布未知,又不知道X与Y是否相互独立,因而不能确定X+Y服从正态分布.(A)不对.因X与Y是否独立未知,故X2+Y2是否相互独立也未知,所以也不能确定X2+Y2服从χ2分布,也不能确定X2/Y2服从F分布.(B)、(D)也不对.仅(C)入选.知识模块:概率论与数理统计填空题7.[2015年]设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0)=___________.正确答案:解析:因(X,Y)~N(1,1;0,1;0),ρ=0,由命题(3.3.5.1(4))知,X,Y相互独立,则P{XY-Y<0}=P{(X-1)Y<0} =P{X-1<0,Y>0}+P{X -1>0,Y<0} =P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1)=P{X>1}=因Y~N(0,1),故所以注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计8.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=__________,b=___________.正确答案:a=0.4,b=0.1解析:解一由知,a+b=0.5.又由事件{X=0)与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4,从而b=0.5-a=0.1.解二由解一知a+b=0.5.又由命题3.3.5.2知,秩于是即ab=0.04=0.1×0.4.解二次方程x2-0.5x+0.1×0.4=0,即解(x-0.1)(x-0.4)=0,得x1=0.1,x2=0.4.因而a=0.1或0.4,b=0.4或0.1.为满足独立性,式①应成立.当a=0.1,b=0.4时,式①不成立;当a=0.4,b=0.1时,式①成立.故所求的常数为a=0.4,b=0.1.注:命题3.3.5.2 X与Y相互独立的充分必要条件是联合概率矩阵的秩等于1,这里联合概率矩阵是指由x与y的联合分布律中的概率元素依次所组成的矩阵.知识模块:概率论与数理统计9.[2013年] 设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_________.正确答案:2e2解析:解一因X~N(0,1),故则解二对式①作变量代换x-2=t,则知识模块:概率论与数理统计10.[2011年] 设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=_____________.正确答案:μ(σ2+μ2)解析:N(X,Y)服从二维正态分布,且其相关系数ρ=0,由命题3.3.5.1(4)知X,Y相互独立.由题设知E(X)=μ,E(Y2)=D(y)+[E(y)]2=σ2+μ2,故E(XY2)=E(X)E(Y2)=μ(σ2+μ2).注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计11.[2002年] 设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.正确答案:-0.02解析:解一由cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)知,需先求出X2,Y2及X2Y2的分布,然后再求其期望值.可用同一表格法一并解决.A则故E(X2)=0.6,E(Y2)=0.5,E(X2Y2)=0.28,因而cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.解二利用下述公式求之.设X 的分布律为P(X=xi)=pi(i=1,2,…),则X的函数g(X)的期望若(X,Y)的联合分布律为P(X=xi,Y=yj)=pij(i,j=1,2,…),N(X,Y)的函数g(X,Y)的期望由式(3.4.2.1)得到于是不用求出X2Y2的分布,直接由定义求得,即E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28.又由联合分布律易求得边缘分布律为由式(3.4.1.1)有E(X2)=02×0.4+12×0.6=0.6,E(Y2)=02×0.5+12×0.5=0.5.故cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.注:公式知识模块:概率论与数理统计12.[2003年] 设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y和Z的相关系数为_________.正确答案:0.9解析:解一由Z=X-0.4得到D(Z)=D(X-0.4)=D(X).解二直接利用公式cov(aX+b,cY+d)=accov(X,Y)(a,b,c,d为常数),得到解三因Z=X-0.4,故D(Z)=D(X-0.4)=D(X),且E(Z)=E(X-0.4)=E(X)-0.4,所以cov(Y,Z)=E(YZ)-E(Y)E(Z)=E[Y(X-0.4)]-E(Y)E(X-0.4) =E(XY)-0.4E(Y)-E(Y)[E(X)-0.4] =E(XY)-0.4E(Y)-E(X)E(Y)+0.4E(Y) =E(XY)-E(X)E(Y)=cov(X,Y).因而知识模块:概率论与数理统计13.[2001年] 设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P(|X+Y|≥6)≤_________.正确答案:1/12解析:由题设有D(X)=1,D(Y)=4.且ρXY=-0.5,E(X)=2,E(Y)=-2,则注意到E(X+Y)=E(X)+E(Y)=0,由切比雪夫不等式得到P(|X+Y|≥6)=P(|X+Y-0|≥6)=P|X+Y-E(X+Y)|≥6≤D(X+Y)/62,所以P(|X+Y|≥6)≤D(X+Y)/62=3/36=1/12.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学一试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 曲线122+=x x y 的斜渐近线方程为(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为._____(3) 设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则 )3,2,1(nu∂∂=_______________.(4) 设Ω是由锥面22z x y =+与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ___________________.(5) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .(6) 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则{2}P Y == ___________ .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在(,)-∞+∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. (8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数.(C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A) 2222y u x u ∂∂-=∂∂. (B) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. (10) 设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )(A) 只能确定一个具有连续偏导数的隐函数(,)z z x y =.(B) 可确定两个具有连续偏导数的隐函数和(,)y y x z =和(,)z z x y =. (C) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y =.(D) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =. (11) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. (12) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为A ,B 的伴随矩阵,则( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. (13) 设二维随机变量(,)X Y 的概率分布为( )X Y 0 10 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则 (A) 0.2,0.3a b == (B) 0.4,0.1a b ==(C) 0.3,0.2a b == (D) 0.1,0.4a b ==(14) 设)2(,,,21≥n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则( )(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕ的值恒为同一常数.(I)证明:对右半平面0x >内的任意分段光滑简单闭曲线C ,有022)(42=++⎰C y x xydydx y ϕ;(II)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I) 求a 的值;(II) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III) 求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0Ax =的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I) i Y 的方差n i DY i ,,2,1,Λ=; (II)1Y 与n Y 的协方差).,(1n Y Y Cov2005年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【答案】.4121-=x y 【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:a =22()1lim lim 22x x f x x x x x →∞→∞==+,[]1lim ()lim2(21)4x x x b f x ax x →∞→∞-=-==-+,所以所求斜渐近线方程为.4121-=x y(2)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx+=的解,有公式()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数). 将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dxx x y e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x -+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(3)33【详解】设(,,)f x y z 有连续的一阶偏导数,{}0cos ,cos ,cos l αβγ=u r 为给定的向量l r 的单位向量,则(,,)f x y z 沿l r 方向的方向导数计算公式为cos cos cos f f f fl x y zαβγ∂∂∂∂=++∂∂∂∂.因为181261),,(222z y x z y x u +++=,所以 3x x u =∂∂,6y y u =∂∂,9z z u =∂∂,且向量n r的cos 333αβγ===于是所求方向导数为(1,2,3)ul∂∂=.33313131313131=⋅+⋅+⋅(4)【答案】3(22)R π【详解】如果设函数(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有:()P Q R dv Pdydz Qdxdz Rdxdy x y z Ω∑∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰Ò, 其中∑是Ω的整个边界曲面的外侧.以Ω表示由22y x z +=与222y x R z --=所围成的有界闭区域,由高斯公式得⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3利用球面坐标得⎰⎰⎰Ωdxdydz 3=22334023sin 2(1(22)Rd d d R R ππρρϕϕθππ=-=-⎰⎰⎰(5)【答案】2 【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦, 1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 123123123(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=.(6)【答案】4813 【详解】 由全概率公式:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X PX 表示从数1,2,3,4中任取一个数,故X 是等可能取到1,2,3,4,所以1()4P X i ==,1,2,3,4i = 而Y 表示从X ,,2,1Λ中任取一个数,也就是说Y 是等可能取到X ,,2,1Λ 也就是说Y X 在的条件下等可能取值,即{21}0P Y X ===(X 取1的条件下,Y 取2是不可能事件) 1{22}2P Y X ===(X 取2的条件下,Y 在1,2等可能取值) 1{23}3P Y X ===(X 取3的条件下,Y 在1,2,3等可能取值)1{24}4P Y X ===(X 取4的条件下,Y 在1,2,3,4等可能取值)故 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P 111113(0).423448=⨯+++=二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <时,311||2n n nn x ≤+≤,命n →∞取极限,得11n n =,lim 21n n →∞=,由夹逼准则得3()1||1nn n f x x =+=;当||1x =时,()1121n n n n f x =+==;当||1x >时,33333||||1||2||2|n n n n n n n x x x x x =<+≤=,命n →∞取极限,得332||||nn n x x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+=所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 0()()()()()xxx F x f t dt C f k dk C f k dk C F x --=+=--+=+=⎰⎰⎰,从而 ⎰+=x C dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D);(9)【答案】B 【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B).(10)【答案】D【详解】隐函数存在定理:设(,,)F x y z 在点0000(,,)M x y z 的某领域内具有连续的一阶偏导数,且000000(,,)0,(,,)0z F x y z F x y z '=≠.则存在点0M 的某邻域,在此邻域内由方程(,,)0F x y z =可以确定唯一的连续偏导数的函数(,)z z x y =满足000(,)z x y z =,且(,,)(,,),(,,)(,,)y x M M z z M M F x y z F x y z zz x yF x y z F x y z ''∂∂=-=-∂∂''同理,如果000000(,,)0,(,,)0y F x y z F x y z '=≠,可确定(,)y y x z =满足000(,)y y x z =;000000(,,)0,(,,)0x F x y z F x y z '=≠,可确定(,)x x y z =满足000(,)x x y z =.本题中可令(,,)ln 1xzF x y z xy z y e =-+-, 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 所以 (0,1,1)20x F '=≠,(0,1,1)10y F '=-≠,0)1,1,0(='z F .由于0)1,1,0(='z F ,所以由隐函数存在定理知,不一定能确定具有连续偏导数的函数(,)z z x y =,所以排除(A)、(B)、(C),而(0,1,1)20x F '=≠和(0,1,1)10y F '=-≠,所以可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =,故应选(D).(11)【答案】B 【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于 ()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+= ⎪⎝⎭, 因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭,故121220r λλ⎛⎫≤≤⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为 ()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭ ⇔()1112221,00x x λααλ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B)方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(12)【答案】(C) 【详解】方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E ==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()BE A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.(13)【答案】B 【详解】方法1:由二维离散型随机变量联合概率分布的性质1ijijp=∑∑,有0.40.11a b +++=, 可知0.5a b +=,又事件}0{=X 与}1{=+Y X 相互独立,于是由独立的定义有:}1{}0{}1,0{=+===+=Y X P X P Y X X P ,而 {0,1}{0,1}P X X Y P X Y a =+====={1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=由边缘分布的定义:{0}{0,0}{0,1}0.4P X P X Y P X Y a ====+===+代入独立等式,得(0.4)0.5a a =+⨯,解得0.4,0.1a b ==,方法2:如果把独立性理解为:{10}{1}P X Y X P X Y +===+=(因为独立,所以}1{=+Y X 发生与}0{=X 发不发生没有关系),即{1|0}{1}0.5;P Y X P X Y a b ===+==+=所以 {00}1{10}10.50.5P Y X P Y X ===-===-=; 因此 {1|0}{00}0.5P Y X P Y X ======上式两边同乘以{}0P X =,有{}{}{1|0}0{00}0P Y X P X P Y X P X ======= 由乘法公式:()(|)()P AB P A B P B =,上式即为{0,0}{0,1}P X Y P X Y ===== 即0.4a =. 又因为0.5a b +=,得0.1b =.(14)【答案】D【概念】F 分布的定义:若21~()X n χ,22~()Y n χ,则1122(,)X n F n n Y n : 2χ分布的定义:若1,,n Z Z L 相互独立,且都服从标准正态分布(0,1)N ,则221~()nii Zn χ=∑正态分布标准化的定义:若2~(,)Z N μσ,则~(0,1)Z uN σ-【详解】因)2(,,,21≥n X X X n Λ为来自总体(0,1)N 的简单随机样本,独立正态分布的线性组合也服从正态分布,故111~(0,)n i i X X N n n==∑.~(0,1)1X nX N n=,故(A)错 ~(1)X nXt n S S n=-,故(C)错;而222222(1)(1)(1)~(1)1n S n S n S n χσ--==--,不能断定(B)是正确选项. 又 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是221122221(1)~(1,1).(1)nniii i X n X F n Xn X==-=--∑∑ 故应选(D).三、解答题 (15)【详解】方法1:令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .于是有 12221,,)[1]2,,)x y D x y x y D ∈⎧++=⎨∈⎩当(当(从而⎰⎰++Ddxdy y x xy ]1[22=122D D xydxdy xydxdy +⎰⎰⎰⎰(二重积分对区域的可加性) 122D D xydxdy xydxdy =+⎰⎰⎰⎰(用极坐标把不同区域上的二重积分化为累次积分)412332201sin cos 2sin cos d r dr d dr ππθθθθθθ=+⎰⎰⎰(根据牛—莱公式)4441222000sin cos |2sin cos |44r r d d ππθθθθθθ=+⎰⎰ 220011sin cos 2sin cos 44d d ππθθθθθθ=+⨯⎰⎰ (凑微分) 2222001111sin |sin |4222ππθθ=⨯+⨯=113.848+= 方法2:用极坐标⎰⎰++Ddxdy y x xy ]1[2242322sin cos [1]d r dr πθθθ=+⎰g 42322sin cos [1]d r dr πθθθ=+⎰g (根据牛—莱公式)422322001sin |[1]2r dr πθ=+g 423201[1]2r dr =+g .而 24101[1]212r r r ≤<⎧⎪+=⎨≤<⎪⎩从而 ⎰⎰++Ddxdy y x xy ]1[224123311()2r dr r dr =+⎰(定积分对区域的可加性)4441201(|2|244r r =+⨯(根据牛—莱公式) 111((21))242=+-38=(16)【详解】因为2222121(1)(1)(1)(21)1(21)(1)(21)limlim 1(1)(21)(21)1(1)(1)(21)n n n n n nx n n n n n n x x n n n n x n n +→∞→∞--++++-++==++-+-+-g , 所以,由比值判别法知,当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1). 另外,当1x =±时由于通项极限不为零,故原幂级数在1x =±处为发散的.212121111()(1)(1)(1)(1)(21)(21)n n n n n n n n x f x x x n n n n ∞∞---===-+=-+---∑∑1221211(1)()()()(21)n nnn n x x S x S x n n -∞∞==-=--+=+-∑∑,(1,1)x ∈-对1()S x ,由等比级数求和公式2011,(1,1)1n n n x x x x x x∞==+++++=∈--∑L L 得 1()S x 222111()1()1n n x x x ∞=-=--=-=--+∑, (1,1)x ∈-对2()S x ,则由幂级数在收敛区间上可导并有逐项求导公式得121212()(1),(1,1)21n n n S x x x n ∞--='=-∈--∑, 同理可得1222122111()(1)22()21n n n n n S x x x x∞∞---==''=-=-=⋅+∑∑,(1,1)x ∈- 可得22(0)0,(0)0,S S '== 所以,由牛—莱公式得2222002()(0)()2arctan ,1xx S x S S t dt dt x t ''''=+==+⎰⎰ (1,1)x ∈-同理得2220()(0)()2arctan x xS x S S t dt tdt '=+=⎰⎰002arctan |2arctan xxt t td t =-⎰ (分部积分)20=2arctan 21xtx x dt t -+⎰(计算出微分)2201=2arctan (1)1x x x d t t -++⎰ (凑微分)20=2arctan ln(1)|xx x t -+ (基本积分表中的公式)22arctan ln(1)x x x =-+ (1,1)x ∈-从而 22122()()()2arctan ln(1)1x f x S x S x x x x x=+=+-++ , (1,1)x ∈-.(17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的一个拐点知(3)0.f ''=由分部积分公式,33220()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰ 3220(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-30330)(2)()12()()12(30(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(19)【详解】(I) 如图,将C 分解为:21l l C +=,另作 一条曲线3l 围绕原点且与C 相接,则24()22Cy dx xydyx yφ++⎰Ñ1324()22l l y dx xydyx y φ++=+⎰Ñ2324()202l l y dx xydyx y φ++-=+⎰Ñ.(II) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(I)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有2l1lyOx3lQ Px y∂∂=∂∂. 经计算, 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++g ① 243243242242()(2)4()2()()4()(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2()4()2 y yy y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)【详解】 (I) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知()23r A =<,所以0A =,110110002a a A a a -+=+-33112(1)11a a a a⨯-+ ⋅-⋅+-按第3行展开221122[(1)(1)]11a a a a a a-+==⨯--++-80a =-=,得0a =.(II) 当0a =时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 所以 110110110110002002E A λλλλλλλ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭两边取行列式,③ ④E A λ-110112λλλ--=---3311(2)(1)11λλλ⨯--=-⋅-⋅--2(2)[(1)1]λλ=--- 22(2)(2)(2)λλλλλ=--=-令0E A λ-=,解得0,2321===λλλ,故A 有特征值为0,2321===λλλ.当122λλ==时,根据特征值的定义,有(2)0E A X -=,即1231101100000x x x -⎛⎫⎛⎫ ⎪⎪-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,1101101000r -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,因为未知数个数为3,故1231101100000x x x -⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪⎝⎭⎝⎭的基础解系中含有2个(未知数的个数-系数矩阵的秩)线性无关的解,同解方程组为120x x -=,选23,x x 为自由未知量,分别取231,0x x ==和230,1x x ==,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,(根据特征向量的定义,12,αα即为特征值12,λλ所对应的特征向量)因为120αα⋅=,故12,αα正交.当30λ=时,由(0)000E A X AX AX -=⇒-=⇒=,即1231101100002x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭, 对系数矩阵作初等行变换,11011011021000002002⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u u u u u u r 行行, 故1101101100002002002r r ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,基础解系中含有1个(未知量的个数—系数矩阵的秩)线性无关的解向量,同解方程组123020x x x +=⎧⎨=⎩, 选1x 为自由未知量,取11x = (选取任意非零常数都可,因为特征向量必须为非零向量,不能选0) ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于实对称矩阵对应于不同特征值的特征向量是相互正交的,故21,αα,3α两两正交,将21,αα,3α单位化,3121231231011,0,122010αααηηηααα⎛⎫⎛⎫⎛⎫⎪ ⎪⎪======-⎪ ⎪⎪⎪ ⎪⎪⎭⎝⎭⎭, 其中22211102α=++=,22220011α=++=,2221(1)02α 3=+-+=取[]123Q ηηη=,即为所求的正交变换矩阵,故T Q Q E =,则1Q Q -=,令x Qy =,则1123220T Q AQ Q AQ diag λλλ-⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 可化原二次型为标准形:1232(,,)()20T T T T T f x x x x Ax Qy AQy y Q AQy y y ⎡⎤⎢⎥====⎢⎥⎢⎥⎣⎦=.222221y y +(III) 方法1:由),,(321x x x f ==+222122y y 0,得120,0y y ==(因为方程中不含有3y )则3y k =(k 为任意常数). 从而所求解为:x Qy ==[]123123301100011200k k k k ηηηηηηη⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'=⋅+⋅+==-=-⎪ ⎪⎢⎥⎪ ⎪⎢⎥⎣⎦⎭⎝⎭, 其中2k '=为任意常数. 方法2:用配方法,方程2222212312312122(,,)22()0f x x x x x x x x x x x =+++=++=,得1230x x x +=⎧⎨=⎩ , 系数矩阵110001000⎛⎫ ⎪⎪ ⎪⎝⎭的秩为2,因为未知数的个数为3,故它的基础解系中含有1个(未知数的个数—系数矩阵的秩)线性无关的解向量,选13,x x 为自由未知量,取11x =,解得[1,1,0]T-,所以,0f =的解为[1,1,0]Tk -,k 为任意常数.(21)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠, 13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.(22)【详解】(I)由边缘密度函数的定义:()(,)X f x f x y dy +∞-∞=⎰,()(,)Y f y f x y dx +∞-∞=⎰则关于X 的边缘概率密度为:)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (因为01,02x y x <<<<,故x 的取值范围为12yx <<) (II)由分布函数的定义: }2{}{)(z Y X P z Z P z F Z ≤-=≤=(1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z (由定义域为01x <<,02y x <<,故20X Y ->,则{20}X Y -≤是不可能事件)(2) 当20<≤z 时, 如图转换成阴影部分的二重积分(){2}Z F z P X Y z =-≤2-(,)x y zf x y dxdy ≤=⎰⎰2-1(,)x y zf x y dxdy >=-⎰⎰=12-021x zz dx dy -⎰⎰=241z z -; (3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z (因X 最大取1,Y 最小取0,故2X Y -最大就只能取到2,所以22X Y -≤是必然事件)所以分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Zz DyO2y x=212z x y =-由密度函数与分布函数的关系:()()f x F x '=故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(23)【详解】由题设)2(,,,21>n X X X n Λ为来自总体2(0,)N σ的简单随机样本,知)2(,,,21>n X X X n Λ相互独立,且20,(1,2,,)i i EX DX i n σ===L ,11100nin i i i EX n E X E X n n n ==⨯⎛⎫==== ⎪⎝⎭∑∑222111111()n nn i i i i i i DX DX D X D X DX n nn n n σ===⎛⎫=====⎪⎝⎭∑∑∑ (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))()0,1,2,,.i i i EY E X X EX EX i n =-=-==L(根据期望的性质:,()EcX cEX E X Y EX EY =+=+)(I)111()[(1)]ni i i j j j iDY D X X D X X n n =≠=-=--∑(由于i X X 与不独立,所以把X 中含有i X 的剔出来,则i X 与剩下的就相互独立)=22111(1)n i j j j iDX DX n n=≠-+∑=222222(1)1(1)n n n n n n σσσ--+⋅-= (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))(II)由协方差的定义:)])([(),(111n n n EY Y EY Y E Y Y Cov --==1()n E YY (0i EY = ,1,2,,i n =L )1[()()]n E X X X X =--=)(211X X X X X X X E n n +-- 211()()()n n E X X E X X E X X EX =--+又 11()000n n E X X EX EX ==⨯=(因1,n X X 独立)2222()0EX DX E X nnσσ=+=+=2211111112211111()[][]n n n j j j j j j E X X E X X E X X X EX EX EX n n n n n =====+=+∑∑∑2221111(())0(0)DX EX n n nσσ=++=+=同理 2()n E X X nσ=(因1j X X 与独立 2,j n =L )所以 22222111(,)()()()0n n n Cov Y Y E X X E X X E X X EX nnnnσσσσ=--+=--+=-。

2005年考研数学真题

2005年考研数学真题

2005年考研数学真题一、第一部分2005年的考研数学真题可谓多种多样,考查了各个领域的数学知识。

本文将分别从数学分析、代数学和概率论三个方面,进行讨论和解答。

二、数学分析1. 问题一问题描述:设函数f(x)在区间[a, b]上连续且可微,且f(a) = f(b) = 0,证明在(a, b)内至少存在一点ξ,使得f'(ξ) = kf(ξ),其中0<k<1。

解答思路:首先利用罗尔定理,证明函数f(x)在[a, b]上存在至少一点ξ,使得f'(ξ) = 0。

然后,利用闭区间套定理,证明存在一个闭区间[a', b'],其中a'<ξ<b',在该区间内f'(x)的绝对值小于1。

最后,根据零点定理和介值定理,证明在(a', b')内存在一点ξ,使得f'(ξ) = kf(ξ)。

2. 问题二问题描述:已知函数f(x)在区间[0, +∞)上连续,且对于任意的x>0,有f(x) = 2∫(0 to x) f(t)dt + e^x - 1,求函数f(x)的表达式。

解答思路:首先对等式两边求导,得到f'(x) = 2f(x) + e^x。

然后,将该一阶常系数线性微分方程转化为齐次方程和特解方程。

通过求解齐次方程的特征方程得到f(x)的齐次解,再通过待定系数法求解特解方程得到f(x)的特解。

将齐次解和特解相加,即可得到函数f(x)的表达式。

三、代数学问题描述:已知复数z满足(z^2 - 1)(z^2 + 1) + 2z(z + 1)(z - 1) = (z - 1)^3,求z的值。

解答思路:首先将方程进行展开和整理,然后将同类项合并得到一个关于z的二次方程。

通过求解二次方程得到z的两个解,再通过验证这两个解是否满足原方程,确定唯一的解。

2. 问题二问题描述:已知二次方程ax^2 + bx + c = 0的两个根为α和β,求二次方程(a^2)x^2 + (b^2)x + c^2 = 0的两个根α^2和β^2。

2005年全国硕士研究生入学统一考试(数二)试题及答案

2005年全国硕士研究生入学统一考试(数二)试题及答案

2005年全国硕士研究生入学统一考试
数学二试题
一、填空题(本题共6小题,每小题4分.满分24分把答案填在题中横线上)。

二、选择题(本题共8小题,每小题4分,满分32分每小题给出的四个选项中,只有一项符合题目要求。

把所选项前的字母填在题后的括号内,)
三、解答题(本题共9小题.满分94分解答应写出文字说明、证明过程或演算步骤)
(15)(本题满分11分)
(16)(本题满分11分)
(17)(本题满分11分)
(18)(本题满分12分)
(19)(本题满分12分)
(20)(本题满分10分)
(21)(本题满分9分)
(22)(本题满分9分)
(23)(本题满分9分)
参考答案一、填空题1.
2.
3.
4.
5.
6.
二、选择题。

7.
8.
9.
10.
11.
12.
13.
14.
三、简答题。

15.
16.
17.
18.
19.
20.
21

22.
23.。

2005考研数学一真题及答案解析

2005考研数学一真题及答案解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.834381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,应用零点定理,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx x y d ydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005年考研数学一

2005年考研数学一

2005年考研数学一摘要:1.引言:介绍2005年考研数学一的重要性2.试题分析:总结当年数学一试题的难度、题型及特点3.解题策略:针对数学一的主要题型,给出解题方法和技巧4.复习建议:为准备考研数学一提供建议和注意事项5.结语:鼓励考生积极备考,迎接挑战正文:【引言】2005年考研数学一作为历年考研数学的重要组成部分,对考生的数学基础和应用能力有着较高的要求。

当年试题的难度、题型及特点备受关注,因此,深入了解和解题策略对于备考数学一至关重要。

【试题分析】2005年考研数学一试题整体难度适中,题型较为丰富。

主要包括高等数学、线性代数、概率论与数理统计等部分。

试题分布均衡,考查了考生的基本概念理解、计算能力、逻辑思维和分析问题能力。

在一定程度上,试题体现了教育部门对数学应用能力的重视。

【解题策略】1.高等数学:掌握基本概念、性质和公式,熟悉常见题型和解题方法。

例如,极限、导数、积分等题型,要熟练运用对应的求解技巧。

2.线性代数:熟悉矩阵、行列式、线性方程组等基本概念,了解线性空间、线性变换等高级概念。

掌握线性方程组的求解方法,如高斯消元法、矩阵分解法等。

3.概率论与数理统计:理解概率论基本概念,如随机变量、概率密度函数、累积分布函数等。

熟悉常见数理统计方法,如假设检验、方差分析等。

【复习建议】1.扎实基础:考研数学一要求扎实的数学基础,因此,考生要在复习过程中,加强对基本概念、性质和公式的理解。

2.多做练习:通过大量做题,熟练掌握各类题型的解题方法和技巧。

同时,要做好错题整理和总结,查漏补缺。

3.提高解题速度:在练习过程中,要注意提高解题速度,避免在考试中因时间紧张而影响发挥。

4.合理安排时间:做好时间规划,确保在复习过程中,各科目和章节得到平衡发展。

5.参加模拟考试:模拟考试有助于了解自己的复习进度和薄弱环节,调整复习策略。

【结语】面对2005年考研数学一,考生应保持积极的心态,扎实备考。

通过掌握解题策略,强化基础知识和解题能力,相信一定能够迎接挑战,取得理想成绩。

2005年考研数学一

2005年考研数学一

2005年考研数学一【原创实用版】目录1.2005 年考研数学一试卷概述2.试卷的结构和内容3.试卷的特点和趋势4.对考生的启示正文【2005 年考研数学一试卷概述】2005 年的考研数学一试卷,是针对我国研究生招生全国统一考试数学一科目的一份试题。

这份试题旨在考查考生的数学基本功和解题能力,以便选拔优秀的研究生。

【试卷的结构和内容】这份试卷分为两部分:选择题和非选择题。

选择题部分共有 10 道题,每题 10 分,共计 100 分。

非选择题部分共有 8 道题,每题 25 分,共计 200 分。

内容涵盖了高等代数、解析几何、微积分、概率论与数理统计等数学基本知识。

【试卷的特点和趋势】2005 年的数学一试卷具有以下特点:1.重视基础知识。

试题着重考查考生对基本概念、基本方法和基本定理的掌握程度。

2.注重解题能力。

试题要求考生运用所学的知识分析问题和解决问题,强调解题思路和技巧。

3.难度适中。

试题难度既不过于简单,也不过于复杂,旨在选拔具备一定数学素养的考生。

从这份试卷可以看出,我国考研数学一科目的趋势是:重视基础知识,注重解题能力,适度提高试题难度。

【对考生的启示】对于准备考研数学一的考生来说,可以从这份试卷中得到以下启示:1.扎实掌握基础知识。

要重视数学基本概念、基本方法和基本定理的学习,为解题奠定坚实的基础。

2.提高解题能力。

要多做练习题,培养自己的解题思路和技巧,提高解题速度和准确率。

3.关注历年试题。

要研究历年考研数学一试卷,了解试题的特点和趋势,为自己的复习和备考提供参考。

2005年考研数学三

2005年考研数学三

2005年考研数学三
摘要:
一、引言
二、考研数学三的考试大纲和内容
三、2005年考研数学三试题特点
四、2005年考研数学三试题解析
五、对2005年考研数学三试题的总结和反思
正文:
一、引言
2005年考研数学三是一门重要的考试科目,对于许多考研学生来说,数学三是他们成功与否的关键。

本文将对2005年考研数学三的考试情况进行回顾和总结,以期为今后的考研学生提供参考和借鉴。

二、考研数学三的考试大纲和内容
2005年考研数学三的考试大纲主要包括高等数学、线性代数和概率论与数理统计三部分内容。

其中,高等数学占60%,线性代数占20%,概率论与数理统计占20%。

三、2005年考研数学三试题特点
1.试题难度适中,注重基础知识和基本技能的考察。

2.试题类型多样化,包括选择题、填空题、解答题等多种题型。

3.试题具有一定的区分度,能够较好地检验考生的实际水平。

四、2005年考研数学三试题解析
1.高等数学部分:涉及函数、极限、导数、积分、微分方程等内容,题目设置较为合理,考察了考生的基本运算能力和概念理解能力。

2.线性代数部分:包括矩阵、行列式、线性方程组、特征值与特征向量等内容,题目难度适中,要求考生熟练掌握基本概念和性质。

3.概率论与数理统计部分:涉及随机事件、概率分布、数学期望、方差分析等内容,题目设置较为基础,要求考生熟练运用基本公式和性质。

五、对2005年考研数学三试题的总结和反思
总的来说,2005年考研数学三的试题质量较高,能够较好地检验考生的实际水平。

然而,也暴露出一些考生在备考过程中存在的问题,如基础知识掌握不牢、解题技巧不足等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档