微处理器实验1

合集下载

微处理器实验报告

微处理器实验报告

微处理器实验报告摘要:本文旨在介绍微处理器实验及其结果,内容包括实验目的、实验器材与方法、实验过程、实验结果和分析以及实验结论等。

通过本次实验,我们对微处理器的工作原理和应用有了更深刻的理解,并能够熟练地进行一些简单的微处理器操作。

1. 引言微处理器是现代计算机的核心组成部分,其作用是负责指令的执行和数据的处理。

在这个实验中,我们将通过操作微处理器,深入了解其内部构造和工作原理。

同时,我们也将学习如何正确地使用微处理器进行一些简单的计算和控制任务。

2. 实验目的本次实验的目的是:- 了解微处理器的基本工作原理;- 掌握微处理器的基本操作方法;- 理解不同指令的功能和使用方法;- 实现一些简单的计算和控制任务。

3. 实验器材与方法3.1 实验器材:- 微处理器实验箱- 示波器- PC机3.2 实验方法:首先,根据实验指导书上给出的实验电路图,按照电路图连接实验器材。

然后,将微处理器与PC机通过串口或者并口连接起来。

接下来,根据实验指导书上给出的指令,编写相应的程序代码并将其烧录到微处理器中。

最后,通过操作微处理器,观察实验结果并进行实验数据的采集和分析。

4. 实验过程4.1 硬件连接:根据实验指导书上的电路图,连接实验箱和示波器,保证电路的正常工作。

4.2 软件编程:根据实验指导书上的指令,使用相应的软件工具或编程语言编写程序代码,并将其烧录到微处理器中。

4.3 实验操作:按照实验指导书上的要求,操作微处理器进行各种指令的执行,观察实验结果并记录相关数据。

5. 实验结果与分析通过本次实验,我们成功地完成了一些简单的微处理器操作,并观察到了相应的实验结果。

在实验中,我们使用了一些常见的指令,如加法指令、乘法指令和逻辑指令等,并实现了一些简单的计算和控制任务。

同时,我们还观察到了微处理器的运行速度以及实验过程中的一些注意事项。

通过对实验数据的分析,我们发现微处理器在执行指令时的速度非常快,能够实时处理大量的数据,并及时给出相应的计算结果。

arm嵌入式实验报告完整版

arm嵌入式实验报告完整版

arm嵌入式实验报告完整版篇一:ARM嵌入式系统实验报告1郑州航空工业管理学院嵌入式系统实验报告第赵成,张克新院姓专学系:名:业:号:电子通信工程系周振宇物联网工程 121309140电子通信工程系XX年3月制实验一 ARM体系结构与编程方法一、实验目的了解ARM9 S3C2410A嵌入式微处理器芯片的体系结构,熟悉ARM微处理器的工作模式、指令状态、寄存器组及异常中断的概念,掌握ARM指令系统,能在ADS1.2 IDE中进行ARM汇编语言程序设计。

二、实验内容1.ADS1.2 IDE的安装、环境配置及工程项目的建立;2.ARM汇编语言程序设计(参考附录A):(1)两个寄存器值相加;(2)LDR、STR指令操作;(3)使用多寄存器传送指令进行数据复制;(4)使用查表法实现程序跳转;(5)使用BX指令切换处理器状态;(6)微处理器工作模式切换;三、预备知识了解ARM嵌入式微处理器芯片的体系结构及指令体系;熟悉汇编语言及可编程微处理器的程序设计方法。

四、实验设备 1. 硬件环境配置计算机:Intel(R) Pentium(R) 及以上;内存:1GB及以上;实验设备:UP-NETARM2410-S嵌入式开发平台,J-Link V8仿真器; 2. 软件环境配置操作系统:Microsoft Windows XP Professional Service Pack 2;集成开发环境:ARM Developer Suite (ADS)1.2。

五、实验分析1.安装的ADS1.2 IDE中包括两个软件组件。

在ADS1.2中建立 ARM Executable Image(ARM可执行映像)类型的工程,工程目标配置为 Debug;接着,还需要对工程进行目标设置、语言设置及链接器设置;最后,配置仿真环境为ARMUL仿真方式。

2.写出ARM汇编语言的最简程序结构,然后在代码段中实现两个寄存器值的加法运算,给出运算部分相应指令的注释。

实验1 认识计算机

实验1 认识计算机
返回本节
1.5.3 光盘驱动器
1.5.3.1 光驱的主要技术指标 1.5.3.2 光驱的接口 1.5.3.3 光驱的其他产品
1.5.3.1 光驱的主要技术指标
1.寻迹和聚焦 . 准确地将光盘中的数据读出, 准确地将光盘中的数据读出,直接决定的因素有激光头 的寻迹是否准确,发射的光能否聚焦。 的寻迹是否准确,发射的光能否聚焦。 2.速度 . 现有光驱的主流是40X以上的光驱。 现有光驱的主流是 以上的光驱。 以上的光驱 3.数据传输率 . 数据传输率直接决定光驱的速度。 数据传输率直接决定光驱的速度。 4.平均搜寻时间 . 这也是衡量光驱速度的另一重要标准,它是指激光头定 这也是衡量光驱速度的另一重要标准, 位并读取数据所需的平均时间。 位并读取数据所需的平均时间。
1.5.3.2 光驱的接口
1.专用接口 . 早期,一些光驱的生产商,如索尼、美上美、松下等, 早期,一些光驱的生产商,如索尼、美上美、松下等, 都开发了本公司专用的光驱接口。 都开发了本公司专用的光驱接口。 2.SCSI接口 . 接口 SCSI接口的好处在于可以连接多个不同设备,并且占 接口的好处在于可以连接多个不同设备, 接口的好处在于可以连接多个不同设备 用较少的CPU资源。3.IDE接口 资源。 . 用较少的 资源 接口 IDE已成为目前光驱的主流接口。 已成为目前光驱的主流接口。 已成为目前光驱的主流接口 以上的系统, 接口已集成在主板上, 在586以上的系统,IDE接口已集成在主板上,不少的 以上的系统 接口已集成在主板上 声卡也提供IDE接口,这使得光驱的安装更为简单。 接口, 声卡也提供 接口 这使得光驱的安装更为简单。
实验1-认识计算机 实验 认识计算机
1.1 计算机系统硬件组成 1.2 微处理器 1.3 主板 1.4 内存 1.5 外存储器 1.6 输入系统设备 1.7 显示系统设备 1.8 声卡和音箱 1.9 机箱与电源

8051实验指导书

8051实验指导书

第一部分系统介绍一、系统概述1)、微处理器:i80c31,它的P1口、P3口皆对用户开放,供用户使用。

2)、时钟频率:6.0MHz3)、存储器:程序存储器与数据存储器统一编址,最多可达64k,板载ROM(监控程序27C256)12k;RAM1(程序存储器6264)8k供用户下载实验程序,可扩展达32k;RAM2(数据存储器6264)8k供用户程序使用,可扩展达32k。

(RAM程序存储器与数据存储器不可同时扩至32k,具体与厂家联系)。

(见图1-1:存储器组织图)。

在程序存储器中,0000H----2FFFH为监控程序存储器区,用户不可用,4000H----5FFFH为用户实验程序存储区,供用户下载实验程序。

数据存储器的范围为:6000H----7FFFH,供用户实验程序使用。

注意:因用户实验程序区位于4000H-----5FFFH,用户在编写实验程序时要注意,程序的起始地址应为4000H,所用的中断入口地址均应在原地址的基础上,加上4000H。

例如:外部中断0的原中断入口为0003H,用户实验程序的外部中断0的中断程序入口为4003H,其他类推,见表1-1。

4)、可提供的对8051的基本实验为了提高微机教学实验质量,提高实验效率,在该系统的实验板上,除微处理器外、程序存储器、数据存储器外,还增加了8255并行接口、8250串行控制器、8279键盘、显示控制器、8253可编程定时器、A/D、D/A转换、单脉冲、各种频率的脉冲发生器、输入、输出电路等模块,各部分电路既相互独立、又可灵活组合,能满足各类学校,不同层次微机实验与培训要求。

可提供的实验如下:(1)、8051P1口输入、输出实验(2)、简单的扩展输入、输出实验(3)、8051定时器/计数器实验(4)、8051外中断实验(5)、8279键盘扫描、LED显示实验(6)、8255并行口输入、输出实验(7)、8253定时器/计数器实验(8)、8259中断实验(9)、串行口通讯实验(10)、ADC0809 A/D转换实验(11)、DAC0832 D/A转换实验(12)、存储器扩展实验(13)、交通灯控制实验FFFFH用户I/O区CFEFH系统I/O区,CFBFH用户I/O区7FFFHRAM2用户实验程序区供用户下载实验程序4FFFHRAM1用户实验程序数据区2FFFHROM系统监控程序区0000H图1:存储器系统组织图中断名称 8051原中断程序入口用户实验程序响应程序入口外中断0 0003H 4003H定时器0中断 000BH 400BH外中断1 0013H 4013H定时器1中断 001BH 401BH串行口中断 0023H 4023H表1-1:用户中断程序入口表5)、资源分配本系统采用可编程逻辑器件(CPLD)EPM7128做地址的编译码工作,可通过芯片的JTAG接口与PC机相连,对芯片进行编程。

《微机原理与接口技术》实验指导书

《微机原理与接口技术》实验指导书

微机原理与接口技术实验指导书实验一:微处理器概述及数据传输实验一、实验目的•了解微处理器的基本概念和工作原理;•学习数据传输的基本知识;•掌握使用微处理器进行数据传输的方法。

二、实验器材•1个微处理器开发板;•1个串行通信模块;•相应的连接线。

三、实验内容在该实验中,你将学习如何使用微处理器进行数据传输,具体实验步骤如下:1.将开发板和串行通信模块连接起来;2.将数据发送器连接到串行通信模块的发送端口,将数据接收器连接到串行通信模块的接收端口;3.通过开发板上的开关设置要发送的数据;4.通过串行通信模块将数据发送到计算机;5.在计算机上使用相应的软件接收数据,并验证接收到的数据是否正确。

四、实验步骤1.将开发板和串行通信模块连接起来,确保连接正确并稳定;2.将数据发送器插入串行通信模块的发送端口,将数据接收器插入串行通信模块的接收端口;3.在开发板上的开关上设置要发送的数据;4.打开计算机上的串行通信软件,配置正确的串口号和波特率;5.点击软件的接收按钮,准备接收数据;6.在开发板上的开关上切换到发送模式,并观察串行通信模块的指示灯是否正常闪烁;7.在串行通信软件上观察接收到的数据是否与设置的数据一致;8.如果数据传输正常,则实验完成。

五、实验注意事项1.连接线务必稳固连接,确保数据传输正常;2.阅读并理解实验器材的使用说明书;3.注意保持实验环境的整洁,避免影响实验结果;4.在进行数据传输时,确保计算机已正确安装了相应的驱动程序。

六、实验总结通过这次实验,我们初步了解了微处理器的基本概念和工作原理,学习了数据传输的基本知识,并掌握了使用微处理器进行数据传输的方法。

我们在实验中成功地连接了开发板和串行通信模块,并成功地进行了数据传输。

通过实验,我们发现数据传输过程中需要注意连接线的稳固连接,以及计算机是否安装了相应的驱动程序。

实验的结果验证了我们的操作方法的正确性,同时也为后续实验奠定了基础。

注意:本指导书旨在引导实验过程,实验过程中如有任何危险情况,请立即停止实验并寻求实验室管理员的帮助。

单片机实验报告范文

单片机实验报告范文

单片机实验报告范文一、实验目的本实验的目的是通过学习单片机的基本原理和使用方法,掌握单片机在各个实际应用中的基本技能。

二、实验器材及原理1.实验器材:STC89C52单片机、电源、晶振、按键、LED灯、蜂鸣器等。

2.实验原理:单片机是一种微处理器,能够完成各种复杂的功能。

通过学习单片机的工作原理和编程方法,可以控制各种外围设备,实现不同的功能。

三、实验内容及步骤1.实验一:点亮LED灯步骤:(1)连接电源和晶振,将STC89C52单片机连接到电路板上。

(2)编写程序,点亮LED灯。

2.实验二:按键控制LED灯步骤:(1)连接电源和晶振,将STC89C52单片机连接到电路板上。

(2)将按键和LED灯与单片机相连。

(3)编写程序,实现按下按键控制LED灯亮灭。

3.实验三:数码管显示步骤:(1)连接电源和晶振,将STC89C52单片机连接到电路板上。

(2)将数码管与单片机相连。

(3)编写程序,将数字输出到数码管上显示。

4.实验四:定时器应用步骤:(1)连接电源和晶振,将STC89C52单片机连接到电路板上。

(2)编写程序,实现定时器功能。

四、实验结果及分析1.实验一:点亮LED灯LED灯成功点亮,证明单片机与外部设备的连接正常。

2.实验二:按键控制LED灯按下按键后,LED灯亮起,松开按键后,LED灯熄灭。

按键控制LED 灯的效果良好,说明单片机的输入输出功能正常。

3.实验三:数码管显示数码管成功显示数字,说明单片机能够实现数字输出功能。

通过程序设计,可以实现数码管显示不同的数字。

4.实验四:定时器应用定时器正常运行,能够实现精确的定时功能。

通过调节定时器的参数,可以实现不同的定时功能。

五、实验总结通过本次实验,我们学习了单片机的基本原理和使用方法。

通过掌握单片机的编程技巧,我们能够实现各种复杂的功能,如控制LED灯、按键控制、数码管显示等。

这些技能对于日常生活和工程设计都具有很大的实用性。

在实验过程中,我们遇到了各种问题,如电路连接错误、程序编写错误等。

组成原理实验一寄存器实验

组成原理实验一寄存器实验

组成原理实验一寄存器实验组成原理实验一寄存器实验一、实验目的1.深入理解寄存器的工作原理;2.掌握寄存器的使用方法;3.学习通过寄存器实现数据的存储和传输。

二、实验设备1.微处理器开发板;2.示波器;3.逻辑分析仪;4.编程器。

三、实验原理寄存器是计算机组成中的重要部件,主要用于暂时存储数据或指令。

根据功能不同,寄存器可分为输入寄存器、输出寄存器、指令寄存器和数据寄存器等。

在本实验中,我们将通过一个简单的四位寄存器来深入了解寄存器的工作原理。

四、实验步骤1.按照实验要求准备实验设备,并将微处理器的所有引脚通过编程器设置成输入或输出状态;2.将四位寄存器的输入引脚连接到微处理器的四个输入引脚上,将输出引脚连接到微处理器的四个输出引脚上;3.将一个周期性的方波信号加到四位寄存器的时钟引脚上,同时使用示波器观测输入引脚和输出引脚的波形;4.改变四位寄存器的输入值,并观察输出值的变化情况;5.重复步骤3和4,进一步验证四位寄存器的工作原理。

五、实验结果及分析1.在时钟信号的上升沿到达时,四位寄存器的输入值会被锁存到寄存器中,并在输出端显示出来。

因此,通过改变输入值,就可以实现数据的存储和传输;2.在一个工作周期内,只有在时钟信号的上升沿到达时,输入值才会被锁存到寄存器中。

在其他时间,输入值的变化不会影响到寄存器中的值。

因此,寄存器具有记忆功能。

六、实验总结本次实验通过四位寄存器,让我们更深入地了解了寄存器的工作原理和使用方法。

通过观测输入和输出波形的变化,我们验证了寄存器在数据存储和传输方面的重要作用。

同时,我们也掌握了如何通过编程器设置微处理器的引脚状态以及如何使用示波器和逻辑分析仪观测和分析实验波形。

本实验结果和预期相符,成功达到了教学目的。

七、思考题与实验改进意见1.在本实验中,我们使用的寄存器是静态寄存器,也就是只有在时钟信号的上升沿到达时才能进行数据的锁存。

那么,如果使用动态寄存器,是否还能保证数据的稳定性和可靠性呢?请同学们课下自行查阅相关资料进行了解。

微处理器原理与应用-原码,反码,补码等的习题应用

微处理器原理与应用-原码,反码,补码等的习题应用

信息科学与工程学院2017-2018学年第二学期实验报告课程名称:微处理器原理与应用实验名称:原码,反码,补码等的习题应用专业班级电子信息学生学号学生姓名实验时间 2018年3月日实验报告【实验目的】通过本次实验习题课掌握原码补码反码移码的概念以及应用。

【实验要求】认真完成本章实验习题。

【实验具体内容】完成关于原码,补码和反码的习题。

【实验开始】一、选择题(如果为计算题,写出简要的计算过程)1、一个四位二进制补码的表示范围是(B)A、0~15B、-8~7C、-7~7D、-7~82、十进制数-48 用补码表示为(B)A、10110000B、11010000C、11110000D、110011113、如果X 为负数,由[x]补求[-x]补是将(D)A、[x]补各值保持不变B、[x]补符号位变反,其他各位不变C、[x]补除符号位外,各位变反,末位加1D、[x]补连同符号位一起各位变反,末位加14、机器数80H 所表示的真值是-128,则该机器数为(C)形式的表示。

A、原码B、反码C、补码D、移码5、在浮点数中,阶码、尾数的表示格式是(A)。

A、阶码定点整数,尾数定点小数B、阶码定点整数,尾数定点整数C、阶码定点小数,尾数定点整数D、阶码定点小数,尾数定点小数6、已知[x]补=10110111,[y]补=01001010,则[ x–y ]补的结果是(A)。

A、溢出B、01101010C、01001010D、110010107、某机字长8位,含一位数符,采用原码表示,则定点小数所能表示的非零最小正数为(D)A、2-9B、2-8C、-1D、2-78、下列数中最小的数是(C)A、[10010101]原B、[10010101]反C、[10010101]补D、[10010101]29、8位补码表示的定点整数的范围是(B)A、-128~+128B、-128~+127C、-127~+128D、-127~+12710、已知X 的补码为10110100,Y 的补码为01101010,则X-Y 的补码为(C)A、01101010B、01001010C、11001010D、溢出11、将-33 以单符号位补码形式存入8 位寄存器中,寄存器中的内容为(B)A、DFHB、A1HC、5FHD、DEH12、在机器数的三种表示形式中,符号位可以和数值位一起参加运算的是(D)A、原码B、补码C、反码D、反码、补码13、“溢出”一般是指计算机在运算过程是产生的(C)。

微机保护测试实验报告

微机保护测试实验报告

一、实验目的1. 熟悉微机保护的基本原理和组成;2. 掌握微机保护测试方法及步骤;3. 学会使用微机保护测试仪进行实验操作;4. 培养实际操作能力,提高对电力系统保护的认知。

二、实验原理微机保护是一种基于微处理器的继电保护装置,它将电力系统的各种信息(如电流、电压、频率等)进行采集、处理、判断,然后根据预设的保护逻辑进行动作,实现对电力系统的保护。

微机保护具有可靠性高、速度快、功能强等特点。

三、实验仪器1. 微机保护测试仪;2. 电流互感器;3. 电压互感器;4. 信号发生器;5. 继电保护装置;6. 交流电源。

四、实验步骤1. 熟悉微机保护测试仪的操作界面和功能;2. 连接实验仪器,包括电流互感器、电压互感器、信号发生器、继电保护装置等;3. 根据实验要求设置微机保护测试仪的各项参数;4. 进行实验,观察微机保护的动作情况;5. 记录实验数据,分析实验结果;6. 撰写实验报告。

五、实验内容及结果1. 实验一:微机保护动作特性测试(1)实验目的:测试微机保护的灵敏度、动作时间和返回时间等特性。

(2)实验步骤:a. 设置微机保护测试仪的电流、电压等参数;b. 输入故障信号,观察微机保护的动作情况;c. 记录微机保护的灵敏度、动作时间和返回时间等数据。

(3)实验结果:微机保护的灵敏度:0.1A;动作时间:10ms;返回时间:5ms。

2. 实验二:微机保护故障录波测试(1)实验目的:测试微机保护的故障录波功能。

(2)实验步骤:a. 设置微机保护测试仪的故障录波参数;b. 输入故障信号,观察微机保护的故障录波情况;c. 记录故障录波数据。

(3)实验结果:微机保护成功录波故障波形,波形清晰。

3. 实验三:微机保护通信功能测试(1)实验目的:测试微机保护的通信功能。

(2)实验步骤:a. 设置微机保护测试仪的通信参数;b. 通过通信接口与上位机进行通信;c. 观察通信数据传输情况。

(3)实验结果:微机保护与上位机通信成功,数据传输稳定。

微机原理与接口技术实验报告

微机原理与接口技术实验报告

微机原理与接口技术实验报告实验一,微机原理实验。

1. 实验目的。

本实验旨在通过对微机原理的实验,加深学生对微机原理相关知识的理解,提高学生的动手能力和实验技能。

2. 实验内容。

本实验主要包括微机原理的基本知识、微处理器的结构和功能、微机系统的总线结构、存储器与I/O接口。

3. 实验步骤。

(1)了解微机原理的基本知识,包括微处理器的分类、功能和工作原理。

(2)学习微机系统的总线结构,掌握总线的分类、功能和工作原理。

(3)了解存储器与I/O接口的基本概念和工作原理。

(4)进行实际操作,通过实验板进行微机原理实验,加深对微机原理知识的理解。

4. 实验结果。

通过本次实验,我深刻理解了微机原理的基本知识,掌握了微处理器的结构和功能,了解了微机系统的总线结构,以及存储器与I/O接口的工作原理。

通过实际操作,我对微机原理有了更深入的认识,提高了自己的动手能力和实验技能。

实验二,接口技术实验。

1. 实验目的。

本实验旨在通过对接口技术的实验,加深学生对接口技术相关知识的理解,提高学生的动手能力和实验技能。

2. 实验内容。

本实验主要包括接口技术的基本知识、接口电路的设计与调试、接口技术在实际应用中的作用。

3. 实验步骤。

(1)了解接口技术的基本知识,包括接口的分类、功能和设计原则。

(2)学习接口电路的设计与调试,掌握接口电路设计的基本方法和调试技巧。

(3)了解接口技术在实际应用中的作用,包括各种接口的应用场景和实际案例。

(4)进行实际操作,通过实验板进行接口技术实验,加深对接口技术知识的理解。

4. 实验结果。

通过本次实验,我深刻理解了接口技术的基本知识,掌握了接口电路的设计与调试方法,了解了接口技术在实际应用中的作用。

通过实际操作,我对接口技术有了更深入的认识,提高了自己的动手能力和实验技能。

总结。

通过微机原理与接口技术的实验,我对微机原理和接口技术有了更深入的理解,提高了自己的动手能力和实验技能。

希望通过今后的学习和实践,能够更加深入地掌握微机原理与接口技术的知识,为将来的工作和研究打下坚实的基础。

熟悉emu8086汇编语言调试环境实验报告

熟悉emu8086汇编语言调试环境实验报告

熟悉emu8086汇编语言调试环境实验报告=======================1. 实验目的-------本次实验的主要目的是熟悉并掌握emu8086汇编语言调试环境的使用,了解汇编语言的基本原理和编程方法,提升对计算机硬件和程序运行的理解。

2. 实验原理-------emu8086是一款用于学习和实验的8086微处理器模拟器。

它提供了一个集成开发环境(IDE),可以在此环境中编写、编译、调试和运行8086汇编语言程序。

3. 实验步骤-------以下是我们进行实验的具体步骤:步骤一:安装emu8086模拟器。

从官方网站下载并安装emu8086模拟器,确保正确安装并能够正常运行。

步骤二:打开模拟器并创建一个新项目。

在模拟器的IDE中,选择“文件”->“新建”->“项目”,然后为项目命名并选择存储位置。

步骤三:编写汇编语言程序。

在项目中创建一个新的汇编文件,使用8086汇编语言编写一个简单的程序。

例如,可以编写一个程序来输出“Hello, World!”到屏幕上。

步骤四:编译程序。

在模拟器的IDE中,选择“编译”->“编译全部”,将汇编文件编译成机器码。

步骤五:运行程序。

在模拟器的IDE中,选择“运行”->“运行”,或者直接按下F9键,来运行程序。

步骤六:调试程序。

如果程序运行出现问题,可以使用emu8086的调试功能来查找和修复错误。

在模拟器的IDE中,选择“调试”->“开始调试”,然后使用调试工具来检查程序的状态、寄存器和内存。

4. 实验结果-------通过本次实验,我们成功地编写、编译、运行并调试了一个简单的8086汇编语言程序。

我们实现了在屏幕上输出“Hello, World!”的目标,并且深入了解了emu8086模拟器的使用方法和8086汇编语言的编程技巧。

5. 实验分析-------通过本次实验,我们深入了解了8086汇编语言的编程方法和计算机硬件的基本原理。

单片机原理及应用实验报告

单片机原理及应用实验报告

单片机原理及应用实验报告一、引言单片机(Microcontroller Unit,简称MCU)是一种集成电路芯片,内部集成了微处理器、存储器、输入输出接口和定时器等功能模块,广泛应用于各种电子设备和控制系统中。

本实验报告将介绍单片机的基本原理以及其在实际应用中的实验。

二、单片机的基本原理单片机的核心是微处理器,它负责执行程序指令。

单片机的存储器包括程序存储器(Program Memory)和数据存储器(Data Memory)。

程序存储器用于存储程序指令,数据存储器用于存储数据和中间结果。

单片机通过输入输出接口与外部设备进行通信,通过定时器来控制程序的执行时间。

三、单片机的应用实验1. LED闪烁实验LED闪烁实验是单片机入门实验的经典案例。

通过控制单片机的输出口,周期性地改变LED的状态,从而实现LED的闪烁效果。

这个实验可以帮助初学者了解单片机编程的基本概念和操作。

2. 温度测量实验温度测量实验可以通过连接温度传感器和单片机的输入口,实时地获取环境温度,并通过数码管或LCD显示器来显示温度数值。

这个实验可以帮助学生掌握单片机输入输出口的使用方法,以及模拟信号的处理和显示。

3. 蜂鸣器控制实验蜂鸣器控制实验可以通过连接蜂鸣器和单片机的输出口,实现对蜂鸣器的控制。

通过编写程序,可以使蜂鸣器发出不同的声音,如单调的蜂鸣声、警报声等。

这个实验可以帮助学生学习单片机的数字输出和PWM(脉冲宽度调制)技术。

4. 电机控制实验电机控制实验可以通过连接电机和单片机的输出口,实现对电机的控制。

通过编写程序,可以控制电机的转动方向和速度。

这个实验可以帮助学生理解单片机输出口的电流和电压特性,以及电机的控制原理。

5. 红外遥控实验红外遥控实验可以通过连接红外接收器和单片机的输入口,实现对红外遥控信号的解码和处理。

通过编写程序,可以实现对各种红外遥控器的解码和按键处理。

这个实验可以帮助学生学习单片机输入口的中断处理和红外通信原理。

单片机总线扩展实验报告

单片机总线扩展实验报告

单片机总线扩展实验报告1. 背景单片机是一种嵌入式微处理器,常用于控制系统和电子设备中。

然而,单片机的输入输出引脚有限,并且常常需要与其他外部设备进行通信。

为了解决这个问题,我们需要进行总线扩展实验。

总线扩展是通过额外的硬件元件来扩展单片机的输入输出能力。

在本实验中,我们使用了I2C总线作为扩展方式。

I2C总线是一种串行通信总线,可以连接多个设备,使它们能够共享信息。

2. 分析在本实验中,我们使用了STM32单片机和一些外部设备,包括温湿度传感器和液晶显示屏。

我们将通过I2C总线来连接这些设备。

首先,我们需要在单片机上启用I2C总线功能。

通过相关的寄存器设置,我们可以配置I2C总线的时钟频率等参数,以确保与外部设备的正常通信。

接下来,我们需要连接温湿度传感器和液晶显示屏到I2C总线上。

这需要通过正确的引脚连接来实现。

我们还需根据设备的数据手册来确定各个设备的I2C地址,以便在通信时正确识别设备。

对于温湿度传感器,我们可以通过I2C总线发送相应的命令,并读取传感器返回的温湿度数据。

这些数据可以通过数值转换和校准得到实际的温度和湿度值。

对于液晶显示屏,我们可以使用I2C总线发送相应的命令和数据来显示信息。

我们可以将温湿度数据以及其他文本信息显示在液晶屏上。

3. 结果在实验中,我们成功地使用I2C总线实现了单片机与温湿度传感器和液晶显示屏的通信。

以下是我们的实验结果:•温湿度传感器能够准确地测量环境的温度和湿度。

•单片机能够通过I2C总线正确地读取并处理传感器的数据。

•液晶显示屏能够正确地显示温湿度数据以及其他文本信息。

4. 建议在进行总线扩展实验时,我们遇到了一些挑战和问题。

以下是我们的一些建议:•在接线和引脚连接时,请仔细阅读设备的数据手册,并按照说明进行正确的连接。

•在使用I2C总线时,需要设置正确的时钟频率和其他参数。

请确保对单片机的寄存器设置正确。

•当与外部设备通信时,可能会遇到一些通信失败或数据错误的情况。

myrio实验报告

myrio实验报告

myrio实验报告MyRIO实验报告引言:MyRIO是一款由美国国家仪器(National Instruments)公司开发的嵌入式系统,它结合了FPGA(现场可编程门阵列)和嵌入式微处理器技术,具备强大的实时控制和数据采集能力。

本实验报告将介绍我在使用MyRIO进行实验时的经验和观察。

一、实验目的:本次实验的目的是通过使用MyRIO,学习和掌握嵌入式系统的基本原理和应用。

通过实践,了解MyRIO的硬件结构和软件开发环境,并能够使用MyRIO进行数据采集、实时控制和信号处理等操作。

二、实验过程:1. 硬件连接:首先,我将MyRIO与计算机通过USB线连接,并确保连接稳定。

然后,我根据实验要求,将传感器和执行器等外部设备连接到MyRIO的相应接口上。

这些设备包括温度传感器、光敏电阻、直流电机等。

2. 软件配置:在开始实验之前,我需要在计算机上安装MyRIO的开发环境。

这个开发环境包括LabVIEW软件和MyRIO驱动程序。

安装完成后,我打开LabVIEW软件,并创建一个新的项目。

然后,我选择相应的设备和接口,并进行配置。

3. 数据采集:通过LabVIEW软件,我可以轻松地配置MyRIO进行数据采集。

我根据实验要求,设置了采集频率和采集时长等参数。

然后,我编写了相应的程序,通过MyRIO采集了温度和光敏电阻的数据。

这些数据可以帮助我们了解环境的变化和光照强度等信息。

4. 实时控制:MyRIO具备实时控制的能力,可以通过编写程序实现对外部设备的控制。

在实验中,我通过MyRIO控制了一个直流电机的转速。

我编写了一个PID控制算法,并将其加载到MyRIO上。

通过调整参数,我成功地实现了对电机转速的精确控制。

5. 信号处理:MyRIO还可以进行信号处理,对采集到的数据进行分析和处理。

在实验中,我使用了MyRIO的FPGA模块,对采集到的温度数据进行了滤波和平均处理。

通过这些处理,我得到了更加准确和稳定的温度数值。

嵌入式系统(STM32微处理器)实训指导书

嵌入式系统(STM32微处理器)实训指导书

嵌入式系统(STM32微控制器)实训指导书意法半导体公司的STM32微控制器具有32位字长的CPU,使用精简指令系统(RISC)。

精简指令系统的指令字长固定,译码方便,相对于复杂指令系统(CISC),精简指令系统的处理效率更高。

具有32位字长CPU的STM32系列微控制器的处理能力远高于8位和16位单片机,同时集成了与32位CPU相适应的强大外设(如双通道ADC、多功能定时器、7通道DMA、SPI等),能够完成过去一般单片机所无法达到控制功能。

现在,已经形成了以8位单片机为主流的低端产品和以32位微控制器为主流的高端产品两大市场。

对于自动化领域的从业人员,了解32位微控制器的结构、特点,掌握其使用方法,是很有必要的。

一、关于学习方法此前,我们已经学习过《C语言程序设计》、《微机原理》、《单片机原理及应用》等相关课程。

这些课程的学习是系统的、完整的、全面的,是有老师讲授的。

这种学习方法,适合在学校学习一些重要的基础理论课程。

在工作中,我们常常会遇到新的东西,需要以已有的知识作为基础,去解决问题、完成任务。

这就需要不同于前述的另一种学习方法。

这种方法是建立在自学基础上的,以解决实际问题为目的,允许通过局部的、模仿性的手段,来实现既定目标。

这种方法在工程实践中的应用是非常普遍的。

“白猫黑猫,能抓住老鼠就是好猫”。

能解决问题的方法就是好方法。

本次实训采取的方法是:将参考资料发给同学,同学自学其中需要的部分。

在指导教师引导下,体验各个控制项目、理解各组成部分,再以原控制软件为基础进行修改和移植,获得要达到的控制效果。

在本次实训中,我们使用的微控制器型号为STM32F103RB。

STM32F103RB是STM32微控制器系列中的一种,内部具有128KB程序存储器、20KB随机读写存储器、1个16位高级定时器、3个16位通用定时器、2个SPI、2个I2C、3个USART、1个USB、1个CAN、2个ADC。

芯片为64引脚LQFP封装,有51个I/O引脚。

基本模型机实验报告

基本模型机实验报告

基本模型机实验报告一、实验目的本实验旨在通过构建一个基本模型机,深入了解计算机的工作原理,包括数据的二进制表示、指令执行、内存管理以及简单的输入输出。

二、实验设备1. 微处理器(如 Intel 8080)2. 存储器芯片(如 Intel 2114)3. 输入设备(如开关或键盘)4. 输出设备(如LED灯或显示器)5. 电源三、实验步骤步骤一:构建模型机根据实验设备,将微处理器、存储器、输入设备和输出设备连接起来,形成一个简单的模型机。

确保所有连接正确无误,电源供应稳定。

步骤二:数据表示与存储在模型机中,使用二进制数表示数据。

将数据存储在存储器中,并观察数据在存储器中的表示形式。

例如,使用开关模拟二进制数的0和1,将开关按下表示0,不按下表示1。

步骤三:指令执行编写简单的汇编指令,如加法指令,并在模型机上执行。

观察指令的执行过程,包括取指令、解码指令、执行指令和写回结果等步骤。

步骤四:内存管理模拟内存的读写操作,了解内存地址的概念以及如何通过地址访问存储在内存中的数据。

观察内存地址的增加和减少对数据读写的影响。

步骤五:输入输出操作通过输入设备输入数据,观察模型机如何将输入的数据存储在内存中。

然后通过输出设备输出数据,了解输出数据的表示形式。

四、实验结果与分析通过本次实验,我们了解了计算机的基本工作原理,包括数据的二进制表示、指令执行、内存管理和输入输出操作。

在实验过程中,我们观察到微处理器负责执行指令,存储器用于存储数据和指令,输入设备用于输入数据,输出设备用于输出数据。

此外,我们还了解了内存地址的概念以及如何通过地址访问存储在内存中的数据。

五、结论与建议本次实验使我们深入了解了计算机的基本工作原理,并掌握了构建简单模型机的方法。

为了进一步提高实验效果,建议在未来的实验中增加更多的设备和功能,例如中断处理、多任务处理等,以便更全面地了解计算机的工作原理。

同时,建议在实验过程中注重细节和观察,以便更好地理解实验结果和原理。

UCOSII实验1-任务调度

UCOSII实验1-任务调度

UCOSII实验1-任务调度 ·UCOSII 是⼀个可以基于 ROM 运⾏的、可裁减的、抢占式、实时多任务内核,具有⾼度可移植性,特别适合于微处理器和控制器。

·为了提供最好的移植性能, UCOSII 最⼤程度上使⽤ ANSI C 语⾔进⾏开发,并且已经移植到近 40 多种处理器体系上,涵盖了从 8 位到 64 位各种 CPU(包括 DSP)。

·UCOSII 具有执⾏效率⾼、占⽤空间⼩、实时性能优良和可扩展性强等特点,最⼩内核可编译⾄ 2KB 。

UCOSII 已经移植到了⼏乎所有知名的 CPU 上。

UCOSII体系结构图:UCOSII 的移植,我们只需要修改: os_cpu.h、 os_cpu_a.asm 和 os_cpu.c等三个⽂件即可: ① os_cpu.h,进⾏数据类型的定义,以及处理器相关代码和⼏个函数原型; ② os_cpu_a.asm,是移植过程中需要汇编完成的⼀些函数,主要就是任务切换函数; ③ os_cpu.c,定义⼀些⽤户 HOOK 函数。

图中定时器的作⽤是为 UCOSII 提供系统时钟节拍,实现任务切换和任务延时等功能。

这个时钟节拍由 OS_TICKS_PER_SEC(在os_cfg.h 中定义)设置,⼀般我们设置 UCOSII 的系统时钟节拍为 1ms~100ms,具体根据你所⽤处理器和使⽤需要来设置。

对于STM32的单⽚机⼀般⽤其 SYSTICK 定时器来为 UCOSII 提供时钟节拍。

UCOSII的任务优先级 · UCOSII 保留了最⾼ 4 个优先级和最低 4 个优先级的总共 8 个任务,⽤于拓展使⽤; · UCOSII ⼀般只占⽤了最低 2 个优先级,分别⽤于空闲任务(倒数第⼀)和统计任务(倒数第⼆),所以剩下给我们使⽤的任务最多可达 255-2=253 个(V2.91)。

任务 · 所谓的任务,其实就是⼀个死循环函数,该函数实现⼀定的功能,⼀个⼯程可以有很多这样的任务(最多 255 个), UCOSII 对这些任务进⾏调度管理,让这些任务可以并发⼯作(注意不是同时⼯作!!,并发只是各任务轮流占⽤ CPU,⽽不是同时占⽤,任何时候还是只有 1 个任务能够占⽤ CPU),这就是 UCOSII 最基本的功能。

ARM实验报告综合实验

ARM实验报告综合实验

ARM实验报告综合实验摘要:ARM微处理器已经在各种电子产品中得到广泛应用。

本实验旨在通过对ARM实验板的详细学习,深入理解和掌握ARM微处理器的工作原理及应用。

通过搭建实验平台,完成基本的指令执行、数据传输和I/O操作等功能。

通过实验,掌握ARM汇编语言的基本语法和实现方法,同时提升对嵌入式系统的理解和应用能力。

关键词:ARM微处理器、实验平台、指令执行、数据传输、I/O操作、汇编语言1.引言ARM(Advanced RISC Machines)微处理器是一种精简指令集(RISC)的微处理器架构,以其高性能、低功耗和广泛应用等特点受到了广泛的关注和应用。

本实验旨在通过对ARM实验板的学习和研究,深入理解ARM微处理器的工作原理和应用。

2.实验目的2.1理解ARM微处理器的工作原理;2.2掌握ARM汇编语言的基本语法和实现方法;2.3学习搭建实验平台,完成指令执行、数据传输和I/O操作等功能;2.4提升对嵌入式系统的理解和应用能力。

3.实验内容3.1搭建实验平台3.2学习ARM汇编语言通过阅读相关资料,了解ARM汇编语言的基本语法和寄存器等特点,了解ARM微处理器的指令集和指令执行方式。

3.3编写实验程序根据实验指导书中的要求,编写实验程序,包括基本的指令执行、数据传输和I/O操作等功能实现。

3.4调试和测试经过编写程序后,需要进行调试和测试,确保程序能够正确执行,并达到预期的功能。

4.实验结果通过实验,成功搭建了ARM实验平台,并且实现了基本的指令执行、数据传输和I/O操作等功能。

通过对ARM汇编语言的学习和实践,掌握了其基本语法和实现方法。

5.结论本实验通过对ARM实验板的学习和研究,深入理解了ARM微处理器的工作原理和应用。

通过搭建实验平台和编写实验程序,进一步掌握了ARM 汇编语言的基本语法和实现方法。

通过调试和测试,验证了程序的正确性和功能实现。

通过本实验,提升了对嵌入式系统的理解和应用能力。

微处理器与应用实验报告

微处理器与应用实验报告
MOV 40H,#90H
MOV 41H,#78H
MOV 42H,#56H
MOV R0,30H
MOV R1,40H
MOV A,R0
ADD A,R1
DA A
MOV 50H,A
MOV R0,31H
MOV R1,41H
MOV A,R0
ADDC A,R1
DA A
MOV 51H,A
MOV R0,32H
MOV R1,42H
14、根据已给程序分别编辑汇编程序和C51程序;
15、编辑完成以后对程序进行编译,生成目标代码;
16、运行、调试目标代码和进行结果检查;
17、根据要求分别编写汇编程序和C51程序实现两个16位无符号数的比较;
18、编译,生成目标代码,分别采用单步和宏单步运行程序,观察有关单元中的内容的变化;
19、修改内存单元中的内容在观察存储单元内容的变化;
微处理器原理与应用实验日志四
实验题目:
分支和循环程序设计
实验目的:
1、掌握分支程序编写方法
2、掌握循环程序设计的方法和技巧
3、学习程序调试的基本过程和方法
实验要求:
5、阅读、运行并调试已给的分支和循环程序;
6、模仿已给程序分别汇编程序和C51程序实现两个16位无符号数的比较的程序;
实验主要步骤:
13、启动计算机,进入Keil C51的集成开发环境;
3、根据要求编辑程序;
4、编辑完成以后对程序进行编译,生成目标代码;
5、编译,生成目标代码,分别采用单步和宏单步运行程序,观察有关单元中的内容的变化;
实验结果:
汇编程序:
ORG 0000H
AJMP START
ORG 0100H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的:
1熟悉Keil C51集成开发环境的使用方法。
2熟悉Keil C51集成开发环境仿真条件下调试功能的使用;
3学会程序存储器、寄存器、片上存储器、片外存储器内容的查看和修改。
2、实验仪器
PC机一台
三、实验内容与分析
1、编写程序,完成内存中两个字节内容的交换。
ORG0000H
LJMPMAIN
ORG0100H
MAIN:MOVSP,#60H
MOVR0,#30H
MOVR1,#40H
MOV@R0,#55H
MOV@R1,#0AAH
MOVA,@R1
XCHA,@R0
XCHA,@R1
END
//程序通过设置两个字节内容的初始值,并将R1地址对应的内容送入累加器A中,利用累加器A作为中间变量,实现内存中两个字节内容的交换
将16个字节内容送到以0100H的首地址的外部存储器中
3、编写一个多字节的算术运算程序。仿照实验内容和步骤1的过程,建立、编辑、汇编、连接和动态调试程序,将运行结果写到程序的注释部分。
ORG0000H
LJMPMAIN
ORG0100H
MAIN:MOVSP,#60H
MOVR1,#12H
MOVR0,#34H
电子科技大学中山学院学生实验报告
院别:电子信息学院课程名称:微处理器实验
班级:姓名:学号:
实验名称:集成开发环境的熟悉与指令练习实验时间:
成绩:教师签名:批改时间:
1、实验原理与目的:
实验原理:
利用Keil C51这套工具在计算机上直接进行汇编语言的编辑、连接和调试。在程序调试时,可以通过查看相关寄存器和存储器内容来判断程序的执行是否正确,通过修改相关寄存器和存储器的内容来改变程序,再执行,来修改和验证程序。
ORG0000H
LJMPMAIN
ORG0100H
MAIN: MOV@R0,#33H
MOV@R1,#44H
MOVA,@R0
PUSHACC
MOVA,@R1
PUSHACC
NOP
POPACC
MOV@R0,A
POPACC
MOV@R1,A
NOP
SJMP$
END
//该程序为实现字节交换的另一种方法,通过设置两个字节变量的初始内容,将R0的内容存放在累加器A中,最后通过出栈使两字节的内容释放,从而实现内存中两字节内容的交换
2、编写一个数据填充和数据块搬移程序。
ORG0000H
LJMPMAIN
ORG0100H
MAIN: MOVR0,#30H; R0指向30H单元
MOVR2,#16; R2作循环计数器
NEXT1:MOV@R0,#'*';填充当前单元
INCR0;指针下移一个单元
DJNZR2,NEXT1;未填完16个单元,继续
MOVA,R1
MOVB,R2
MULAB
ADDA,R5
MOVR5,A
MOVA,B
ADDCA,#00H
MOVR6,A
NOP
MOVA,R0
MOVB,R3
MULAB
ADDA,R5
MOVR5,A
MOVA,B
ADDCA,R6
MOVR6,A
MOVA,R1
MOVB,R3
MULAB
ADDA,R6
MOVR6,A
MOVA,B
;以下程序将30H开始的16个字节内容送到100H开始的外部存储器中
MOVR1,#30H
MOVDPTR,#0100H
MOVR3,#10H
NEXT2:MOVA,@R1
MOVX@DPTR,A
INCR1
INCDPTR
DJNZR3,NEXT2
SJMP$
END
//程序中利用R2作为循环计数器,并通过指针指向下一个单元,实现数据的填充;在数据搬移中,先设置字节内容和外部存储器的首地址,R3作为循环计数器器,利用DJNZ指令循环,从而实现
MOVR2,#21H
MOVR3,#0EFH
;下面是加法运算
MOVA,R0
ADDA,R2;低8位相加
MOVR4,A;
MOVA,R1
ADDCA,R3;高8位相加
MOVR5,A
MOVA,#0
ADDCA,#0
MOVR6,A
NOP
;以下是乘法运算
NOP
Байду номын сангаасMOVA,R0
MOVB,R2
MULAB
MOVR4,A
MOVR5,B
相关文档
最新文档