【小学数学】小学五年级下册数学必背内容
小学人教版五年级数学下册必背内容
五年级下册数学必背内容姓名【因数倍数单元】【熟背】100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、971、一个数的最小因数是1,最大的因数是它本身。
一个数的因数的个数是有限的。
比如:一个数的最大因数是18,这个数是(18)2、一个数的最小倍数是它本身,没有最大的倍数。
一个数的倍数的个数是无限的。
比如:一个数的最小倍数是18,这个数是(18)3、个位上是0,2,4,6,8的数是2的倍数。
4、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫奇数。
最小的偶数是0,最小的奇数是15、个位上是0或5的数,是5的倍数。
同时是2和5的倍数的最小3位数是100,最小两位数是106、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
既是2又是3的倍数的最小3位数是102,既是2和3的倍数,还是5的倍数的最小3位数是1207、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)1不是质数,也不是合数。
8、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
最小的质数是2,最小的合数是4,最小的偶数是0,最小的奇数是1【长方体正方体单元】9、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
10、在一个长方体中,相对的面完全相同,相对的棱长度相等。
共有6个面、12条棱、8个顶点。
11、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
一个长方体有4条长、4条宽、4条高长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12高=(棱长总和-长×4-宽×4)÷4或=棱长总和+4-长-宽【同理:想想长=?宽=?】12、正方体是由6个完全相同的正方形围成的立体图形。
正方体可以看成是长、宽、高都相等的长方体。
新部编人教版小学五年级数学下册必背课文梳理(古诗文附译文)
新部编人教版小学五年级数学下册必背课
文梳理(古诗文附译文)
新部编人教版小学五年级数学下册必背课文梳理(古诗文附译文)
这份文档旨在梳理新部编人教版小学五年级数学下册的必背课文,其中包括了一些古诗文并附有翻译文本。
以下是这些课文的简要梳理:
课文一:《三角如意算》
重点:了解三角形的性质,研究计算三角形的面积和周长。
课文二:《等分的花园》
重点:了解等分的意义,研究如何计算花园的面积。
课文三:《宽度的比较》
重点:研究比较不同物体的宽度,思考物体之间的大小关系。
课文四:《比大数》
重点:研究比较大小数,了解加法和减法的运算。
课文五:《十字交错》
重点:研究计算矩形的面积和周长,了解周长和面积的关系。
课文六:《从一到九》
重点:练正数和负数的加减法,培养数学思维能力。
附录一:《登鹳雀楼》(杜甫)
这是一篇著名的古诗,描述了杜甫登上鹳雀楼的情景。
附录二:《静夜思》(李白)
这是一首著名的古诗,描绘了李白在宿舍中夜观天象的情景。
以上是新部编人教版小学五年级数学下册必背课文的梳理,附有两篇古诗文。
希望这份文档对您有所帮助!。
小学五年级下册数学公式必背
小学五年级下册数学公式必背1、分数与整数相乘:分子和整数相乘,分母不变。
(能约分的要约分)2、分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的可以先约分。
3、长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
4、长方体的棱长总和=(长+宽+高)×45、长方体6个面的总面积叫作它的表面积。
长方体相对的面的面积相等。
前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽6、长方体的表面积=(长×宽+长×高+宽×高)×2S=(a×b+a×h+b×h)×27、正方体是特殊的长方体。
(长宽高都相等)8、正方体有6个面,都是面积相等的正方形;8个顶点,12条棱都相等。
9、正方体的棱长总和=棱长×1210、正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
11、正方体的表面积=棱长×棱长×6S=6a²12、长方体的体积=长×宽×高V=abh13、正方体的体积=棱长×棱长×棱长V=a×a×a或V=a³14、长方体和正方体体积的统一公式:长方体(正方体)体积=底面积×高V=Sh15、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。
1的倒数是它本身,0没有倒数。
16、一个数除以一个整数(零除外)等于这个数乘以这个整数的倒数。
17、一个数除以一个分数等于这个数乘以这个分数的倒数。
18、除以一个数(零除外)等于乘这个数的倒数。
19、物体所占空间的大小叫作物体的体积。
常用的体积单位有:方厘米,立方分米,立方米。
小学五年级下册数学讲义第七章 折线统计图 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第七章折线统计图【知识点归纳总结】1. 单式折线统计图1.折线统计图:用一个单位长度表示一定数量,用折线的上升或下降表示数量的多少和增减变化.容易看出数量的增减变化情况.2.折现统计图制作步骤:(1)标题:根据统计表所反映的内容,在正上方写上统计图的名称;(2)画出横、纵轴:先画纵轴,后画横轴,横、纵轴都要有单位,按纸面的大小来确定用一定单位表示一定的数量;(3)描点、连线:根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.【经典例题】例1:如图,电车从A站经过B站到达C站,然后返回.去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时72千米.分析:从统计图中可知电车从A站到达B站用了4分钟,并在B站休息了1分钟,从B站到达C站用了5分钟,所以电车从A站到达C站共行驶了4+5=9(分钟),根据“速度×时间=路程”求出从A站到C站的距离;电车在C站休息了3分钟,从第13分钟开始行驶到第19分钟返回A站,根据“速度=路程÷时间”即可得出答案.解:48×(4+5)÷(19-13),=48×9÷6,=72(千米);答:汽车从C站返回A站的速度是每小时行72千米.故答案为:72.点评:此题首先根据问题从图中找出所需要的信息,然后根据数量关系式:“速度×时间=路程”和“速度=路程÷时间”即可作出解答.2. 复式折线统计图1.定义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来.折线统计图不但可以表示项目的具体数量,又能清楚地反映事物变化的情况.2.折线图特点:易于显示数据的变化的规律和趋势.可以用来作股市的跌涨和统计气温.3.作用:复式折线统计图一般用于两者之间比较,主要作用还是看两者之间的工作进度和增长.折线统计图分单式或复式.复式的折线统计图有图例,用不同颜色或形状的线条区别开来.4.区别:与单式折线统计图相差最大的是多了一条线,和第二个单位,但仍然能看出他的上升趋势.【经典例题】例1:哥哥和弟弟周末分别骑车去森林动物园游玩,下面的图象表示他们骑车的路程和时间的关系,请根据哥哥、弟弟行程图填空.①哥哥骑车行驶的路程和时间成正比例.②弟弟骑车每分钟行0.3千米.分析:此题是行程问题中的数量关系,根据成正比例的意义可知,行驶的路程与时间成正比例关系;通过观察统计图可得出弟弟行驶的路程为30千米,时间为3:40-2:00=100分钟,根据速度=路程÷时间即可解决问题.解:因为路程=速度×时间,所以哥哥骑车行驶的路程与时间成正比例,3:40-2:00=100(分钟),30÷100=0.3(千米);答:哥哥骑车行驶的路程与时间成正比例,弟弟骑车每分钟行0.3千米.故答案为:正;0.3.点评:此题考查了行程问题中的数量关系和成正比例的意义.【同步测试】单元同步测试题一.选择题(共8小题)1.如图是张璐某一周内每天30秒跳绳成绩.如图中能表示张璐这一周内每天30秒跳绳平均成绩的虚线是()A.①B.②C.③D.④2.如图是小明每天上学走的路程统计图,那么他从家到学校需要走()千米.A.5B.2.5C.103.甲和乙在一次赛跑中,路程与时间的关系如图所示,那么下列结论正确的个数为()①甲比乙先出发②甲比乙先到终点③甲速是乙速的2倍④甲、乙所行路程一样多A.1B.2C.3D.44.小明和小英一起上学.小明觉得要迟到了,就跑步上学,跑累了,便走着到学校;小英开始走着,后来也跑了起来,直到校门口赶上了小明.下列4幅图象,()幅描述了小英的行为.A.B.C.D.5.某日,淘气家的室内气温如图所示,以下说法错误的是()A.14时起,室温开始逐渐走低B.相邻的两个室温数据的取得间隔5小时C.当天室内平均气温在7℃与21℃之间6.如图所示的图象表示斑马和长颈鹿的奔跑情况,下面的说法不符合这个图象的是()A.斑马奔跑的路程与奔跑的时间成比例B.长颈鹿25分钟跑了20千米C.长颈鹿比斑马跑得快D.斑马跑12千米用了10分钟7.如图是吴先生国庆节开车从深圳回老家F市的过程.下面说法,错误的是()A.F市距离深圳640kmB.9:00﹣10:00车速最快C.14:00﹣15:00行驶了60kmD.开车4小时后体息了20分钟8.“龟兔赛跑”中,骄傲的兔子自认为遥遥领先就在途中睡了一觉,醒来时才发现乌龟快到终点了,于是急忙追赶,但为时已晚,最终乌龟先到了终点…下列各图与故事情节相符的是()A.B.C.二.填空题(共6小题)9.如图是一辆汽车与一列火车的行程图表,根据图示回答问题.(1)汽车的速度是每分钟千米;(2)火车停站时间是分钟;(3)火车停站后的速度比汽车每分钟快千米;(4)汽车比火车早到分钟.10.如图是航模小组制作的甲、乙两架飞机在一次飞行中时间和高度的记录.(1)乙飞机飞行了s,比甲飞机少飞行了s.(2)从图上看,起飞后第s两架飞机的高度相差2m,起飞后第s两架飞机的高度相差最大.(3)从起飞后第15s至第20s,甲飞机的飞行状态是,乙飞机的飞行状态是.11.观察如图回答问题:(1)这是一幅统计图.(2)2月份甲站比乙站多供立方米的水.(3)月份两站的供水量是一样的;月份两站供水量相差最多.(4)乙站1~5月份平均每月供水立方米.12.菊花牌感冒冲剂零售价为20元,两次降价后分别为18元和15元.用下面两幅图来表示药价的变动情况.(1)你觉得哪一幅统计图更能突出价格下降的幅度?.A.A B.B(2)如果在两次降价中,感冒冲剂类药品的平均下降幅度为30%,菊花牌感冒冲剂的降幅相对来说是不是很大?.A.是B.不是13.根据统计图回答下列问题.(百分号前保留一位小数)小明家4个月水费统计图(1)小明家这4个月平均水费是元.(2)A月的水费比C月少%.(3)如果把平均水费记作0元,那么高出平均水费15元记作元,低于平均水费5元记作元.14.看图并解答问题.如图是小强和小刚两位同学参加800米赛跑的折线统计图.(1)前400米,跑得快一些的是,比赛途中在米处两人并列.(2)跑完800米,先到达终点的是,比另一位同学少用了秒.(3)小刚前2分钟平均每分钟跑米.三.判断题(共5小题)15.如图图是小林同学放学骑车回家的速度与时间关系图,从图中可以看出小林前3分钟与后3分钟骑车的平均速度和所走的距离相同..(判断对错)16.任意两个单式折线统计图都可以合成一个复式折线统计图.(判断对错)17.复式条形统计图不仅反映数量的变化趋势,而且便于对两组数据的变化趋势进行比较.(判断对错)18.折线统计图便于直观了解数据的大小及不同数据的差异.(判断对错)19.折线统计图既可以表示数量的多少,也可以表示数量的增减情况..(判断对错)四.操作题(共1小题)20.如图是某便利店两种品牌的纯牛奶1﹣6月销售情况统计表.月份123456销量甲202535405055乙151820161210请制成复式折线统计图,并回答问题:(1)你了解到哪些信息?(2)如果你是便利店经理,下月你准备怎样进货?为什么?五.应用题(共4小题)21.小华骑自行车到6千米远的森林公园去游玩,请根据下面的统计图回答问题.(1)小华几时到达森林公园,途中休息了几分.(2)小华在森林公园玩了几分.(3)返回时用了几分.22.下面是莱商场去年上半年服装和鞋帽销售额统计表.(单位:万元)一月二月三月四月五月六月服装171012141816鞋帽131214111214(1)根据统计表完成下面的统计图.(2)比较服装和鞋帽销售情况,用一句话加以总结.23.下面是某市一中和二中篮球队的五场比赛得分情况统计图.(1)两个学校的篮球队第二场比赛时成绩相差多少分?(2)哪场比赛两个学校的篮球队成绩相差最大?24.某商场2018年凉鞋的销售情况如图所示.(1)第一季度共销售双.(2)7月份的销售量是5月份的倍.(3)图中月份凉鞋的销售量最高,原因是什么?(4)这是一幅不完整的折线统计图.请你根据生活实际,完成这幅折线统计图.参考答案与试题解析一.选择题(共8小题)1.【分析】根据平均数的意义可知:一组数的平均数应该比这组数中最大的数小,比最小的数大.所以①和④不对.张璐跳绳的个数大部分在②的上面,所以②的值应该偏低.由此解答即可.【解答】解:由图可知,④比张璐所跳个数都多,所以不对;①比张璐所跳个数都少,所以也不对;张璐所跳个数大部分在②的上方,所以②的值偏小一下,②错.所以应该选C.答:图中能表示张璐这一周内每天30秒跳绳平均成绩的虚线是③.故选:C.【点评】本题主要考查单式折线统计图的应用,关键运用平均数的意义做题.2.【分析】观察图可知,小明离的路程越来越多,走到5千米的地方路程不再增加,也就是到了学校,然后在学校里面待了一段时间,然后回家,离家的距离越来越少,由此求解.【解答】解:观察图可知,小明离的路程越来越多,走到5千米的地方路程不再增加,也就是到了学校所以他从家到学校需要走5千米.故选:A.【点评】解决本题关键是理解图中折线表示的含义,得出结论.3.【分析】根据图示可知,甲乙是同时出发的,所以①错;因为甲到达终点用时t1,乙到达终点用时2t1,(由题意知t1≠0),所以甲比乙先到终点,乙用时是甲的2倍,所以甲的速度是乙的2倍,所以②、③对;有图示可知,甲乙所行路程一样多,所以④对.由此判断.【解答】解:根据图示可知,甲乙是同时出发的,所以①错;因为甲到达终点用时t1,乙到达终点用时2t1,(由题意知t1≠0),所以甲比乙先到终点,乙用时是甲的2倍,所以甲的速度是乙的2倍,所以②、③对;有图示可知,甲乙所行路程一样多,所以④对.答:正确的结论有3个.故选:C.【点评】本题主要考查复式折线统计图,关键根据统计图找对解决问题的条件,解决问题.4.【分析】小英先走后跑,也就是速度由慢到快,因此,选项D描述了小英的行为.【解答】解:小英先走后跑,也就是速度由慢到快,选项D描述了小英的行为.故选:D.【点评】此题考查了学生根据提供的信息,分析折线统计图的能力.5.【分析】A.通过观察折线统计图可知:7时到14时室温逐渐升高,14时起室温逐渐降低.B.通过观察折线统计图可知:相邻两个室温数据的取得时间是4小时.C.当天室内最低气温是7°C,最高气温是21°C.据此解答即可.【解答】解:A.7时到14时室温逐渐升高,14时起室温逐渐降低.因此,14时起,室温开始逐渐走低.说法正确.B.相邻两个室温数据的取得时间是4小时.因此,相邻的两个室温数据的取得间隔5小时.说法错误.C.当天室内最低气温是7°C,最高气温是21°C.因此,当天室内平均气温在7℃与21℃之间,说法正确.故选:B.【点评】此题考查的目的是理解掌握折线统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.6.【分析】根据图象对各选项进行依次分析、进而得出结论.【解答】解:A、因为12÷10=1.2千米,24÷20=1.2千米,…,即斑马奔跑的路程÷奔跑的时间=斑马速度(一定),所以奔跑的路程与奔跑的时间成正比例;B、由图象可知:长颈鹿25分钟跑了20千米;C、由图象可知:斑马比长颈鹿跑的快,所以C选项长颈鹿比斑马跑得快,说法错误;D、由图象可知:斑马跑12千米用了10分钟;故选:C.【点评】此题考查了学生根据统计图获取信息的能力,能够根据图象提出问题并能解决问题的能力.7.【分析】由图可以看出:F市离深圳是640千米.7:00~8:00行驶了75千米,时速75÷1=75千米/时;8:00~9:00行驶了180﹣75=105千米,时速105÷1=105千米/时;9:00~10:00行驶了300﹣180=120千米,时速为120÷1=120千米/时;10:00~11:00行驶了410﹣300=110千米,时速为110÷1=110千米/时;11:00~12:00路程没有变化,时速为0,即休息了1个小时;12:00~13:00行驶了500﹣410=90千米,时速为90÷1=90千米/时;13:00~14:00行驶了580﹣500=80千米,时速为80÷1=80千米/时;14:00~15:00行驶了640﹣580=60千米,时速为60÷1=60千米/时.再通过比较即可确定哪个时段速度最快;开车4小时后休息的时间.【解答】解:如图各时间段行驶的路程、速度计算如下:7:00~8:00行驶了75千米,时速75÷1=75千米/时;8:00~9:00行驶了180﹣75=105千米,时速105÷1=105千米/时;9:00~10:00行驶了300﹣180=120千米,时速为120÷1=120千米/时;10:00~11:00行驶了410﹣300=110千米,时速为110÷1=110千米/时;11:00~12:00路程没有变化,时速为0,即休息了1个小时;12:00~13:00行驶了500﹣410=90千米,时速为90÷1=90千米/时;13:00~14:00行驶了580﹣500=80千米,时速为80÷1=80千米/时;14:00~15:00行驶了640﹣580=60千米,时速为60÷1=60千米/时.F市距离深圳640km,先项A正确9:00﹣10:00车速最快,选项B正确14:00﹣15:00行驶了60km,选项C正确开车4小时后体息了1小时,选项D不正确故选:D.【点评】此题是考查如何从拆线统计图中获取信息,并根据所获取的信息解决实际问题.8.【分析】乌龟是匀速行走的,图象为线段.兔子是:跑﹣停﹣急跑,图象由三条折线组成;最后比乌龟晚到,即到终点花的时间多.【解答】C解:匀速行走的是乌龟,兔子在比赛中间睡觉;后来兔子急追,路程又开始变化,排除A;兔子输了,兔子用的时间应多于乌龟所用的时间,排除B.故选:C.【点评】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二.填空题(共6小题)9.【分析】(1)根据统计图可知:汽车出发时的时间是7:55,行驶到15千米时的时间是8:20,用路程除以时间等于速度解答即可;(2)用火车开出的时刻减去到站的时刻就是火车停站的时间;(3)先求出火车停站后的时速,再减去汽车的时速即可;(4)用火车到站的时刻减去汽车到站的时刻就是汽车比火车早到的时间.【解答】解:(1)8:20﹣7:55=25分钟15÷25=0.6(千米)答:汽车的速度是每分钟0.6千米.(2)8时10分﹣8时=10分钟答:火车停站时间是10分钟.(3)8时25分﹣8时10分=15(分钟)(15﹣5)÷15=(千米)﹣0.6=(千米)答:火车停站后的速度比汽车每分钟快千米.(4)8时25分﹣8时20分=5分钟答:汽车比火车早到5分钟故答案为:0.6,10,,5.【点评】本题主要考查了学生根据统计图,分析数量关系解答问题的能力.10.【分析】(1)首先要明确,虚线表示甲飞机的飞行,实线表示乙飞机的飞行.由折线统计图可知,甲飞机飞行了40秒,乙飞机飞行了35秒,乙飞机比甲飞机少飞行:40﹣35=5(s).(2)由统计图可知,横轴表示飞行时间,纵轴表示飞行高度.观察可知起飞后第55秒,两折线相差2格,说明此时两架飞机的高度相差2米,起飞后大约30秒两折线离的最远,说明此时两架飞机的高度相差最大.(3)从起飞后第15s至第20s,虚线呈上升趋势,所以甲飞机的飞行状态是上升;实线呈平衡趋势,所以乙飞机的飞行状态是平衡.【解答】解:(1)乙飞机飞行了40秒,比飞机少飞行了5秒.(2)从图上看,起飞后第5秒两架飞机高度相差2米,起飞后大约30秒两架飞机的高度相差最大.(3)从起飞后第15s至第20s,甲飞机的飞行状态是上升,乙飞机的飞行状态是平衡.故答案为:(1)40,35;(2)15,30;(3)上升,平衡.【点评】本题考查了学生观察分析统计图,并能依据统计图中的信息解决问题的能力.11.【分析】(1)由图可知这是一幅复式折线统计图.(2)由图知,2月份甲站供水40立方米,乙站供应20立方米,则甲站比乙站多:40﹣20=20(立方米).(3)两条折线在3月份重合,所以,3月份两站的供水量一样多;1月份两条折线距离最远,所以,1月份两站供水量相差最多.(4)求乙站这5个月的平均供水量为:(10+20+50+70+80)÷5=46(立方米).【解答】解:(1)这是一幅复式折线统计图.(2)40﹣20=20(立方米)答:2月份甲站比乙站多供20立方米的水.(3)3月份两站的供水量是一样的;1月份两站供水量相差最多.(4)(10+20+50+70+80)÷5=230÷5=46(立方米)答:乙站1~5月份平均每月供水46立方米.故答案为:复式折线;20;3;1;46.【点评】本题主要考查复式折线统计图的应用,关键根据统计图找出解决问题的条件.12.【分析】(1)根据折线统计图的特点,图B的折线下降幅度更明显,所以选B.(2)根据平均降价幅度进行计算:20×(1﹣30%)=14(元),15>14,所以降价幅度很大.所以选A.【解答】解:(1)答:我觉得图B统计图更能突出价格下降的幅度.(2)20×(1﹣30%)=14(元)15>14答:菊花牌感冒冲剂的降幅相对来说是很大.故答案为:B;A.【点评】本题主要考查单式折线统计图,关键根据折线统计图的特点做题.13.【分析】(1)根据平均数的求法,用4个月的总水费除以4即得四个月的平均水费.(2)把C月的水费看作单位“1”,求A月的水费比C月少百分之几,就是求A月比C月少的占C月的百分之几,列式计算得:(94﹣27)÷94≈71.3%.(3)根据题意,结合正负数的意义,表示水费即可.【解答】解:(1)(27+62+94+85)÷4=268÷4=67(元)答:小明家这4个月平均水费是67元.(2)(94﹣27)÷94=67÷94≈71.3%答:A月的水费比C月少71.3%.(3)如果把平均水费记作0元,那么高出平均水费15元记作+15元,低于平均水费5元记作﹣5元.故答案为:67;71.3;+15;﹣5.【点评】本题主要考查单式折线统计图,关键从统计图中获取信息,解决问题.14.【分析】(1)由表示小强、小刚跑的路程与时间的拆线可以看出,前400米小刚的比小强跑得快一些;到500米时小强追上了小刚,二人并列.(2)跑完800米,小强先到达终点,用时4.5分钟,小刚后到达终点,用时6分钟.小强比小刚少用6﹣4.5=1.5分钟,再乘进率60化秒.(3)小刚前2分钟跑了400米,根据“速度=路程÷时间”即可求出小刚前2分钟平均每分钟跑的米数.【解答】解:(1)答:前400米,跑得快一些的是小刚,比赛途中在500米处两人并列.(2)6﹣4.5=1.5(分)1.5分=90秒答:跑完800米,先到达终点的是小强,比另一位同学少用了90秒.(3)400÷2=200(米)答:小刚前2分钟平均每分钟跑200米.故答案为:小刚,500,小强,90,200.【点评】此题是考查如何从复式折线统计图中获取信息,并根据所获取的信息解决实际问题.三.判断题(共5小题)15.【分析】由图意可知,小林放学时后3分钟走的路程大于前3分钟走的路程,据此解答即可.【解答】解:小林放学时后3分钟走的路程大于前3分钟走的路程,所以本题错误.故答案为:×.【点评】解答本题的关键是能够看懂函数图象,根据图意进行分析.16.【分析】折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来;折线统计图不但可以表示项目的具体数量,又能清楚地反映事物变化的情况;易于显示数据的变化的规律和趋势;由此依次进行分析、即可得出结论.【解答】解:任何一幅复式折线统计图都能分成多幅单式折线统计图,但是任意两个单式折线统计图不一定合成一个复式折线统计图,所以本题说法错误;故答案为:×.【点评】明确单式折线统计图和复式折线统计图的特点及两者之间的关系,是解答此题的关键.17.【分析】根据折线统计图的特点可知:折线统计图易于显示数据的变化的规律和趋势,所以复式折线统计图既可以反映数量的变化趋势,又可以比较两组数据的变化趋势.【解答】解:根据折线统计图的特点可知:折线统计图易于显示数据的变化的规律和趋势.所以复式折线统计图既可以反映数量的变化趋势,又可以比较两组数据的变化趋势.所以原题说法是正确的.故答案为:√.【点评】本题主要考查复式折线统计图的特点.18.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:根据统计图的特点可知:折线统计图便于直观了解数据的大小及不同数据的差异,所以本题说法正确;故答案为:√.【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.19.【分析】根据折线统计图的特点和作用,进行解答即可.【解答】解:根据折线统计图的特点和作用,可知折线统计图的特点是既可以表示数量的多少,也可以表示数量的增减变化趋势.因此,折线统计图既可以表示数量的多少,也可以表示数量的增减情况.这种说法是正确的.故答案为:√.【点评】此题考查的目的是:理解和掌握折线统计图的特点和作用,并且能够根据它的特点和作用,解决有关的实际问题.四.操作题(共1小题)20.【分析】首先根据数据描出各点,再顺次连接即可.(1)了解到甲品牌的销售量越来越多,乙品牌的销售量越来越少.(2)如果是便利店经理,下月准备多进一些甲品牌的纯牛奶,因为甲品牌的销售量越来越多.【解答】解:画图如下,(1)了解到甲品牌的销售量越来越多,乙品牌的销售量越来越少.(2)如果是便利店经理,下月准备多进一些甲品牌的纯牛奶,因为甲品牌的销售量越来越多.【点评】此题主要考查了统计图表的填补,以及从统计图表中获取信息的能力,要熟练掌握.五.应用题(共4小题)21.【分析】观察折线统计图,可知:(1)小华2时到达森林公园,途中休息了1﹣1=小时=20分;(2)小华在森林公园玩了2﹣2=小时=30分;(2)返回时用了3﹣2=小时=30分,据此解答.【解答】解:(1)1﹣1=(小时)小时=20分答:小华2时到达森林公园,途中休息了20分.(2)2﹣2=(小时)小时=30分答:小华在森林公园玩了30分.(3)3﹣2=(小时)小时=30分答:返回时用了30分.【点评】解答本题的关键是能从统计图中获取与问题有关的信息,再根据结束时刻﹣开始时刻=经过时间进行解答.22.【分析】(1)根据统计表中的数据完成统计表即可.(2)根据折线统计图的特点,分析服装和鞋帽的销售情况即可.【解答】解:(1)统计图如下:(2)根据折线统计图可知:服装的销售量变化幅度较大;鞋帽的变化较小.【点评】本题主要考查复式折线统计图,关键根据统计表中的数据完成统计图.23.【分析】(1)由复式折线统计图可以看出:第二场比赛中,一中得48份,二中得53分,用二中所得的分数减一中所得的分数.(2)第一由复式折线统计图即可看出,第四场表示一中、二中分数的占之间的距离最大,说明此场比赛两个学校的篮球队成绩相差最大.【解答】解:(1)53﹣48=5(分)答:两个学校的篮球队第二场比赛时成绩相差5分.(2)第四场比赛两个学校的篮球队成绩相差最大.【点评】此题是考查如何从复式折线统计图中获取信息,并根据所获取的信息解决实际问题.24.【分析】(1)1、2、3月份各月凉鞋的销售双数已知,三者相加就是第一季度共销售凉鞋的双数.(2)用7月份销售凉鞋的双数除以5月份销售凉鞋的双数.(3)由统计图即可看出,7月份凉鞋的销售量最高.原因:我国处于北半球北温带,7月份气温最高.(4)8月份开始气温开始下降,凉鞋的销售量也会明显减少,要少于6月份的销售量,9、10月份更低,111月份开始估计停止销售.据此即可完成这幅统计图(答案不唯一).【解答】解:(1)20+30+50=100(双)答:第一季度共销售100双.(2)500÷200=5答:7月份的销售量是5月份的5倍.(3)图中7月份凉鞋的销售量最高.原因:7月份气温最高.(4)完成这幅折线统计图:故答案为:100,5,7.【点评】此题是考查如何从单式折线统计图中获取信息,并根据所获取的信息解决实际问题.。
【免费】小学五年级数学必背公式汇编
小学五年级数学必背公式汇编一、多边形计算公式长方体总棱长=长×4+宽×4+高×4【4a+4b+4c】=(长+宽+高)×4【4(a+b+c)】正方体总棱长=棱长×12【12a】长方体表面积=长×宽×2+长×高×2+宽×高×2【S=2ab+2ac+2bc】=(长×宽+长×高+宽×高)×2【S=2(ab+ac+bc)】正方体表面积=棱长×棱长×6【6a²】长方体体积(容积)=长×宽×高【V=abh】=底面积×高【V=Sh】=横截面积×长【V=Sa】正方体体积(容积)=棱长×棱长×棱长【a³】排水法求物体体积:物体体积=总体积-水的体积物体体积=上升部分水的体积二、长度:千米,米,分米,厘米,毫米1米=10分米;1分米=10厘米 ;1厘米=10毫米;1分米=0.1米;1厘米=0.1分米;1毫米=0.1厘米;1米=10分米=100厘米=1000毫米;1分米=10厘米=100毫米;1毫米=0.1厘米=0.01分米=0.0001米;1厘米=0.1分米=0.01米1千米=1000米1米=0.001千米三、面积:平方千米,公顷,平方米,平方分米,平方厘米,平方毫米1平方米=100平方分米;1平方分米=100平方;1平方厘米=100平方毫米;1平方分米=0.01平方米;1平方厘米=0.01平方分米;1平方毫米=0.01平方厘米;1平方米=100平方分米=1000平方厘米;1平方毫米=0.01平方厘米=0.0001平方分米;1平方分米=100平方厘米=1000平方毫米;1平方厘米=0.01平方分米=0.0001平方米;1平方千米=100公顷;1平方米=0.0001公顷;1公顷=0.01平方千米;1吨=1000千克1千克=1000克四、重量:吨,千克,克1千克=0.001吨;1克=0.001千克;1吨=1000千克=1000000克;1克=0.001千克=0.000001吨五、时间:小时,分钟,秒1小时=60分钟;1分钟=60秒1小时=60分钟=3600秒六、金钱元角分1元=10角;1角=10分;1元=10角=100分1角=0.1元;1分=0.1角;1分=0.1角=0.01元七、容积:升,毫升1升=1000毫升;1毫升=0.001升;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升=1000000毫升;1立方分米=1000毫升;1毫升=0.001立方分米=0.000001立方米;1升=0.00立方米。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
2021年小学数学第二单元《长方体》—五年级下册章节复习精编讲义(思维导图+知识讲解+达标训练)北师大版,含解析
期中复习讲义(北师大版)2020-2021学年北师大数学五年级下册期中章节复习精编讲义第二单元《长方体(一)》知识互联网知识导航知识点一:长方体的认识1 长方体和正方体的各部分名称:在长方体或正方体中,围成的长方形或正方形叫作长方体或正方体的面;面和面相交的边叫作棱;棱和棱相交的点叫作顶点。
2 长方体和正方体的特征3 长方体和正方体的异同点4 长方体和正方体的关系:正方体可以看成是长、宽、高都相等的特殊的长方体5 长方体和正方体特征的应用:判断所给图形能否组成长方体,可以根据长方体的特征一组一组地进行寻找,看看能否找到3组相对应的面。
知识点二:展开与折叠1 正方体展开图的特点(1)沿着正方体的棱剪开,可以把正方体展开成一个平面图形,这个平面图形就是正方体的展开图。
在展开图中,正方体的6个面是相连的,相对的面完全隔开。
(2)将展开图沿虚线(折痕)向内折,能重新折叠成正方体。
(3)正方体的展开图是由6个大小、形状完全相同的正方形组成的组合图形。
(4)正方体的展开图,可分四个类型错误!“一四一”型:中间四个正方形相连,两侧各一个错误!“二三一”型:中间三个正方形相连,两侧分别是两个和一个错误!“二二二”型:中间两个正方形相连,两侧各两个错误!“三三”型:两侧各三个2 长方体展开图的特点:长方体相对的面大小、形状完全相同,并且相对的面完全隔开;长方体上、下两个面的面积相等,长和宽分别是长方体的长和宽;前、后两个面的面积相等,长和宽分别是长方体的长和高;左、右两个面的面积相等,长和宽分别是长方体的宽和高。
3长方体和正方体与展开图之间的对应关系(1)长方体和正方体的每一个面都与其他四个面相邻,但只有一个相对的面,所以只要找到一组相对的面,也就同时确定了它们与其他四个面的相邻关系,从而能够通过想象把展开图还原成立体图形。
(2)判断一个图形折叠后相对应的面,可以根据长方体、正方体展开图的特点,先确定一个面为下面,再想象折叠的过程,从而找出相对的面,也可以用实物折一折,直观地找一找。
小学五年级下册数学全册必背概念公式大全知识点整理
小学五年级下册数学全册必背概念公式大全知识点整理一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。
2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。
3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
1既不是质数也不是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
【人教版】小学数学五年级下册知识点总结
【人教版】小学数学五年级下册知识点总结【编者按】人教版小学数学五年级下册设计到因数与倍数、分数的意义和性质、分数的加法和减法、图形的变换、长方体和正方体以及复式折线统计图等知识点。
同学们通过这些知识的学习能够深刻的体会到解决问题策略的多样性,感受数学的魅力。
一、目标与要求1.理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;2.掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数;3.理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;4.知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;5.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;6.能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;7.通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;8.认识复式折线统计图,能根据需要选择合适的统计图表示数据。
二、重点、难点1.用轴对称的知识画对称图形;2.确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;3.理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;4.长方体表面积的计算方法;长方体、正方体体积计算;5.理解、归纳分数与除法的关系;用除法的意义理解分数的意义;6.理解真分数和假分数的意义及特征;7.理解和掌握分数和小数互化的方法。
三、知识点概括总结1.轴对称:如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
【教培专用】人教版数学小学五年级下册第十三讲期末复习《分数》基础版(学生版)
第13讲期末复习——分数知识点一:分数1.分数的意义:①把单位“1"平均分成若干份,表示这样的一份或者几份的数叫作分数。
②把单位"1"平均分成若干份,表示其中的一份的数,叫作分数单位。
【提示】描述一个分数时,不要忘记“平均分”。
2.分数与除法的关系:①被除数÷除数=被除数除数→分子分母②因为0不能作除数,所以分数的分母不能为0,③被除数相当于分子,除数相当于分母【提示】注意数量与分率的区别3.分数的分类:①真分数:分子比分母小的分数叫作真分数,真分数小于1。
②假分数:分子比分母大或者分子和分母相等的分数叫作假分数。
假分数大于或等于1。
③带分数:假分数可以写成整数与真分数合成的数,通常叫作带分数。
【提示】假分数大于1或等于1,它的倒数小于或等于14.分数的基本性质:①意义:分数的分子和分母都乘或者除以相同的数(0除外),分数的大小不变。
②约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫作约分。
(分子、分母是互为质数的分数,叫作最简分数。
)③通分:把异分母分数分别化成和原来分数相等的同分母分数,叫作通分。
【提示】把一个分数改写成指定分母的分数后,只是大小不变,而分数单位却发生了变化。
5.分数的大小比较:①分母相同,分子大的分数大;②分子相同,分母小的分数大③分子分母都不同,先通分,在比较或都化成小数再比较大小6. 倒数:乘积是1的两个数互为倒数;1的倒数是1,0没有倒数。
【提示】①倒数是相对于两个数来说的,它们互相依存,可以说一个数是另一个数的倒数,不能孤立地说某一个数是倒数②求一个数的倒数的方法:分子、分母交换位置。
求整数的倒数,可以先把整数看成分母是1的分数,再交换分子、分母的位置。
求小数的倒数,可以先把小数化成分数,再交换分子、分母的位置。
7.分数和小数的互化1.把分数化成小数的方法:用分数的分子除以分母。
2.把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……综合练习一.选择题(共12小题) 1.(2020秋•民乐县期末)最小的质数与最小合数的和的倒数是( )A .6B .16C .342.(2020秋•德江县期末)一根绳子分为两段,第一段为34,第二段为34米,( )长。
苏教版小学数学五年级(下册)第十册第四五单元知识点(写写帮推荐)
苏教版小学数学五年级(下册)第十册第四五单元知识点(写写帮推荐)第一篇:苏教版小学数学五年级(下册)第十册第四五单元知识点(写写帮推荐)第四单元认识分数1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,叫做分数单位。
一个分数的分母是几,它的分数单位就是几分之一。
12、分母越大,分数单位越小,最大的分数单位是。
2表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成773吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示7这样的1份。
144、4和1同样长。
555、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。
假分数大于或等于1。
真分数总是小于假分数。
347,则女生人数是男生人数的。
438、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数a被除数÷除数=如果用a表示被除数,b表示除数,可以写成a÷b(b≠0)除数b9、带分数都大于真分数,同时也都大于1。
10、把分数化成小数的方法:用分数的分子除以分母。
11、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……351412而小于的分数有无数个;而在这些分数中分数单位是只有一个。
777713、分数大小比较的应用题:工作效率大的快,工作时间小的快。
14、一些特殊分数的值(31个分数转化为小数,默写)。
15、求一个数是(占)另一个数的几分之几,用除法列算式计算。
第五单元找规律1、单向平移求不同的和的个数规律:方格的总个数—每次框出的个数+1=得到不同和的个数2、双向平移如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。
人教版小学数学五年级下册复习教案(全册)
人教版小学数学五年级下册复习教案(全册)最新人教版小学数学五年级下册复教案(全册)第一单元复教案复内容人教版五年级下册第一单元“观察物体(三)”。
知识梳理1.根据一个面的摆放,体会摆法的多样性。
从正面看形状相同的几何体,其摆法不一定相同。
从同一方向看到的平面图形,在拼摆立体图形的过程中有多种拼摆方法,所得到的立体图形的位置关系和形状是不同的。
2.根据三个面的摆放,体会有些摆法的确定性。
还原原来的物体时,我们可以按照一定的顺序进行拼摆,在这个过程中不断进行调整,最后验证确认。
复目标1.能根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体,让学生体会可能有不同的摆法。
2.能根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何体,体会有些摆法的确定性。
3.经由过程窥察、操作等活动,培养学生的窥察能力、动手能力,培养空间想象力和推理能力。
复重难点重点:能从正面看到的平面图形画出不同摆放方式的小正方体。
难点:引导学生进行空间图形的平面和立体想象,找出被遮挡住的小正方体。
复办法1.对学生掌握知识的情况进行查漏补缺,通过复,使每个学生都能达到教学目标的基本要求。
2.复课不仅要突出知识的综合性,更要通过各种层次、各种类型的练,培养学生灵活运用知识解决问题的能力,让学生在复中应充分体现从“学会”到“会学”的转化。
最新人教版小学数学五年级下册复教案(全册)复过程1、创设情形,导入复同学们,回顾一下我们在观察物体(三)这一单元里都研究了哪些内容,先想一想,然后与同伴交流。
指名汇报所学内容。
(可以让2~3名学生汇报)大家真了不起,学会了这么多的知识。
这节课我们就对第一单元进行整理和复。
(板书课题)2、回顾整理,建构收集1.让学生先自主整理,然后交流汇报。
2.师生共同梳理。
(1)复:按照一个面的摆放,体会摆法的多样性。
(2)复:根据三个面的摆放,体会摆法的确定性。
3.建构网络。
谈话:请同学们利用自己喜欢的形式(列举、表格、网络图等)把我们复的内容进行简单的整理,并在组内进行交流。
人教版小学五年级数学下册6. 分数和小数的互化
答:小勇做得快。
课堂小结
1.说说本节课的收获。 2.谈谈在解决实际问题中需要注意的 地方。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
谢谢
谢 谢!
胜 数 睛 琥 修 水 下 酒 且 上 武 一 扌 步 有 关 阔 气 冰 的 确 闪 光 灯 诳 放 和 主 方 主 批 评 家 遥 祝 为 星 光 灿 烂 是 否
主 不 火 不 能 疳
不 为 为 煊
这 人 遥 望 介 人 人 作 上 是 主 提 及 提 作 止 匈 牙 利
锘
主 角 具 胩 个 上 助 记 词 的 庄 稼 活 不 能 旅 游 团 刘 的 是 脐 脐 遥 望 脐 扣 扣 主
28 7
4
9 3
3
35 3 8 99
分数的基本性质 在下面的括号里填上适当的数。
3 ( 6 ) 9 分析:利用分数的基本性质可 4 8 ( 12 ) 以把分母不同的分数化成分母
42 ( 6 ) 12 35 5 ( 10 )
相同的分数,还可以把一个分 数化成指定分母的分数。
1 加 子7了,.还同跳有学绳2们,的1积20同的极学同参参学加加参体了育加打锻了乒炼跑乓。步球五, 13。5年的参级同加有学哪5参些的加运同了动学踢的参毽
36和24的最大公因数是12,所以每组最 多有12人。
约分的意义和方法 先约分,再比较分数的大小。
12 和 9 12 = 3 9 = 3 12 = 9 16 12 16 4 12 4 16 12
分析:根据约分的方法先把两个分数化 成最简分数。
10.把下面各分数化成最简分数。
12
15
36
25
12 = 1 36 3
五年级数学下册全部内容
五年级数学下册内容包括:
1. 分数乘法:包括分数乘整数、整数乘分数、分子和分母的约分、倒数的认识。
2. 长方体(一):包括长方体的认识、长方体的表面积、长方体的体积。
3. 长方体(二):包括长方体的表面积、体积单位间的进率、容积和容积单位。
4. 小数的乘法:包括小数乘整数、小数乘小数、积的近似数、连乘和乘加。
5. 小数的除法:包括小数除以整数、一个数除以小数、商的近似数、循环小数、连除和除加。
6. 轴对称:包括轴对称图形、画对称轴。
7. 复式折线统计图:包括复式折线统计图的特点、制作复式折线统计图。
8. 数学好玩:包括图形中的规律、探索活动。
9. 总复习:包括数与代数、空间与图形、统计与概率。
具体内容可能会因教材版本和地区而有所不同,请参考相应教材或咨询当地教育机构以获取准确信息。
【免费】小学五年级数学下册必考典型应用题练习
小学五年级数学下册必考典型应用题练习1.粮店运来30袋大米和40袋面粉,一共是2500千克,大米每袋50千克。
每袋面粉多少千克?2.一架飞机每小时飞行860千米,比一列火车每小时飞行的6倍还多20千米。
这列火车每小时行多少千米?3.甲乙两辆汽车同时从相距480千米的两地相对开出,经过3.2小时两车相遇。
已知乙车每小时行72千米,甲车每小时行多少千米4.甲乙两艘轮船同时从上海开往武汉,甲船每小时行24千米,经过8. 5小时甲船超过乙船5 1千米。
乙船每小时行多少千米?5.学校里的柏树和杨树一共有126棵,柏树的棵数是杨树的6倍。
柏树和杨树各有多少棵?6.一台空调的价钱的一台电视机的3倍,学校买了一台空调和4台电视机一共用了8400元钱。
一台空调和一台电视机各多少元?7.8筐苹果比8筐梨重40千克,已知一筐梨重20千克,一筐苹果重多少千克?8.修一条长1960米的路,先是每天修80米,修了8天以后为了尽快完成,以后打算每天修120米,还要多少天才能修完?9.今年爸爸比小芳大36岁,已知爸爸今年的岁数是小芳的4倍,爸爸和小芳今年各是多少岁?10.甲乙两车同时从相距420千米的来两地相对开出,甲车的速度是乙车的1. 5倍,经过2. 4小时相遇。
甲车和乙车每小时各行多少千米?11.一头牛重850千克,一头大象的重量比这头牛的5倍还多500千克。
这头大象重多少千克?12.新光小学的人数比宏扬中学少1260人,已知宏扬中学的人数是新光小学的2. 5倍。
宏扬中学和新光小学各有多少人?13.小兰和小芳同时从环形跑道上的一点向相反方向走去,小兰每分走65米,小芳每分走75米,经过2. 5分相遇。
这个环形跑道全长是多少米?14.植树节同学们植了12行杨树和8行杉树,一共是300棵,杉树每行有15棵,杨树每行有多少棵?15.一个长方形的周长是64厘米,已知长是宽的3倍,这个长方形的长和宽分别是多少厘米?16.一块三角形的地,它面积是60平方米,已知底是15米。
部编版五年级数学下册必背内容一览表
部编版五年级数学下册必背内容一览表
这是部编版五年级数学下册的必背内容一览表。
学生们在研究数学下册时,应该牢记以下内容:
1. 数之间的关系
- 比较大小:掌握各种数的大小关系;
- 比较带有一位小数的数的大小;
- 大数加小数:将大数加上小数,求和;
- 小数加小数:将两个小数相加,求和;
- 两位小数加一位小数:将两个小数相加,求和。
2. 数学运算
- 加减法的口诀:要熟记加减法的口诀,并能够灵活运用;
- 各种数的加减法:掌握整数、小数和分数的加减法运算;
- 两位数乘以一位数:学会用乘法口诀和列竖式来计算;
- 两位数除以一位数:掌握除法口诀,并能够熟练进行计算。
3. 图形的认识
- 正方形:了解正方形的定义、性质和面积计算;
- 长方形:了解长方形的定义、性质和面积计算;
- 三角形:了解三角形的定义、性质和面积计算;
- 平行四边形:了解平行四边形的定义、性质和面积计算。
4. 分数的认识
- 分数的定义与表示:理解分数的概念及其表示方法;
- 分数的大小比较:学会比较两个分数的大小;
- 分数的加减法:掌握分数的加减法运算;
- 分数的乘法:研究如何计算分数的乘法;
- 分数的除法:了解如何进行分数的除法运算。
以上就是部编版五年级数学下册的必背内容一览表。
希望学生们能够认真学习并掌握这些知识点,提高自己的数学水平。
部编版小学数学五年级下册必背古诗课文日积月累
部编版小学数学五年级下册必背古诗课文
日积月累
古诗是中华文化瑰宝之一,通过背诵古诗可以增强学生对语言的理解能力,培养审美情趣,丰富想象力。
在小学五年级下册的数学课程中,有一些古诗课文被列为必背内容,这些古诗课文承载了深厚的文化底蕴和哲理,对学生的综合素质有着很大的影响。
日积月累的古诗内容包括但不限于以下几首:
1.《鹅》
鹅,鹅,鹅,
曲项向天歌。
白毛浮绿水,
红掌拨清波。
2.《画》
蜡烛有心还惜别,
替人垂泪到天明。
抽纸剪刀能几许,
待到东风吹柳絮。
3.《登鹳雀楼》
白日依山尽,
黄河入海流。
欲穷千里目,
更上一层楼。
这些古诗课文描绘了自然美景、表达了情感和思考,给学生带来美的感受同时也让他们理解到字词的韵律和意义。
通过日积月累地背诵古诗,学生们可以逐渐提升自己的语感与表达能力。
作为学生,我们应该认真对待这份任务,利用课余时间反复背诵和理解这些古诗课文。
通过与老师和同学的交流讨论,我们可以更好地理解这些古诗的内涵。
同时,在背诵的过程中,我们还可以尝试写一些与古诗情感相关的作文或是创作一些类似韵律的诗句。
这样做有利于培养我们的文学素养和创作能力。
总之,《部编版小学数学五年级下册必背古诗课文日积月累》这份文档旨在提醒学生关注并重视这些古诗内容,并通过背诵、理解和创作来提升自己的语言表达与文学修养。
小学五年级下册数学必背公式知识汇总,期末考试一定考
小学五年级下册数学必背公式知识汇总,期末考试一定考!必背公式知识长方体总棱长=长×4+宽×4+高×4【4a+4b+4c】或=(长+宽+高)×4【4(a+b+c)】正方体总棱长=棱长×12【12a】长方体表面积=长×宽×2+长×高×2+宽×高×2【S=2ab+2ac+2bc】或=(长×宽+长×高+宽×高)×2【S=2(ab+ac+bc)】正方体表面积=棱长×棱长×6【6a²】长方体体积(容积)=长×宽×高【V=abh】或=底面积×高【V=Sh】或=横截面积×长【V=Sa】正方体体积(容积)=棱长×棱长×棱长【a³】排水法求物体体积:物体体积=总体积-水的体积物体体积=上升部分水的体积2的倍数特征:个位上是0,2,4,6,8的数都是2的倍数,2的倍数也叫偶数。
5的倍数特征:个位上是0或5的数都是5的倍数3的倍数特征:各位上的数相加的和是3的倍数。
1-20以内的质数:2、3、5、7、11、13、17、19。
分数与除法的关系:一、长度:千米,米,分米,厘米,毫米1米=10分米,1分米=10厘米;1厘米=10毫米,1分米=0.1米;1厘米=0.1分米,1毫米=0.1厘米;1米=10分米=100厘米=1000毫米;1分米=10厘米=100毫米;1毫米=0.1厘米=0.01分米=0.0001米;1厘米=0.1分米=0.01米1千米=1000米1米=0.001千米二、面积:平方千米,公顷,平方米,平方分米,平方厘米,平方毫米1平方米=100平方分米;1平方分米=100平方;厘米1平方厘米=100平方毫米;1平方分米=0.01平方米;1平方厘米=0.01平方分米;1平方毫米=0.01平方厘米;1平方米=100平方分米=1000平方厘米;1平方毫米=0.01平方厘米=0.0001平方分米;1平方分米=100平方厘米=1000平方毫米;1平方厘米=0.01平方分米=0.0001平方米;1平方千米=100公顷;1平方米=0.0001公顷;1公顷=0.01平方千米;1吨=1000千克;1千克=1000克三、重量:吨,千克,克1千克=0.001吨;1克=0.001千克;1吨=1000千克=1000000克;1克=0.001千克=0.000001吨四、时间:小时,分钟,秒1小时=60分钟;1分钟=60秒;1小时=60分钟=3600秒五、金钱:元,角,分1元=10角;1角=10分;1元=10角=100分1角=0.1元;1分=0.1角;1分=0.1角=0.01元六、容积:升,毫升1升=1000毫升;1毫升=0.001升;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升=1000000毫升;1立方分米=1000毫升;1毫升=0.001立方分米=0.000001立方米;1升=0.001立方米。
小学五年级数学下册第八单元知识归纳
小学五年级数学下册第八单元知识归纳(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2五年级数学(下)第八单元知识归纳一、填空1、买3本书,每本a 元,付出5元,应找回( )元。
2、175的分数单位是( ),再添上( )个这样的单位,结果是最小的质数。
3、54=) (16=( )÷ 75 =21+( )=( )- 51 4、分母是8的最简真分数的和是( )。
5、把90分解质因数是 。
6、既有约数2,又是3的倍数的最大两位数是( );能同时被2、3、5整除的最小四位数是( )。
7、12和36的最大公因数是( ),最小公倍数是( )。
8、有10瓶钙片,其中一瓶少了3片,至少称( )次保证能找出这瓶少的。
9、一个长方体油桶,长4分米,宽3分米,高5分米。
它的容积是( )升10、一个棱长总和是60厘米的正方体,体积是( )立方厘米。
11、复式折线统计图便于比较两组数据的( )二、判断下面各题,对的在括号里画“√”,错的画“×”1、18是倍数,9是约数。
( )2、所有的质数都是奇数。
( )3、如果一个正方体的棱长扩大3倍,那么它的体积就扩大9倍。
( )4、3米的41 和1米的43 一样长。
( ) 三、选择正确答案的序号填在括号里。
1、加工一个长方体油箱要用多少铁皮,是求这个长方体油箱( )。
A 、表面积B 、体积C 、容积2、几个质数相乘的积一定是( )。
A 、质数 B 、合数 C 、分解质因数33、把3千克苹果平均分成8份,每份占( )。
A 、83千克 B 、83 C 、814 4、至少要( )个棱长3厘米的小正方体可拼出一个稍大的正方体 个 个 个四、应用题(1)一块地,种白菜用去它的154 ,种萝卜用去它的157 ,其余的种青菜。
种青菜用去这块地的几分之几?(2)一个长方体状的儿童游泳池,长40米,宽14米,深米。
现在要在四壁和池底贴上边长是4分米的正方形瓷砖,需要多少块?(3)做一个长、宽、高分别是6厘米、5厘米、4厘米的长方体木框,至少需要多少厘米的木条?(4)妈妈送给奶奶的生日蛋糕长2分米,,宽2分米,高分米,奶奶把它平均分成4块长方体形状的小蛋糕,想一想她是怎样分的,每个人分到多大的一块蛋糕?(5)为迎接五一,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级下册数学必背内容
【因数倍数单元】
【熟背】100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
1、一个数的最小因数是1;最大的因数是它本身。
一个数的因数的个数是有限的。
比如:一个数的最大因数是18;这个数是(18)
2、一个数的最小倍数是它本身;没有最大的倍数。
一个数的倍数的个数是无限的。
比如:一个数的最小倍数是18;这个数是(18)
3、个位上是0;2;4;6;8的数是2的倍数。
4、自然数中;是2的倍数的数叫做偶数(0也是偶数);不是2的倍数的数叫奇数。
最小的偶数是0;最小的奇数是1
5、个位上是0或5的数;是5的倍数。
同时是2和5的倍数的最小3位数是100;最小两位数是10
6、一个数各位上的数的和是3的倍数;这个数就是3的倍数。
既是2又是3的倍数的最小3位数是102;
既是2和3的倍数;还是5的倍数的最小3位数是120
7、一个数;如果只有1和它本身两个因数;这样的数叫做质数(或素数)
1不是质数;也不是合数。
8、一个数;如果除了1和它本身还有别的因数;这样的数叫做合数。
最小的质数是2;最小的合数是4;最小的偶数是0;最小的奇数是1
【长方体正方体单元】
9、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
10、在一个长方体中;相对的面完全相同;相对的棱长度相等。
共有6个面、12条棱、8个顶点。
11、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
一个长方体有4条长、4条宽、4条高
长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12
高=(棱长总和-长×4-宽×4)÷4或=棱长总和+4-长-宽
【同理:想想长=?宽=?】
12、正方体是由6个完全相同的正方形围成的立体图形。
正方体可以看成是长、宽、高都相等的长方体。
13、长方体或正方体6个面的总面积;叫做它的表面积。
【注意单位的统一性】
长方体表面积=(长×宽+长×高+宽×高)×2或=长×宽×2+长×高×2+宽×高×2
长方体没盖的表面积=长×宽+长×高×2+宽×高×2
正方体表面积=棱长×棱长×6(任意一个面积×6)
正方体没盖的表面积=棱长×棱长×5
长方体前面(或后面)的面积=长×高
长方体上面(或下面)的面积=长×宽
长方体左面(或右面)的面积=宽×高
长方体的占地面积=长×宽【占地面积也是底面的面积】
四周贴商标纸的面积=(长×高+宽×高)×2【只有前后、左右4个面】
14、物体所占空间的大小叫做物体的体积。
15、常用的体积单位有立方厘米;立方分米和立方米;可以写成cm3;dm3;m3(棱长是1cm 的正方体体积是1cm3;棱长是1dm的正方体体积是1dm3;棱长是1m的正方体体积是1m3)
16、长方体的体积=长×宽×高V=abh 正方体的体积=棱长×棱长×棱长V=a3
17、长方体、正方体统一体积公式:长方体(或正方体)体积=底面积×高V=sh 横放的长方体长方体(或正方体)体积=横截面的面积×长
18、计量液体的体积;如水、油等;常用容积单位:升和毫升;也可也写成L和ml。
比如:一瓶墨水的约50ml;一桶色拉油5升
常出错的题:游泳池的容积是1200升【×】;游泳池的容积应是1200立方米19、冰箱、微波炉、烤箱;它们的容积一般用升作单位:
比如:一台冰箱的体积大约1.5立方米;容积约是260升。
20、长方体或正方体容积的计算方法;跟体积的计算方法相同。
但要从容器里面量长、宽、高
21、1 m3=1000dm3 1 dm3=1000cm3 1 L=1 dm3 1 ml=1 cm3
【分数单元】
22、一个物体;一些物体等都可以看作一个整体;把这个整体平均分成若干份;这样的一份或几份都可以用分数来表示。
23、一个整体可以用自然数1来表示;通常把它叫做单位“1”。
24、把单位“1”平均分成若干份;表示其中一份的数叫分数单位。
如3/4的分数单位是1/4。
25、a÷b=a/b (b≠0)
26、分子比分母小的分数叫真分数。
真分数小于1。
27、分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
28、分数的分子和分母同时乘或者除以相同的数(0除外);分数大小不变。
这叫做分数的基本性质。
29、1、2、4是16和12公有的因数;叫做它们的公因数。
其中;4是最大的公因数;叫做它们的最大公因数。
30、公因数只有1的两个数;叫做互质数。
31、把一个分数化成和它相等;但分子和分母都比较小的分数;叫做约分。
32、6、12、18...是3和2公有的倍数;叫做它们的公倍数。
其中;6是最小的公
倍数;叫做它们的最小公倍数。
33、两数是互质关系时:最大公因数是1;最小公倍数是它们的乘积。
两数是倍数关系时:最大公因数是小数、最小公倍数是大数
34、把异分母分数分别化成和原来分数相等的同分母分数;叫做通分。
35、用分子除以分母除不尽时;要根据需要按“四舍五入”法保留几位小数。
36、一个最简分数;如果能化成有限小数;它的分母中一定只含有质因数2和5。
37、同分母分数相加、减;分母不变;只把分子相加减。
分母不同的分数;要先通分才能相加减。
38、分数与小数互化必背:
1
2=0.5 1
3≈0.33
1
4=0.25
3
4=0.75
1
5=0.2 2
5=0.4
3
5=0.6
4
5=0.8
1
8=0.125 3
8=0.375
5
8=0.625
7
8=0.875
1
25=0.04 2
25=0.08
3
25=0.12
4
25=0.16
1
20=0.05 3
20=0.15
7
20=0.35
9
20=0.45
11
20=0.55 13
20=0.65
17
20=0.85
19
20=0.95。