初中数学知识大全

合集下载

初中数学知识点大全(全部知识内容)

初中数学知识点大全(全部知识内容)

初中数学知识点大全(全部知识内容)第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

初中数学知识点大全

初中数学知识点大全

初中数学知识点大全一、整数和有理数1. 整数的概念和性质整数是由正整数、零和负整数组成的数集。

整数的加法、减法、乘法满足封闭性、交换律、结合律、分配律等性质。

2. 有理数的概念和性质有理数包括整数和分数。

有理数的加法、减法、乘法、除法满足封闭性、交换律、结合律、分配律等性质。

3. 整数和有理数的比较根据大小比较有理数的大小。

对于整数,可以直接比较大小;对于分数,可以通过通分,比较分子大小。

二、代数式和方程式1. 代数式的概念和性质代数式由数、变量和运算符号组成的表达式,可以通过运算得到结果。

代数式中的变量可以取不同的值,代表不同的数。

2. 方程式的概念和解法方程式是一个等号连接的代数式,表示两个代数式相等。

解方程式就是找出使得方程式成立的变量的取值。

3. 一元一次方程式的解法一元一次方程式是形如ax + b = 0的方程式,可以通过移项、合并同类项、缩放系数等步骤求解。

三、几何中的基本概念1. 点、线、面的概念点是没有大小和形状的,线是由无数个点组成的,面是由无数个线组成的。

2. 角的概念和性质角是由两条射线共同起点组成的图形。

角的大小可以用度数或弧度来表示。

3. 三角形的分类和性质根据三角形的边长和角度的关系,可以将三角形分为等边三角形、等腰三角形和一般三角形。

三角形的内角和等于180度。

四、平面图形的性质和计算1. 矩形、正方形和长方形的性质矩形的对边相等且平行,正方形是特殊的矩形,长方形的对边相等但不一定平行。

2. 平行四边形的性质平行四边形的对边平行且相等,对角线互相平分。

3. 圆的概念和性质圆由一个固定点到平面上所有与该点的距离相等的点构成。

圆的直径是圆上任意两点之间的最长距离,圆的周长和面积可以计算。

五、数列和函数1. 数列的概念和性质数列是按照一定规律排列的一组数。

数列可以通过通项公式计算任意项的值。

2. 等差数列和等比数列的概念和性质等差数列中,相邻两项的差值是一个常数;等比数列中,相邻两项的比值是一个常数。

【初中数学】初中数学基础知识集锦大全

【初中数学】初中数学基础知识集锦大全

【初中数学】初中数学基础知识集锦大全一、数的基本概念1. 数的分类:自然数、整数、有理数、实数2. 数的比较:大于、小于、等于3. 数的绝对值:正数、0、负数的绝对值4. 数的相反数:相加为0的两个数5. 数轴和数线二、整数运算1. 整数加法和减法2. 整数乘法和除法3. 整数运算规则4. 整数的混合运算5. 整数绝对值运算三、分数与小数1. 分数的定义和表示方法2. 分数的加减法和乘除法3. 分数与整数的转化4. 分数的化简和扩展5. 小数的定义和表示6. 小数的加减法和乘除法四、代数式与多项式1. 代数式的定义和表示方法2. 代数式的运算法则3. 一元多项式的定义和表示4. 多项式的加减法和乘法5. 多项式的因式分解和其应用五、方程与不等式1. 一元一次方程的定义和解法2. 一元一次不等式的定义和解法3. 一元二次方程的定义和解法4. 一元二次不等式的定义和解法5. 多个方程、不等式的联立解法六、几何基础知识1. 点、线、面的基本概念2. 水平、垂直、平行、垂直平分线等的关系3. 角的定义和分类4. 三角形、四边形、多边形的特性5. 圆的定义和基本性质七、计数与概率1. 全排列和组合2. 图形的正方形、矩形、三角形等的组合3. 概率的定义和计算4. 简单事件、复合事件和互斥事件的概率计算5. 概率与统计的应用八、数据分析1. 数据的收集和整理2. 数据的频数、频率和统计量3. 直方图、折线图、饼图的绘制和分析4. 数据的均值、中位数和众数的计算5. 数据的比较和推理以上是初中数学基础知识的集锦,希望能帮助同学们巩固基础知识,为高中数学研究打下坚实的基础。

注意事项:1. 阅读文档时,建议按照顺序进行研究,逐个章节地掌握基础知识。

2. 难点内容可以结合教材内容进行深入研究和练。

3. 研究数学需要进行大量的练,多做题目才能真正掌握知识和技巧。

4. 如有问题或需要更多帮助,请咨询数学老师或向同学进行讨论。

初中数学基础知识点总汇

初中数学基础知识点总汇

初中数学基础知识点总汇一、数的整数运算1.整数的概念和性质2.整数加法、减法、乘法和除法的运算规则3.整数的大小比较和绝对值的求法二、分数的运算1.分数的概念和性质2.分数的约简与扩展3.分数的四则运算:加法、减法、乘法和除法4.分数的大小比较和分数的转化三、小数的运算1.小数的概念和性质2.小数和分数的关系3.小数的四则运算:加法、减法、乘法和除法4.小数的大小比较和小数的转化四、代数式与多项式1.代数式的概念和性质2.代数式的加法、减法、乘法和除法3.多项式的概念和性质4.多项式的加法、减法和乘法5.多项式的约简和合并同类项五、一元一次方程与方程组1.一元一次方程的概念和性质2.一元一次方程的解法:移项法和因式分解法3.一元一次方程的应用4.一次方程组的概念和性质5.一次方程组的解法:代入法、消元法和等式相加减法6.一次方程组的应用六、比例与比例应用1.比例的概念和性质2.比例的基本性质和应用3.各种类型的比例问题:找比例因子、求未知数和补充条件七、百分数与百分数应用1.百分数的概念和性质2.百分数和分数、小数的相互转化3.百分数的四则运算:加法、减法、乘法和除法4.百分数的应用:求比例、百分数利息、折扣、利润等八、图形的认识与计算1.点、线、面的概念和性质2.二维图形的认识和性质:直线、射线、线段、角、多边形、圆等3.二维图形的计算:周长、面积九、数据的整理与统计1.数据的收集和整理:频数表、频率表、条形统计图、折线统计图2.数据的分析与解读:中心值、离中趋势、分布图示法3.概率与统计:概率的计算、事件的独立和不独立性以上是初中数学基础知识点的总汇,涵盖了整数运算、分数运算、小数运算、代数式与多项式、一元一次方程与方程组、比例与比例应用、百分数与百分数应用、图形的认识与计算、数据的整理与统计等方面的内容。

这些知识点是初中数学学习的基础,掌握好这些知识点对于高中和大学数学的学习非常重要。

初中数学知识点大全

初中数学知识点大全

初中数学知识点大全一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值- 有理数的比较2. 整数- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的建立与解法- 解方程的应用题5. 二元一次方程组- 代入法与消元法- 方程组的解的几何意义6. 不等式与不等式组- 不等式的建立与解集- 不等式的性质- 解一元一次不等式及不等式组7. 函数- 函数的概念- 一次函数与二次函数的图像与性质 - 函数的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的分类与性质- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 相似三角形的性质与应用- 勾股定理及其应用3. 变换几何- 平移、旋转、对称- 坐标系与图形的变换三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图解决简单概率问题四、综合应用题1. 数列的基本概念与简单计算2. 函数与方程在实际问题中的应用3. 几何知识解决实际问题4. 统计与概率在实际生活中的应用请注意,以上内容为初中数学知识点的概览,具体的教学和学习应结合教材和实际课程标准进行。

每个知识点都需要通过大量的练习来巩固和深化理解。

教师和学生可以根据实际情况调整学习的重点和难度,以达到最佳的学习效果。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。

2.整数:正整数、负整数和0的集合。

3.分数:约分、通分、四则运算、化为整数、化为带分数。

4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。

5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。

6.乘方与开方:幂的概念与运算,方根的概念与运算。

7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。

二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。

2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。

3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。

4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。

5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。

三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。

2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。

3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。

4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。

5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。

四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。

2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。

3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。

4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。

初中数学知识点大全(精选版)

初中数学知识点大全(精选版)

初中数学知识点大全(精选版)1、一元一次方程根的情况△=b2-4ac当△〉0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△〈0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形.②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分.菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角.③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形.②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n—2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R—r﹤d﹤R+r(R﹥r)④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n—2)(k-2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长= d—(R—r) 外公切线长= d—(R+r)三、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a—b)a3+b3=(a+b)(a2-ab+b2)a3—b3=(a-b(a2+ab+b2)一元二次方程的解-b+√(b2-4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角。

初中数学知识点大全

初中数学知识点大全

初中数学知识点大全初中数学是初中阶段的数学学科,它包括了多个知识点。

以下是初中数学的主要知识点:一、整数与有理数1.整数的概念与性质2.整数的比较与大小3.整数的加减法运算4.整数的乘法和除法运算5.有理数的概念与性质6.有理数的加减法运算7.有理数的乘法和除法运算二、代数式与方程1.代数式的概念与值2.代数式的加减法运算3.代数式的乘法运算4.代数式的除法运算5.方程的概念与解6.一元一次方程的解法与应用7.一元一次方程组的解法与应用三、几何图形与运算1.几何图形的基本概念2.点、线、面的特点与性质3.几何图形的分类4.角的概念与性质5.直线与平面的关系6.三角形的概念与性质7.三角形的面积与周长8.四边形的概念与性质9.四边形的面积与周长10.圆的概念与性质11.圆的面积与周长12.三维几何图形的概念与性质四、比例与数列1.比例的概念与性质2.比例的基本运算3.比例应用题4.倍数与倍数的特点与性质5.正比例与反比例的关系6.等差数列与等比数列的概念与性质7.等差数列与等比数列的公式与运算五、统计与概率1.统计的基本概念与方法2.调查与统计的过程与应用3.数据的收集、整理与分析4.数据的图形表示与分析5.概率的概念与性质6.概率的计算与问题求解六、函数与图像1.函数的概念与性质2.函数的表示与性质3.特殊函数的性质与图像4.函数的幂和根的运算和性质七、数与量的计算1.近似数与有效数字2.数与量的比较与换算3.数与量的四则运算4.百分数与比例的计算以上是初中数学的主要知识点,每个知识点都有更详细的内容和相关的应用题。

希望对你学习初中数学有所帮助。

初中数学知识大全

初中数学知识大全

初中数学知识大全数学是一门基础学科,是思维逻辑与抽象推理的高级形式。

在初中阶段,学生们接触到了更多的数学概念和方法,同时也开始进行一些抽象推理的训练。

下面将介绍初中阶段常见的数学知识。

1.整数:整数由正整数、零和负整数组成,可以进行加减乘除运算。

2.分数:分数由一个整数(分子)除以另一个非零整数(分母)组成。

3.小数:小数是指分数的分母为10的倍数,可以用有限小数或无限循环小数表示。

4.比例:比例是指两个或更多量之间的对应关系,可以用等比例的两个分数表示。

5.平方根:平方根是指一个数的平方等于它本身的正数。

6.百分数:百分数是指以100为基数的分数,可以用百分数的分数表示。

7.代数式:代数式是由数字、字母和运算符号组成的符号语言,可以进行加减乘除运算。

8.方程:方程是含有未知数的代数式,将方程两边的值相等称为方程的解。

9. 求根公式:对于二次方程a某²+b某+c=0,可以使用求根公式:某=(-b±√(b²-4ac))/(2a)来求解其根。

10.几何图形:几何图形是由点、线、面组成的形状。

11.直角三角形:直角三角形是指其中一个内角为90°的三角形。

12.正弦/余弦/正切:正弦是指直角三角形斜边与对应角的比值,余弦是指直角三角形临边与斜边的比值,正切是指直角三角形对边与临边的比值。

13.面积:面积是指图形内部所占的空间大小。

14.体积:体积是指立体图形所包围的空间大小。

15.统计学:统计学是一门研究数据收集、分析和解释的学科,包括平均数、中位数、众数和概率等知识。

以上只是初中数学知识的一小部分,随着学习的深入,还有更多的数学知识等待探索。

数学不仅是学科,更是一种思维方式和解决问题的工具,通过学习数学可以培养学生的逻辑思维和抽象推理的能力,提高解决实际问题的能力。

希望每个初中生都能够善于运用数学知识,将其应用于实际生活中。

初中数学知识点大全

初中数学知识点大全

初中数学知识点大全
1.基础运算:加法、减法、乘法、除法等四则运算法则。

2.整数与有理数:整数、正负数的概念、绝对值、相反数、倒数等。

3.小数与分数:小数的表示与运算、分数的概念、分数的四则运算、约分与通分等。

4.百分数与比例:百分数的概念、百分数与分数的转换、百分数的四则运算、比例的概念与比例式的运用等。

5.算术平方根与立方根:算术平方根的概念、算术平方根的性质、立方根的概念与计算等。

6.代数基础:代数式的概念、代数式的运算、字母表示法与未知数的应用等。

7.线性方程与一元一次方程:一元一次方程的概念、一元一次方程的解集、一元一次方程的应用等。

8.图形的基本认识:点、线、面的概念、图形的分类与性质等。

9.直线与平面图形的性质:直线的性质、平行线与垂直线的关系、多边形的性质与分类等。

10.长方形、正方形与三角形:长方形与正方形的性质与计算、三角形的性质与计算等。

11.圆与圆的计算:圆的性质与计算、圆内接四边形的性质等。

12.相似与全等:相似与全等的概念、相似三角形的性质与计算等。

13.倍数与约数:倍数的概念、约数的概念与性质等。

14.整系数一元二次方程:一元二次方程的概念、一元二次方程的解的判别式与性质等。

15.统计学与概率:统计学的基本概念、统计表与统计图的制作与分析、简单概率与事件的发生等。

以上是初中数学的主要知识点,它们包括了数的运算、代数、几何、函数、方程、概率等各个方面。

在学习过程中,需要掌握这些知识点,并能够熟练应用于解题。

初中数学知识点大全总结整理

初中数学知识点大全总结整理

初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。

初中数学知识点和公式大全

初中数学知识点和公式大全

初中数学知识点和公式大全一、数与代数1.自然数:正整数,从1开始计数。

2.整数:包括正整数、0和负整数。

3.有理数:可以表示为两个整数的比值的数,包括整数和分数。

4.无理数:不能表示为两个整数的比值的数,如π和√2等。

5.实数:包括有理数和无理数。

6.代数式:用数字、字母和运算符号表示的算式。

7.方程式:含有未知数的等式。

8.正比例函数:y=kx(k≠0)。

9.反比例函数:y=k/x(k≠0)。

二、平面几何1.点:没有大小和形状,只有位置。

2.线段:两个端点与之间的部分。

3.射线:一个端点和该点的一侧无限延伸的部分。

4.直线:一条无限延伸的线。

5.平行线:在同一平面上不相交的直线。

6.垂直线:两条相交直线的交角为90度。

7.角:由两条射线共享一个端点形成的部分。

8.三角形:有三个顶点和三条边的多边形。

9.矩形:四个角都为直角的四边形。

10.平行四边形:有两组对边平行的四边形。

11.圆:由半径相等的所有点组成的图形。

12.直径:圆上两点之间的最长线段。

13.弧:圆上的一部分。

14.扇形:以圆心为顶点的角所夹的弧与两边所在的线段组成的图形。

15.圆周角:以圆心为顶点的角。

三、立体几何1.正方体:六个面都是正方形的立体。

2.长方体:六个面都是矩形的立体。

3.棱柱:底面是多边形,侧面是平行于底面的矩形的立体。

4.棱锥:底面是多边形,侧面是由底面的顶点到其它各顶点的线段组成的三角形的立体。

5.棱台:底面是多边形,侧面是底面的顶点到上底面各顶点的线段组成的三角形的立体。

6.球:所有点到球心的距离相等的图形。

7.圆柱:底面是圆形,侧面是平行于底面的矩形的立体。

8.圆锥:底面是圆形,侧面是由底面的顶点到其它各点的线段组成的锥体。

9.圆台:底面是圆形,侧面是底面的顶点到上底面各点的线段组成的锥体。

四、几何关系1.相似:两个或多个图形的对应边成比例,对应角相等。

2.全等:两个图形的对应边和对应角均相等。

3.垂直:两条直线的交角为90度。

初中数学基础知识点总结大全

初中数学基础知识点总结大全

初中数学基础知识点总结大全一、数的四则运算1.加法:加法的性质、加法的运算法则(交换律、结合律、单位元等)、加法的简便算法(补数法等)2.减法:减法的性质、减法的运算法则(加法法则、移项法则等)、减法的简便算法(补数法等)3.乘法:乘法的性质、乘法的运算法则(交换律、结合律、乘法分配律等)、乘法的简便算法(口诀、竖式等)4.除法:除法的性质、除法的运算法则(被除数不变法则、移项法则等)、除法的简便算法(长除法等)二、小数与分数1.小数的加减乘除及应用2.分数的加减乘除及应用3.分数与小数的互化三、倍数和约数1.倍数的概念及运算2.最大公约数和最小公倍数的求法四、整数运算1.整数的加减乘除及应用2.整数的四则运算规则3.整数的混合运算4.分数与整数的混合运算五、代数式与方程式1.代数式的概念及常见表达形式2.代数式的加减乘除与应用3.方程式的概念及解方程的方法六、比与比例1.比与比值的概念及运算2.比例的概念及运算(比例的三种基本形式)3.百分数与比例的互化4.倒数与比例的关系七、平方和平方根1.平方数与完全平方式2.平方根与开方3.完全平方式的性质与运算八、图形的认识与计算1.直线、线段、射线与角的认识2.角的分类及其性质3.三角形的分类及其性质(直角三角形、等边三角形、等腰三角形等)4.四边形的分类及其性质(矩形、平行四边形、菱形等)5.圆的认识及其性质(半径、直径、周长、面积等)九、数据的收集与分析1.统计调查与数据的收集2.数据的整理与分类3.数据的图形表示(条形图、饼图、折线图等)4.中心与离散趋势的度量(平均数、中位数、众数、极差等)十、方程和不等式1.一元一次方程的解法与应用2.一元一次不等式的解法与应用3.二元一次方程组的解法与应用4.一次不等式组的解法与应用十一、几何变形1.直线与平行线的性质2.三角形的相似与全等性质3.平行四边形与相应角的性质4.圆与切线的性质以上是初中数学的基础知识点总结,涵盖了数的四则运算、小数与分数、倍数和约数、整数运算、代数式与方程式、比与比例、平方和平方根、图形的认识与计算、数据的收集与分析、方程和不等式、几何变形等各方面。

初中数学知识点大全

初中数学知识点大全

初中数学知识点大全一、基本概念与技巧1.数的种类和数的读法2.数的比较与大小关系3.数的相反数和绝对值4.数的四则运算(加法、减法、乘法、除法)5.分数的加减乘除运算6.百分数与小数的相互转换7.整数、分数、小数的大小比较8.数列的概念及等差数列与等比数列的特点9.平均数的概念及求解方法10.点与线的基本概念及相互关系二、代数式与方程式1.多项式的定义和运算2.同类项的合并与拆分3.算式的性质与运算规则4.一元一次方程的概念及基本解法5.二元一次方程的概念及解法6.简单不等式的解法7.方程组的概念及解法8.含绝对值的方程与不等式三、几何与图形1.点、线、面、体的基本概念2.平行线、垂直线、相交线的判定方法3.角和角的种类4.平面内的直角、锐角和钝角5.全等图形与相似图形的判定方法6.三角形的内角和外角7.平面图形的面积计算8.立体图形的体积计算9.圆的性质、圆周、圆周率的计算10.平面镜、凸透镜、凹透镜的形状与特点四、函数与图像1.函数的概念、定义和性质2.一次函数与二次函数的图像特点3.正比例函数与反比例函数的图像特点4.平移、缩放、翻转的图像变化规律5.函数关系的表示方法(表格、图形、公式)6.函数的增减性与极值点的判定7.函数方程的解法及函数的应用问题解答五、立体几何体的计算1.棱柱、棱锥、棱台的体积计算2.正四面体、正六面体、正八面体的体积计算3.圆柱、圆锥、圆台的表面积计算4.球体的体积与表面积计算六、数据的收集、整理和运用1.数据的收集方式与调查方法2.数据的整理与统计3.频数表、频率表、统计图的制作4.平均数、中位数、众数的计算与比较5.数据的分析与解释七、概率与统计1.简单事件与复合事件的概念2.概率的计算公式3.概率的基本性质与计算方法4.事件的互斥与对立关系5.抽样调查与样本容量的确定6.几何概率与随机事件的应用八、实际问题与应用1.实际问题的数学建模2.速度、距离、时间等实际问题的计算3.利息、打折、利润等实际问题的计算4.几何问题的实际应用5.数据处理与统计在实际问题中的应用。

初中数学503个必考知识点

初中数学503个必考知识点

初中数学503个必考知识点1. 整数的概念和表示方法2. 分数的概念和表示方法3. 整式的概念和简单运算4. 代数式的概念和基本性质5. 初等函数的概念和基本性质6. 平面直角坐标系7. 平面向量的概念8. 合并同类项和化简代数式9. 一元一次方程的解法和应用10. 一元二次方程的解法和应用11. 不等式的概念和解法12. 整式的乘法和因式分解13. 分式的乘法和除法14. 暴力算法、试除法、筛法15. 数列的概念和基本性质16. 等差数列和等比数列17. 数列的极限和通项公式18. 数列的求和公式19. 概率的基本概念和重要性质20. 随机事件的概念和计算方法21. 表格的绘制和数据的整理22. 直方图的绘制和数据的分析23. 折线图的绘制和数据的分析24. 饼图的绘制和数据的分析25. 三角形的概念和基本性质26. 等腰三角形和等边三角形27. 直角三角形和勾股定理28. 三角形的面积公式29. 多边形的概念和基本性质30. 三角形、平行四边形和梯形31. 圆的概念和基本性质32. 圆的面积和周长公式33. 时间、速度和距离的关系34. 速度、加速度和时间的关系35. 动量、力和加速度的关系36. 定点和定比分点的概念37. 相似和全等三角形的判定38. 几何图形的对称性和轴线39. 平移和旋转的概念和性质40. 反比例函数的概念和基本性质41. 一次函数的概念和图像42. 二次函数的概念和图像43. 线性规划和最优解44. 单位换算和计算方法45. 二次根式的化简和计算46. 幂的概念和基本性质47. 对数的概念和基本性质48. 平行线和截线定理49. 平行线与相交线的夹角50. 直角三角形内角和外角的关系51. 勾股定理的应用52. 三角函数的概念和基本性质53. 三角函数的图像和变化规律54. 三角函数的解法和应用55. 解析几何的最基本概念56. 解析几何的直线和方程57. 解析几何的圆和方程58. 空间向量的概念和基本性质59. 空间向量的加减和数量积60. 空间平面和空间直线的关系61. 空间几何体与它们的表面积和体积62. 几何概型和计数原理63. 排列和组合的概念和计算方法64. 等差数列和等比数列的应用65. 随机变量和概率密度函数66. 常见的离散型随机变量67. 常见的连续型随机变量68. 离散型随机变量的特征数69. 正态分布和标准正态分布70. 随机变量的独立性和相关性71. 统计推断的基本原理和流程72. 参数估计的点估计和区间估计73. 假设检验的假设和检验方法74. 方差分析的思想和方法75. 回归分析的基本思想和方法76. 回归分析的判定系数和残差分析77. 差异分析的意义和方法78. 实验设计和处理效应的分析79. 固定效应模型和随机效应模型80. 变量的相关性和线性回归分析。

初中数学知识点必考考点大全

初中数学知识点必考考点大全

初中数学知识点必考考点大全1.整数和有理数运算整数的加减乘除、有理数的加减乘除、乘方、开方等运算规则。

2.分数运算分数的加减乘除、约分、通分、分数的比较、分数与整数的关系等。

3.负数的概念与运算负数的概念、负数的加减乘除、负数的乘方与开方等。

4.小数的加减乘除小数的加减乘除、小数的化简、小数的近似表示等。

5.数字的化简与科学计数法数字的约分和化简、数的大小比较、科学计数法的表示与运算等。

6.代数式与方程式的运算代数式的加减乘除、代数式的化简、对称式等。

7.坐标系与二维几何直角坐标系、点坐标的确定、平面上图形的平移、翻转、旋转、对称等。

8.直线、角的性质和计算直线的种类、直线的表示方式、角的种类和性质、角的比较和运算等。

9.平面图形的常见性质和计算三角形、四边形、多边形的性质、各种图形的面积和周长、各种图形间的关系等。

10.空间几何体的常见性质和计算立体图形的种类、立体图形的表面积和体积、立体图形间的位置关系等。

11.数据的图表表示和分析统计图表的绘制和分析、平均数、中位数、众数的计算等。

12.概率与统计概率的基本概念、概率的计算、随机事件、抽样调查等。

13.逻辑推理与数学证明常见的逻辑推理题、数学证明的基本方法和策略等。

14.四则运算的应用实际生活中的问题,如两车相遇的时间、速度问题、运动员超越问题等。

15.图形的平移、翻转、旋转、对称的应用应用图形变化的原理解决问题,如飞机投弹问题等。

16.几何形体的表面积和体积的应用计算实际问题中的几何形体的表面积和体积,如容器的容积、缸的油量等。

17.抽样调查、平均数、中位数、众数的应用利用统计数据解决实际问题,如人口普查、调查报告等。

18.几何证明的应用利用几何知识解决实际问题,如建筑设计、工程测量等。

初中数学必考知识点大全

初中数学必考知识点大全

初中数学必考知识点大全1.数的分类及数的性质:-自然数、整数、有理数、无理数、实数的概念及性质;-数的比较、绝对值、相反数、倒数等性质。

2.基本运算:-加减乘除运算的概念及性质;-整数、分数、小数之间的运算;-混合运算;-运算法则和运算顺序。

3.代数式和方程式:-代数式的概念、结果与计算;-等式、不等式的概念和性质;-简单的一元一次方程求解方法;-数据的整理和解决问题。

4.几何基本概念:-点、线、面、角的概念;-平行线、垂直线、相交线等基本性质;-三角形、四边形、圆的构成和性质。

5.几何图形的计算:-平面图形的周长和面积;-三角形、四边形的面积计算方法;-圆的周长和面积计算方法。

6.相似和全等:-相似的概念和判定;-全等的概念和判定;-利用相似和全等的性质解决问题。

7.几何变换:-平移、旋转、翻转的概念和性质;-利用几何变换解决问题。

8.三角函数:-根据角度的大小关系确定三角函数的正负性;-正弦、余弦、正切等三角函数的定义及性质;-利用三角函数计算角度和边长。

9.根式及其运算:-根式和含有根式的四则运算;-根式的化简和合并。

10.数列与函数:-等差数列和等比数列的概念和性质;-数列的通项和求和;-函数的概念和性质。

11.统计与概率:-数据的收集和整理;-统计图形的制作和解读;-概率的概念和计算。

以上是初中数学必考知识点的一个概述,详细的知识点包括各个知识点的定义、性质、计算方法以及解决问题的应用能力。

了解并掌握这些知识点对于初中数学的学习和备考非常重要。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1.x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

相关文档
最新文档