步进电机及其控制系统
步进电机控制系统原理
步进电机控制系统原理步进电机控制系统的原理是控制步进电机运动,使其按照既定的速度和步长进行转动。
步进电机是一种特殊的电机,它通过控制输入的脉冲信号来驱动转子旋转一定的角度,步进电机每接收到一个脉冲信号,转子就会转动一定的角度,因此可以精确控制电机的位置和速度。
控制器是步进电机控制系统的核心部分,它通过软件算法生成脉冲信号来控制步进电机转动。
脉冲信号的频率和脉宽可以调节,频率决定步进电机转动的速度,脉宽决定步进电机转动的步长。
通常采用微处理器作为控制器,通过编程来控制脉冲信号的生成。
驱动器是将控制器产生的脉冲信号转换为电流信号,驱动步进电机转动。
驱动器通常由一个或多个功率晶体管组成,通过开关控制来产生恰当的电流信号。
驱动器还可以采用电流反馈回路来实现闭环控制,提高步进电机的控制精度。
步进电机是根据驱动器的电流信号转动的执行部件,它通过电磁力和磁场相互作用来实现转动。
步进电机根据控制器产生的脉冲信号确定转动的角度和速度。
步进电机一般由定子和转子组成,定子上有若干个电磁线圈,转子上有若干个永磁体。
当驱动器给定一个电流信号时,电流通过定子线圈产生磁场,与转子上的永磁体相互作用,使转子转动一定的角度。
当驱动器改变电流信号时,磁场方向改变,转子转动的角度和方向也会改变。
步进电机控制系统的原理就是通过控制器产生脉冲信号,驱动器将脉冲信号转换为电流信号,通过电流信号驱动步进电机转动。
控制器根据需要调整脉冲信号的频率和脉宽,从而控制步进电机的转动速度和步长。
驱动器根据电流信号的大小和方向控制步进电机的转动角度和方向。
步进电机根据电磁力和磁场相互作用来实现转动。
通过调节脉冲信号的频率和脉宽,可以实现对步进电机的精确控制。
步进电机控制方法
步进电机控制方法步进电机是一种将电脉冲信号转换为角位移的执行器,广泛应用于打印机、数控机床、纺织机械、包装设备等自动控制系统中。
步进电机控制方法的选择对于系统的性能和稳定性具有重要影响,下面将介绍几种常见的步进电机控制方法。
1. 开环控制。
开环控制是最简单的步进电机控制方法之一,通过给步进电机施加一定的脉冲信号来控制其旋转角度。
这种方法简单直接,但无法对步进电机的运动状态进行实时监测和调整,容易出现失步现象,适用于对精度要求不高的场合。
2. 半闭环控制。
半闭环控制是在开环控制的基础上增加了位置传感器反馈的控制方法。
通过位置传感器实时监测步进电机的位置,将反馈信息与设定值进行比较,从而实现对步进电机位置的闭环控制。
这种方法相比于开环控制能够更好地提高系统的稳定性和精度,但仍然存在一定的失步风险。
3. 闭环控制。
闭环控制是最为精确的步进电机控制方法,通过在步进电机上增加编码器等位置传感器,实时反馈步进电机的位置信息,并对其进行精确控制。
闭环控制能够及时调整步进电机的运动状态,减小失步风险,提高系统的稳定性和精度,适用于对位置精度要求较高的场合。
4. 微步进控制。
微步进控制是一种通过改变步进电机相序激励方式,使步进电机在每个步距内分成多个微步距的控制方法。
微步进控制能够提高步进电机的分辨率,减小振动和噪音,提高系统的平稳性和精度,适用于对步进电机运动要求较高的场合。
总结。
在实际应用中,步进电机控制方法的选择应根据具体的控制要求和系统性能需求来确定。
不同的控制方法各有特点,开环控制简单直接,但精度较低;半闭环控制提高了系统的稳定性和精度,但仍存在失步风险;闭环控制精度最高,但成本较高。
微步进控制能够提高步进电机的平稳性和分辨率,但相应的控制电路较为复杂。
因此,在选择步进电机控制方法时,需要综合考虑系统的实际需求和成本因素,选择最合适的控制方法来实现系统的稳定运行和高精度控制。
步进电机定位控制
02
反应式步进电机
03
混合式步进电机
转子为软磁材料,结构简单、步 矩角小、精度较高,但动态性能 较差。
结合了永磁式和反应式的优点, 具有较高的精度和动态性能,但 结构复杂、成本较高。
步进电机的主要应用领域
01 数控机床:用于工件的精确加工和定位。
02 机器人:用于机器人的关节驱动和定位控 制。
03
自动化生产线:用于自动化生产线的物料 搬运和定位控制。
04
打印机、复印机等办公设备:用于纸张的 进给和定位控制。
02
CHAPTER
步进电机定位控制系统
定位控制系统的基本组成
控制器
用于接收输入的定位指令,并按照控制算法 生成驱动脉冲信号。
驱动器
将控制器输出的脉冲信号放大,驱动步进电 机转动。
步进电机
步进电机定位控制的软件实现
软件实现概述
软件实现是实现步进电机定位控制的 重要组成部分,主要包括脉冲发生、 运动控制和通信等功能。
脉冲发生
根据控制算法输出的控制信号,生成 相应的脉冲信号,驱动步进电机运动。
运动控制
实时监测步进电机的运动状态,根据 反馈信息调整控制信号,确保电机按 照预定轨迹运动。
通信功能
工作原理:步进电机内部通常由一组带有齿槽的转子构成,定子上有多相励磁绕组。当给定一个脉冲信号时,定子上的励磁 绕组会按一定的顺序通电,从而在转子上产生一个磁极,该磁极与定子上的齿槽对齐时,转子会转动一个步进角。步进角的 大小取决于转子的齿数和通电的相数。
步进电机的种类与特点
01
永磁式步进电机
结构简单、成本低、步矩角大, 但精度较低。
接受驱动器发出的脉冲信号,按照设定的步 数和方向转动。
第九章-步进电动机传动控制系统
是电机作单步运动
所能带动的极限负载,也称为极限启动转矩。实际电机所 带的负载转矩TL必须小于极限启动转矩才能运行,即电机 所带负载的阻转矩 TL<
Tst
步距角减少可使相邻矩角特性位移减少, 就可提高极限
启动转矩Tst,增大电机的负载能力。三相六拍时,矩角特
性幅值不变,而步距角小了一半,故极限启动转矩。
(b) (c) 图 三相六拍运行 (a) A相通电; (b) A、 B相通电;(c) B相通电 第8 页
(a)
③三相双三拍运行
通电方式AB→BC→CA→AB‥,一拍转过30 °。
9
步进电动机的结构
10
转子齿数 齿距角
z表示.
转子相邻两齿间的夹角,用θ z 表示。 z 拍和步距角
Tst 时,A相通电时,转子处于a”点;改由B相通电 情况2:负载转矩 TL
时,转子不能前进。
图9.6 最大负载能力的确定
25
•最大负载转矩(起动转矩)
步进电动机在步进运行时所能带动的最大负载,可由相邻
Tst
两条矩角特性交点所对应的电磁转矩
相邻矩角特性的交点所对应的转矩
Tst
来确定。
T A T sm sin e
则B通电时,距角特性为
T B T sm sin( e 120 )
图 A相、B相定子齿相对转子齿的位置
21
当A、B两相同时通电时合成矩角特性应为
T A B T A T B T sm sin e T sm sin( e 120 ) T sm sin( e 60 )
使各相电流平衡。
VD2及Rf2作用是构成续流电路。
这种电源效率较高,起动和运行频 率也比单一电压型电源要高。
第3章步进电动机的控制
升速 恒速 减速 低速
起点
终点
(时间) t
图3-24
点、位控制中的加减速控制
15
变速控制的方法有:
改变控制方式的变速控制:最简单的变速控制可利用改变步进电 机的控制方式实现。例如:对于三相步进电机系统,启动或停止时 用三相六拍,大约0.1s以后,改用三相三拍,快到达终点时再采用 三相六拍,以达到减速控制的目的。 均匀地改变脉冲时间间隔的变速控制:步进电机的加速(或减速) 控制,可以用均匀地改变脉冲时间间隔来实现。 采用定时器的变速控制:单片机控制系统中,用单片机内部的定 时器来提供延时时间。方法是将定时器初始化后,每隔一定的时间, 由定时器向CPU申请一次中断,CPU响应中断后,便发出一次控制脉 冲。此时只要均匀地改变定时器时间常数,即可达到均匀加速(或 减速)的目的。这种方法可以提高控制系统的效率。
脉冲 方向控制
步进控制器
功率放大器
步进电机
负载
图3-19 步进电机控制系统的组成
2
随着电子技术的发展,除功率驱动电路之外,其它硬件电路均可由软 件实现。采用计算机控制系统,由软件代替步进控制器,不仅简化了 线路,降低了成本而且可靠性也大为提高,同时,根据系统的需要可 灵活改变步进电机的控制方案,使用起来很方便。典型的微型机控制 步进电机系统原理图如图3-20所示。 使用微型机对步进电机进行控制有串行和并行两种方式。 步 进 电 机
6
二、步进电动机的闭环控制
在开环步进电动机系统中,电动机的输出转矩在很大程度上取决于驱 动电源和控制方式。对于不同的步进电动机或同一种步进电动机而不 同负载,励磁电流和失调角发生改变,输出转矩都会随之发生改变, 很难找到通用的控速规律,因此,也很难提高步进电机的技术指标。 闭环系统是直接或间接地检测转子的位置和速度,然后通过反馈和适 当处理自动给出驱动脉冲串。因此采用闭环控制可以获得更精确的位 置控制和更高、更平稳的转速,从而提高步进电动机的性能指标。 步进电动机的输出转矩是励磁电流和失调角的函数。为了获得较高的 输出转矩,必须考虑到电流的变化和失调角的大小,这对于开环控制 来说是很难实现的。
控制步进电机实验报告(3篇)
第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。
2. 掌握单片机与步进电机驱动模块的接口连接方法。
3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。
4. 通过实验,加深对单片机控制系统的理解。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。
步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。
2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。
3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。
三、实验设备1. 单片机开发板:例如STC89C52、STM32等。
2. 步进电机驱动模块:例如ULN2003、A4988等。
3. 双相四线步进电机。
4. 按键。
5. 数码管。
6. 电阻、电容等元件。
7. 电源。
四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。
(2)将按键的输入端连接到单片机的P3.0口。
(3)将数码管的段选端连接到单片机的P2口。
(4)将步进电机驱动模块的电源端连接到电源。
(5)将步进电机连接到驱动模块的输出端。
2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。
(2)编写按键扫描函数,用于读取按键状态。
(3)编写步进电机控制函数,实现正反转、转速和定位控制。
(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。
3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。
步进电动机的控制
αmin—负载轴要求的最小位移增量(即每个脉冲对应的最小角位 移增量)
➢步距脚θb也可用分辨率bs来表示:bs=360°/ θb(步/转)
➢ 当步进电机拖动的机械作直线运动时,用丝杠作运动转换器,步进电 t/ t
δ—直线增量运动当量(mm/每步)
360 tb z
因为每通电一次(即运行一拍),转子就走一步,各相绕
组轮流通电一次,转子就转过一个齿距。故步距角:
b
齿距 拍数
齿距 Km
360 Kmz
K--定子绕组通电方式系数。相邻两次通电的相数一样,取K=l,如三 相单三拍、三相双三拍工作方式;反之,取K=2,如三相单双六拍工作方 式。(拍数/相数)
步距精度Δθb应满足: b i(L )
ΔθL—丝杠传动精度
2)最大静转矩
步进电动机的静特性,是指步进电动机在稳定状态(即步进电动机不改 变通电情况的运行状态)时的特性,包括静转矩、矩角特性及静态稳定区。
静转矩:指步进电动机处于稳定状态下的电磁转矩。它是绕组电流和失 调角的函数。
在稳定状态下,如果在转子轴上加一负载转矩使转子转过一个角度θ, 并能稳定下来,这时转子受到的电磁转矩与负载转矩相等,该电磁转矩即 为静转矩,而角度θ即为失调角(或:电机定子齿与转子齿中心线之间的 夹角叫做失调角)。
(一)反应式步进电机的结构
1.单段(径向式)三相反应式步进电机的结构原理图
主要由定子和转子两部分组成。
• 定子铁芯由硅钢片叠压而成,定子上有六 个均匀分布的极,每两个为一对。定子绕 组是绕置在定子上的六个均匀分布铁芯齿 上的线圈,它把沿直径方向上相对的两个 齿上的线圈串联在一起,构成一相控制绕 组。图中所示的步进电机为A、B、C三相 控制绕组,故称为三相步进电机。当任一 相绕组通电时,便形成一对定子磁极,即 形成N、S极。 在定子的每个磁极上,即定子铁芯的每 个齿上又开了五个小齿,齿槽等宽,齿间 夹角为9°,在空间位置上依次错开1/3齿 距其展开图如图所示。
步进电机控制方法
步进电机控制方法步进电机是一种常见的电动执行器,广泛应用于各个领域的控制系统中。
它具有结构简单、控制方便、定位精度高等优点,是现代自动化控制系统中必不可少的重要组成部分。
本文将从基本原理、控制方法、应用案例等方面对步进电机进行详细介绍。
1. 基本原理步进电机是一种通过输入控制信号使电机转动一个固定角度的电机。
其基本原理是借助于电磁原理,通过交替激励电机的不同线圈,使电机以一个固定的步距旋转。
步进电机通常由定子和转子两部分组成,定子上布置有若干个线圈,而转子则包含若干个极对磁体。
2. 控制方法步进电机的控制方法主要包括开环控制和闭环控制两种。
开环控制是指根据既定的输入信号频率和相位来驱动电机,控制电机旋转到所需位置。
这种方法简单直接,但存在定位误差和系统响应不稳定的问题。
闭环控制则是在开环控制的基础上,增加了位置反馈系统,通过不断校正电机的实际位置来实现更精确的控制。
闭环控制方法相对复杂,但可以提高系统的定位精度和响应速度。
3. 控制算法控制步进电机的常用算法有两种,一种是全步进算法,另一种是半步进算法。
全步进算法是指将电流逐个向电机的不同线圈通入,使其按照固定的步长旋转。
而半步进算法则是将电流逐渐增加或减小,使电机能够以更小的步长进行旋转。
半步进算法相对全步进算法而言,可以实现更高的旋转精度和更平滑的运动。
4. 应用案例步进电机广泛应用于各个领域的控制系统中。
例如,在机械领域中,步进电机被用于驱动数控机床、3D打印机等设备,实现精确的定位和运动控制。
在医疗设备领域,步进电机被应用于手术机器人、影像设备等,为医疗操作提供准确定位和精确运动。
此外,步进电机还广泛应用于家用电器、汽车控制、航空航天等领域。
总结:步进电机作为一种常见的电动执行器,具有结构简单、控制方便、定位精度高等优点,在自动化控制系统中扮演着重要的角色。
通过本文的介绍,我们了解到步进电机的基本原理、控制方法、算法以及应用案例等方面的知识。
《2024年步进电机驱动控制技术及其应用设计研究》范文
《步进电机驱动控制技术及其应用设计研究》篇一一、引言步进电机是一种通过输入脉冲序列来驱动转动的电机,其运动方式为离散化的步进动作。
步进电机广泛应用于精密定位、速度控制以及数字化系统等场景。
本文将针对步进电机驱动控制技术及其应用设计进行研究,深入探讨其原理、特点以及在各个领域的应用。
二、步进电机驱动控制技术原理步进电机主要由定子、转子和驱动器三部分组成。
定子上有多个磁极,转子则由多个磁性材料制成的齿组成。
驱动器根据输入的脉冲序列,控制定子上的电流变化,从而产生旋转磁场,使转子按照一定的方向和角度进行转动。
步进电机驱动控制技术主要包括以下几种:1. 恒流驱动技术:通过恒流源对步进电机进行驱动,保证电机在不同负载和转速下均能保持稳定的运行状态。
2. 微步技术:通过精细控制驱动器的脉冲序列,使步进电机在每个方向上实现微小角度的转动,从而提高电机的定位精度和运行平稳性。
3. 环形分布电流技术:通过对定子上的磁极进行环形分布电流的控制,实现对步进电机的持续运动控制,使得步进电机的转动更为流畅和准确。
三、步进电机驱动控制技术的应用设计步进电机驱动控制技术在各个领域有着广泛的应用,主要包括以下几个方面:1. 精密定位系统:步进电机的高精度定位能力使得其在精密定位系统中得到广泛应用,如数控机床、精密测量仪器等。
通过微步技术和环形分布电流技术的应用,可以实现高精度的定位和运动控制。
2. 速度控制系统:步进电机在速度控制系统中也有着重要的应用,如打印机、电动阀等。
通过调整脉冲序列的频率和占空比,可以实现对电机转速的精确控制。
3. 数字化系统:步进电机在数字化系统中也有着广泛的应用,如数字标牌、机器人等。
通过将步进电机的运动与数字信号进行映射,可以实现数字化的运动控制和显示功能。
四、应用设计实例分析以数控机床为例,分析步进电机驱动控制技术的应用设计。
数控机床是一种高精度的加工设备,其运动控制系统对加工精度和效率具有重要影响。
步进电机控制系统原理
;输出第二拍 ;延时
; ;输出第三拍 ;延时 ;A≠0,转LOOP2 0
3、步进电机与微型机的接口及程序设计
对于节拍比较多的控制程序, 对于节拍比较多的控制程序, 通常采用循环程序进行设计。 通常采用循环程序进行设计。
3、步进电机与微型机的接口及程序设计
(4)循环程序 作法: 作法: 模型按顺序存放在内存单元中 • 把环型节拍的控制模型按顺序存放在内存单元中, 把环型节拍的控制模型按顺序存放在内存单元中, • 逐一从单元中取出控制模型并输出。 逐一从单元中取出控制模型并输出。 • 节拍越多,优越性越显著。 节拍越多,优越性越显著。 以三相六拍为例进行设计, 以三相六拍为例进行设计, 其流程图如图8所示。 其流程图如图8所示。
1、 步进电机工作原理
图1 步进电机原理图
步进电机有如下特点:
• 给步进脉冲电机就转,不给步进脉冲电机就不转; 给步进脉冲电机就转,不给步进脉冲电机就不转; • 步进脉冲频率高,步进电机转得快;步进脉冲频率低,步进电机转得就慢; 步进脉冲频率高,步进电机转得快;步进脉冲频率低,步进电机转得就慢; • 改变各相的通电方式(叫脉冲分配)可以改变步进电机的运行方式; 改变各相的通电方式(叫脉冲分配)可以改变步进电机的运行方式; • 改变通电顺序,可以控制步进电机的正、反转。 改变通电顺序,可以控制步进电机的正、反转。
单三拍, ★ 单三拍,通电顺序为 A→B→C ; 双三拍, AB→BC→ ★ 双三拍, 通电顺序为 AB→BC→CA ; 三相六拍, ★ 三相六拍,通电顺序为 A→AB→B→BC→C→CA ;
改变通电顺序可以改变步进电机的转向
2、步进电机控制系统原理
3.步进电机通电模型的建立: 3.步进电机通电模型的建立: 步进电机通电模型的建立
基于单片机的步进电机控制系统设计
基于单片机的步进电机控制系统设计引言:步进电机是一种常用的电机类型,具有精准的位置控制、高效的能量转换等特点。
在许多自动化设备中广泛应用,如数控机床、3D打印机、机器人等。
本文将以基于单片机的步进电机控制系统设计为主题,介绍系统的硬件设计、软件设计以及实验验证。
一、硬件设计1.步进电机选型:根据实际应用需求,选择适当的步进电机。
包括步距角、转速范围、扭矩要求等等。
2.电源设计:步进电机需要驱动电压和电流,根据步进电机的额定电压和电流选用适当的电源。
3.驱动电路设计:步进电机通常需要驱动电路来控制电流和脉冲序列。
常见的驱动电路有全桥驱动器、半桥驱动器等。
4.信号发生器设计:步进电机通过脉冲信号来控制转动角度和速度,因此需要信号发生器来产生合适的脉冲序列。
常见的信号发生器有定时器、计数器等。
5.单片机接口设计:单片机作为步进电机控制系统的核心,需要与其他硬件进行通信。
因此需要设计合适的接口电路,将单片机的输出信号转换为驱动电路和信号发生器所需的电压和电流。
二、软件设计1.单片机程序框架设计:根据具体的单片机型号和开发环境,设计合适的程序框架。
包括初始化设置、主循环、中断处理等。
2.脉冲生成程序设计:根据步进电机的控制方式(如全步进、半步进、微步进等),设计脉冲生成程序。
通过适当的延时和输出信号控制,产生合适的脉冲序列。
3.运动控制程序设计:设计运动控制程序,实现步进电机的前进、后退、加速、减速等功能。
根据具体需求,可以设计不同的运动控制算法,如速度环控制、位置环控制等。
4.保护机制设计:为了保护步进电机和控制系统,设计合适的保护机制。
如过流保护、过压保护、过载保护等。
三、实验验证1.硬件连接:将步进电机、驱动电路和单片机按照设计进行连接。
2.软件调试:通过单片机编程,调试程序代码。
确保脉冲生成、运动控制等功能正常工作。
3.功能测试:对步进电机控制系统进行功能测试,包括正转、反转、加速、减速等功能。
通过观察步进电机的运动状态和测量相关参数来验证系统设计的正确性和性能。
电机控制与拖动-第6章-控制电机及其控制系统 - 6.4 步进电动机
(2)多段式:又称为轴向分相式。按其磁路特点又可分为轴 向磁路多段式和径向磁路多段式两种。 ①轴向磁路多段式:定转子均沿 电机轴向按相数分段,每一组 定子铁芯中放置一相环形的控 制绕组。定转子圆周上冲有齿 形相近和齿数相同的均布小齿。 定子(或转子)铁芯每两相邻 段错开1/m齿距。优点是使定 子空间利用率好,环形控制绕 组绕制方便,转子的惯量较低, 步距角可以做得较小,起动和 运行频率较高。但是铁芯分段 和错位工艺较复杂,精度不易 保证。
(1)单脉冲运行 ① 定义 步进电动机的单脉冲运行是指电动机仅仅 改变一次通电状态时的运行方式。
27
② 动稳定区 步进电动机从一种通电状态切换到另一种通 电状态时,不致引起失步的区域。无负载时 为图中的ab区域。切换时失调角为:
( se ) ( se )
r
28
③ 裕量角:动稳定区边界a点到初始位置平衡 点O0的区域称为裕量角。
反转则为:AC-CB-BA-AC
9
3. 步距角:步进电动机每一拍转子所转过的角度。它的大小 是由转子的齿数、控制绕组的相数和通电方式所决定的。
360 其中:m为相数,Zr为齿数,C为通电方式系数。 s mZ r C
若为单拍或双拍方式,则为1,若为单、双方式,则为2。 4. 电机转速
60 f 其中:f 为脉冲频率。 mZ r C 5. 定子的相数:若需要更小的步距角,则可以用增大相数的 方法来实现,但是太多的相数会使电机转速减慢,同时也 使得电源更为复杂,造价也越高。一般步进电机的相数最 多到六相,只有极个别的特殊电机才作成更多相的。 n
驱动电源的基本部分包括变频信号源、脉冲分配 器和脉冲功率放大器三个部分。
37
分类:
(1)按步进电动机容量大小:功率步进电动机驱动 电源和伺服步进电动机驱动电源。
步进电机控制系统的设计
步进电机控制系统的设计
步进电机控制系统是一种常见的电机控制系统,用于控制步进电机的速度和方向。
设计步进电机控制系统需要考虑以下几个方面:
1. 选择合适的步进电机:根据应用场景,选择适合的步进电机型号和规格。
根据步进电机的电阻、电感等参数,计算出合适的电流和电压。
2. 选择合适的驱动器:根据步进电机的规格和控制要求,选择适合的驱动器型号。
常见的驱动器有常流驱动器和常压驱动器两种。
常流驱动器适用于控制步进电机的转速和保证输出力矩的精度;常压驱动器适用于控制步进电机的位置和运动精度。
3. 设计控制电路:根据步进电机的控制要求,设计相应的控制电路,包括信号输入电路、脉冲控制电路和电源电路。
根据实际需求,可以选择使用微控制器、PLC或者其他控制器实现控制。
4. 编写控制程序:根据实际控制要求,编写相应的控制程序。
程序可以使用各种高级语言编写,如C语言、Python等。
5. 测试和调试:完成步进电机控制系统的设计后,需要进行测试和调试。
测试包括电路测试和控制程序测试。
进行测试时需要注意安全,避免电路短路、过载等问题。
在调试过程中,需要根据测试结果进行调整优化,直到达到预期的控制效果。
总之,步进电机控制系统的设计需要充分考虑电机的规格和控制要求,选择合适的驱动器和控制器,设计合适的控制电路和编写适合的控制程序,并进行充分的测试和调试。
7.2 步进电机及其驱动控制系统
C N C 主要内容7.2 步进电机及其驱动控制系统主要内容:•步进电机的原理;•主要性能参数;•步进驱动的特点;•驱动控制:环形分配器,功放电路。
要求:在掌握原理基础上,注重围绕应用了解各型电机的特点、性能参数、功放电路。
主要内容定义:步进电机是一种脉冲控制的执行元件,将电脉冲转化为角位移。
每给步进电机输入一个脉冲,其转轴就转过一个角度,称为步距角。
✓脉冲数量----位移量;✓脉冲频率----电机转速;✓脉冲相序----方向。
组成:由步进电机驱动电源和步进电机组成,没有反馈环节,属于开环位置控制系统。
7.2.1 步进电机概述主要内容优点:结构简单,价格便宜,工作可靠;缺点:–容易失步(尤其在高速、大负载时),影响定位精度;–在低速时容易产生振动;–细分技术的应用,明显提高了定位精度,降低了低速振动。
应用:要求一般的开环伺服驱动系统,如经济型数控机床、和电加工机床、计算机的打印机、绘图仪等设备。
步进电动机的分类按运动方式分:旋转式、直线运动式、平面运动式和滚切运动式。
按工作原理分:反应式(磁阻式)、电磁式、永磁式、混合式。
按结构分:单段式(径向式)、多段式(轴向式),印刷绕组式。
按相数分:三相、四相、五相、六相和八相等。
按使用频率分:高频步进电动机和低频步进电动机。
(1) 反应式步进电动机极与极之间的夹角为60°,每个定子磁极上均匀分布了五个齿,齿槽距相等,齿距角为9°。
转子铁心上无绕组,只有均匀分布的40个齿,齿槽距相等,齿距角为360°/40=9°。
单段式的结构:三相反应式步进电动机。
定子铁心上有六个均匀分布的磁极,沿直径相对两个极上的线圈串联,构成一相励磁绕组。
特点:转子无绕组,定转子开小齿、步距小;应用最广。
7.2 步进电机及其驱动控制系统C N C(2) 永磁式步进电动机工作原理:转子或定子一方具有永久磁钢,另一方有软磁材料制成,由绕组轮流通电产生的磁场与永久磁钢相互作用,产生转矩是转子转动。
步进电机控制系统设计
步进电机控制系统设计目录1绪论 (3)1.1 步进电机概述 (3)1.2 步进电机的特征 (3)1.3 步进电机驱动系统概述 (4)1.4 课题研究的主要内容 (4)2步进电机驱动系统的方案论证 (5)2.1 步进电机驱动系统简介 (5)2.2 步进电机驱动器的特点 (5)2.3 混合式步进电机的驱动电路分类和性能比较 (6)2.3.1 双极性驱动器与单极性驱动器 (6)2.3.2 单电压驱动方式 (8)2.3.3 高低压驱动方式 (9)2.3.4 斩波恒流驱动 (10)2.4 方案的确定 (10)3混合式步进电动机驱动控制系统硬件设计 (11)3.1单片机最小系统 (11)3.2 红外遥控电路 (12)3.2.1 红外发射电路 (12)3.2.2 红外接收电路 (13)3.3 LCD显示电路 (14)3.4 双机通讯 (15)3.5 步进电机驱动部分 (16)3.5.1 单极性步进电机驱动 (16)3.5.2 双极性步进电机驱动 (18)3.6 电源电路 (18)4 软件设计 (19)4.1 主机LCD显示菜单程序 (19)4.2 双机通讯程序 (20)4.3 下位机步进电机驱动程序 (22)5 驱动器试验结果 (24)5.1 概述 (24)5.2 试验内容和结论 (24)总结 (26)参考文献 (27)1绪论1.1 步进电机概述步进电机是将电脉冲信号转换为角位移或线性运动的执行器。
它由步进电机及其动力驱动装置组成,形成开环定位运动系统。
当步进驱动器接收到脉冲信号时,它驱动步进电机以设定方向以固定角度(步进角度)旋转。
脉冲输入越多,电机旋转的角度越大;输入脉冲的频率越高,电机的速度越快。
因此,可以通过控制脉冲数来控制角位移,从而达到精确定位的目的;同时,通过控制脉冲频率可以控制电机转速,从而达到调速的目的。
根据自身结构,步进电机可分为三类:反应型(VR),永磁型(PM)和混合型(HB)。
混合式步进电机具有无功和永磁两种优点,应用越来越广泛。
基于单片机的步进电机控制系统研究
基于单片机的步进电机控制系统研究一、本文概述随着现代工业技术的快速发展,步进电机作为一种重要的执行元件,在精密控制、自动化设备、机器人技术等领域得到了广泛应用。
步进电机控制系统是实现其精确、高效运行的关键,而单片机作为一种集成度高、功能强大、成本较低的微控制器,在步进电机控制系统中发挥着重要作用。
本文旨在研究基于单片机的步进电机控制系统,分析其设计原理、实现方法以及性能优化,为步进电机控制系统的实际应用提供理论支持和技术指导。
本文首先介绍了步进电机的工作原理和特性,以及单片机在步进电机控制中的应用优势。
接着,详细阐述了基于单片机的步进电机控制系统的总体设计方案,包括硬件电路设计和软件编程实现。
在硬件电路设计方面,重点介绍了单片机选型、驱动电路设计、电源电路设计以及接口电路设计等内容;在软件编程实现方面,主要讨论了步进电机的控制算法、运动轨迹规划以及通信协议设计等关键技术。
本文还对基于单片机的步进电机控制系统的性能进行了深入分析和优化。
通过实验研究,对比了不同控制算法对步进电机运动性能的影响,探讨了提高系统精度和稳定性的有效方法。
针对实际应用中可能出现的干扰和故障,提出了相应的抗干扰措施和故障诊断方法。
本文总结了基于单片机的步进电机控制系统的研究成果,并展望了未来的发展方向。
通过本文的研究,不仅有助于加深对步进电机控制系统原理和实现方法的理解,也为步进电机控制系统的优化设计和实际应用提供了有益的参考和借鉴。
二、步进电机及其控制原理步进电机是一种特殊的电机类型,其设计允许它在离散的角度位置上精确地旋转。
与传统的交流或直流电机不同,步进电机不需要复杂的控制系统来实现精确的位置控制。
它通过一系列离散的步进动作,即“步进”,从一个位置移动到另一个位置。
每个步进的角度通常是固定的,这取决于电机的设计和构造。
步进电机通常由一组电磁线圈构成,每组线圈都与电机的一个或多个极相对应。
当电流通过线圈时,它会产生一个磁场,这个磁场与电机内的永磁体相互作用,导致电机轴的旋转。
步进电机多轴运动控制系统的研究
步进电机多轴运动控制系统的研究1. 本文概述随着现代工业自动化和精密控制技术的快速发展,步进电机因其高精度、易于控制等特点,在多轴运动控制系统中扮演着至关重要的角色。
本文旨在深入研究步进电机在多轴运动控制系统中的应用,探讨其控制策略、系统设计及性能优化等方面的问题。
本文将概述步进电机的基本原理和工作特性,分析其在多轴运动控制中的优势。
接着,将重点探讨步进电机在多轴控制系统中的控制策略,包括开环控制和闭环控制,以及这两种控制策略在实际应用中的优缺点比较。
本文还将详细讨论多轴运动控制系统的设计与实现,包括硬件选型、软件编程及系统集成等方面。
特别关注步进电机与控制器之间的接口技术、运动控制算法的实现,以及系统在实际工作环境中的稳定性和可靠性。
本文将探讨步进电机多轴运动控制系统的性能优化方法,包括速度、精度和效率等方面的提升策略。
通过实验验证和数据分析,评估不同优化策略的实际效果,为步进电机在多轴运动控制系统中的应用提供理论指导和实践参考。
本文将从原理分析、控制策略、系统设计到性能优化等多个方面,全面深入研究步进电机在多轴运动控制系统中的应用,旨在为相关领域的研究和实践提供有益的参考和指导。
2. 步进电机原理及特性步进电机是一种特殊的电机类型,其运动不是连续的,而是按照固定的步长进行。
这种电机的特性使其非常适合需要精确控制位置和速度的应用场景。
步进电机通常被用在开环控制系统中,因为它们不需要持续的反馈信号来调整其运动。
步进电机的工作原理基于电磁学。
电机内部包含一系列电磁极,当电流通过这些电磁极时,它们会产生磁场。
这些磁场与电机内部的永磁体相互作用,产生旋转力矩,从而使电机转动。
通过控制电流的方向和顺序,可以控制电机的旋转方向和步长。
步进电机的主要特性包括其步距角、定位精度和动态性能。
步距角是电机每接收一个脉冲信号所转动的角度,这个角度通常很小,可以在5到8之间。
定位精度是指电机能够准确到达的目标位置,这主要取决于电机的制造精度和控制系统的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机构造图
转轴成平行方向的断面图
步进电机外形结构
常见步进电机外形构造
步进电机内部结构
步进电机内部结构
步进电机的内部构造
2. 工作原理 给 A 相绕组通电时,转 子位置如图( a ),转子 齿偏离定子齿一个角度。 由于励磁磁通力图沿磁阻 最小路径通过,因此对转 子产生电磁吸力,迫使转 子齿转动,当转子转到与 定子齿对齐位置时 ( 图 b) ,因转子只受径向力而无 切线力,故转矩为零,转 子被锁定在这个位置上。 由此可见:错齿是助使步 进电机旋转的根本原因。
步进电动机
脉冲分配 器和功放
概述 步进电动机的历史:德国百格拉公司于1973年发明了 五相混合式步进电机及其驱动器;1993年又推出了 性能更加优越的三相混合式步进电机。 我国在80年代以前,一直是反应式步进电机占统治地 位,混合式步进电机是80年代后期才开始发展。 步进电动机的定义:是一种专门用于速度和位置精确 控制的特种电机,它旋转是 以固定的角度(称为步距角) 一步一步运行的,故称步进 电机。
2014-9-14
三相六拍环形分配表
51
•1)环形分配器
•另一种是硬件环形分配, 采 用数字电路搭建或专用的环形 分配器件将连续的脉冲信号经 电路处理后输出环形脉冲。采 用数字电路搭建的环形分配器 通常由分立元件(如触发器、 逻辑门等)构成,特点是体积 大,成本高,可靠性差。专用 的环形分配器目前市面上有很 多 种 , 如 CMOS 电 路 CH250 即为三相步进电动机的专用环 形分配器,它的引脚功能及三 相六拍线路图如图所示。
2014-9-14
50
它们的环形分配见下表。把表中的数值按顺序存入内
存的EPROM中,并分别设定表头的地址为2000 H, 表尾的地址为2005 H。计算机的P1口按从表头开始逐 次加1的地址依次取出存储内容进行输出,电动机则 正向旋转。如果按从2005 H ,逐次减1的地址依次取 出存储内容进行输出,电动机则反转。
4.1
步进电动机结构与工作原理
3. 通电方式
A
B'
A
C' B
B'
C' B
A'
C
A'
C
同理,B相通电时,转子会转过30角,2、4 齿和B、B´ 磁极轴线对齐;当C相通电时,转子 再转过30角,1、3齿和C´、C 磁极轴线对齐。
4.1
步进电动机结构与工作原理
3. 通电方式
这种工作方式下,三个绕组依次通电一次为 一个循环周期,一个循环周期包括三个工作脉冲 ,所以称为三相单三拍工作方式。 按AB C A ……的顺序给三相绕组 轮流通电,转子便一步一步转动起来。每一拍转 过30°(步距角),每个通电循环周期(3拍)转过 90°(一个齿距角)。
图示为是一个89 C51单片机与步进电动机驱动电路
接口连接的框图。采用查表法。P1口的三个引脚经过 光电隔离、功率放大之后,分别与电动机的A, B, C三 相连接。当采用三相六拍方式时,电动机正转的通电 顺序为A → AB → B → BC → C → CA → A;电动机 反转的顺序为A→AC→C →CB→B→BA→A。
步进电动机结构与工作原理
步进电动机是一种将电脉冲信号转换成机械位移的机 电执行元件。 角位移 输入脉冲个数 运行速度 步进电动机的分类: 工作原理 反应式 永磁式 混合式 输出转 快速步进电机 矩大小 功率步进电机 输入脉冲频率
励磁相数 二、三、四、五、六、八相等
4.1
步进电动机结构与工作原理
步进电机是利用电磁铁的作用原理,将脉冲 信号转换为线位移或角位移的电机。每来一个电脉 冲,步进电机转动一定角度,带动机械移动一小段 距离。 特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,可改变转动方向。
3. 通电方式
步进电动机的步距角
由一个通电状态改变到下一个通电状态时,电动 机转子所转过的角度称为步距角。 α =360 /ZKm 其中:Z-转子齿数 m-定子绕组相数 K-通电系数 K=1,2
若二相步进电动机的 Z=100 ,单拍运行时,其 步距角 若按单、双通电方式 运行时,步距角
360 1.8 2 100 360 0.9 2 2 100
指 令脉 冲
环形 分 配器
功率 驱 动器
步进 电 动机
负载
输出
2014-9-14
47
1.脉冲分配器的作用
当方向电平为低时,脉 冲分配器的输出按A-B-C 的顺序循环产生脉冲。
f A B C
当方向电平为高时, 脉冲分配器的输出按A-CB的顺序循环产生脉冲。
f A C B
2.功率放大器的作用 将脉冲分配器的输出信号进行电流放大后给电动机 的定子绕组供电,使电动机的转子产生输出转矩。
4.1.2 步进电机的驱动方法
•1)环形分配器
•步进电动机在一个脉冲的作用下,转过一个相应的步距角, 因此只要控制一定的脉冲数,即可精确控制步进电动机转过的 相应的角度。但步进电动机的各绕组必须按一定的顺序通电才 能正确工作,这种使电动机绕组的通断电顺序按输入脉冲的控 制而循环变化的过程称为环形脉冲分配。 •实现环形分配的方法有两种。一种是计算机软件分配,采用查 表或计算的方法使计算机的三个输出引脚依次输出满足速度和 方向要求的环形分配脉冲信号。这种方法能充分利用计算机软 件资源,减少硬件成本,尤其是多相电动机的脉冲分配更能显 示出这种分配方法的优点。但由于软件运行会占用计算机的运 行时间,因而会使插补运算的总时间增加,从而影响步进电动 机的运行速度。
第 4 章 电动机驱动 与控制技术 4.1 步进电动机驱动及其 控制技术
4.1.1 步进电动机的基本结构和工作原理
概述 步进电动机称为脉冲电动机,是数字控制系统中的 一种执行元件。其作用是将脉冲电信号转换为角位 移或直线位移。
步进电动机角位移与脉冲 k 成正比。
步进电动机速度与脉冲频率成正比。具有同步特性 。
“六拍”:每六次换接为一个 循环。有六种通电状态。 A-AB-B-BC-C-CA-A„„
3. 通电方式 1)三相单三拍
A相绕组通电,B、C 相
A
B' 1
C'
2
4
C
3 A'
B
不通电。由于在磁场作用下, 转子总是力图旋转到磁阻最 小的位置,故在这种情况下, 转子必然转到左图所示位置: 1、3齿与A、A′极对齐。
3. 通电方式
步进电动机的步距角
由此可见,步进电动机的转子齿数Z和定子相数( 或运行拍数)愈多,则步距角愈小,控制越精确。 当定子控制绕组按着一定顺序不断地轮流通电时 ,步进电动机就持续不断地旋转,所以可进行速度控 制。如果电脉冲的频率为 f (Hz),步距角用弧度表示 ,则步进电动机的转速为:
4.1
步进电动机结构与工作原理
种类:励磁式和反应式两种。 区别在于励磁式步进电机的转子上有励磁线圈, 反应式步进电机的转子上没有励磁线圈。 下面以反应式步进电机为例说明步进电机的 结构和工作原理。
1. 基本结构
步进电动机构造:由转子(转子铁芯、永磁体、转轴、滚珠 轴承),定子(绕组、定子铁芯),前后端盖等组成。最典型两 相混合式步进电机的定子有8个大齿,40个小齿,转子有50 个小齿;三相电机的定子有9个大齿,45个小齿,转子有50 个小齿。
16 15 14 13 12 11 10 9 UD J3 L J3 r W V U R* R
J6 r J6 L 1 2 3 4 5 (a)
EN CP Us 6 7 8
环形分配器CH250引脚图 (a) 引脚功能;
1 F 1 00 k
16 10 R* UD 9 R
6 EN U V
+12 V
11 12
2. 工作原理 步进电动机的工作原理是磁通总是走磁阻最小的 路径,由于磁力线的扭曲而产生拖动转矩。 三相反应式步进电动机按通电方式的不同,每步转动不 同的角度。下面以三相单三拍为例,说明其工作原理。
3. 通电方式 三相步进电动机具有三相单三拍、三相六拍和三相双 三拍通电运行状态。 “三相”:步进电动机具有三相定子绕组。 “单、双”:每次只有一相(单)或两相(双)绕组 通电。 “三拍”:每三次换接为一个循环。有三种通电状态 。 A-B-C-A„„
从以上对步进电机三种驱动方式的分析可得步 距角计算公式:
360 kZ r m
α —步距角 Zr —转子齿数 m —每个通电循环周期的拍数 K为状态系数,相邻两次通电的相数目相同时,K 取1,相邻两次通电的相数目不同时,K取2. 实用步进电机的步距角多为3和1.5 。为了获得 小步距角,电机的定子、转子都做成多齿的。
4.1
步进电动机结构与工作原理
3. 通电方式
3) 三相双三拍
按AB BC CA的顺序给三相绕组轮流通 电。每拍有两相绕组同时通电。
A
B'
A C' B
B'
A C' B
B'
C'
C
A'
C
A'
C
A'
B
AB通电
BC通电
CA通电
与单三拍方式相似,双三拍驱动时每个通电循 环周期也分为三拍。每拍转子转过30 (步距角), 一个通电循环周期(3拍)转子转过90(齿距角)。
2 f f 60 KmZ n 60 60 f 2 2 KmZ
步进电动机具有自锁能力
当控制电脉冲停止输入,而让最后一个脉冲控制的 绕组继续通直流电时,电机可以保持在固定的位置 上。这样,步进电动机可以实现停车时转子定位。
永磁式步进电机工作原理
4.1.2 步进电机的驱动方法
步进电动机的电枢通断电次数和各相通电顺序决定 了输出角位移和运动方向,控制脉冲分配频率可实现 步进电动机的速度控制。 因此,步进电机控制系统一 般采用开环控制方式。 开环步进电动机控制系统框图 ,系统主要由环形分配器、功率驱动器、 步进电动机 等组成。