广东省广州市中考数学试卷及答案
2024广东省广州市天河区中考一模数学试题含答案解析
2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
广州市2023年中考数学试卷含答案
广州市2023年中考数学试卷含答案一、选择题(每题2分,共10题)1. 一本书的原价是150元,打8折后的价格是多少?A. 120元B. 125元C. 130元D. 135元2. 已知直线l1与直线l2互相垂直,直线l1的斜率为4/5,则直线l2的斜率为多少?A. -5/4B. -4/5C. 4/5D. 5/43. 某数的6倍减去4得到56,这个数是多少?A. 4B. 8C. 12D. 164. 若图中正方形ABCD的边长为4cm,点E为边AB上的一点,且(图略)A. 3cm²B. 4cm²C. 5cm²D. 6cm²5. 高度为4cm的正方体A、B、C组成的长方体如图所示,则长方体的体积是多少?(图略)A. 12cm³B. 16cm³C. 20cm³D. 24cm³二、填空题(每空2分,共8空)1. 一个数的4倍减去2得到14,这个数是_______。
2. 若直线l1的斜率为3/2,直线l2过点A(2, 4)且与l1平行,则直线l2的方程为_______。
3. 在△ABC中,∠B=90°,AB=3cm,BC=4cm,则AC的长度是_______。
4. 半径为5cm的圆的周长是_______cm。
三、计算题(每题10分,共2题)1. 用两个算式表示:539人共坐了15排靠窗和走道座位的飞机,且每排有40个座位。
解:设靠窗的座位数为x,则走道座位数为15-x。
靠窗座位数x乘以靠窗后座位价格fi加上走道座位数(15-x)乘以走道后座位价格di,等于总收入。
得到以下方程组:40x*fi + 40(15-x)*di = 539fi + 539di (1)x + 15-x = 15 (2)方程组(1)求得fi + di = 40方程组(2)求得40x = 15解此方程组,得靠窗座位价格fi = 5元,走道座位价格di = 35元。
2024年广东省广州市中考真题数学试卷含答案解析
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
2023年广州市初中数学中考卷
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列选项中,既是有理数又是无理数的是()。
A. 0B. πC. √9D. √22. 下列各数中,3的算术平方根是()。
A. 9B. √3C. 1/3D. 33. 下列函数中,是一次函数的是()。
A. y = 2x²B. y = 3xC. y = 1/xD. y = x² + 14. 下列几何图形中,是平行四边形的是()。
A. 等腰三角形B. 矩形C. 梯形D. 直角三角形5. 下列方程中,是一元二次方程的是()。
A. x + y = 1B. x² + y² = 1C. x² + 2x + 1 = 0D. 2x + 3y = 4二、判断题(每题1分,共5分)1. 任何实数都可以表示为分数形式。
()2. 同类二次根式可以进行加减运算。
()3. 一次函数的图像是一条直线。
()4. 平行四边形的对角线互相平分。
()5. 一元二次方程的解可能是两个不相等的实数。
()三、填空题(每题1分,共5分)1. 已知 a = 2,b = 3,则a² + b² = _______。
2. 若x² 2x + 1 = 0,则 x = _______。
3. 一次函数 y = kx(k ≠ 0)的图像是一条过_______的直线。
4. 平行四边形的对边_______。
5. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是_______。
四、简答题(每题2分,共10分)1. 简述实数的分类。
2. 解释同类二次根式的概念。
3. 描述一次函数的性质。
4. 说出平行四边形的一个性质。
5. 解释一元二次方程的解的概念。
五、应用题(每题2分,共10分)1. 已知 a = 3,b = 4,求a² + b² 的值。
2. 解方程x² 3x + 2 = 0。
广东省广州市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
某某省某某市2019年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣6的绝对值是|﹣6|=6.故选:B.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)某某正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5故选:A.【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,∴y1==﹣6,y2==3,y3==2,又∵﹣6<2<3,∴y1<y3<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE 得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值X围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P 到直线l的距离是 5 cm.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8 .【分析】直接利用分式、二次根式的定义求出x的取值X围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或45°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.【解答】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,某某省正加速布局以5G等为代表的战略性新兴产业,据统计,目前某某5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前某某5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P 两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值X围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值X围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y与x 的函数关系式.再由m>0,即求得x的取值X围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的X围讨论x的具体X围,即求得函数H对应的交点P纵坐标的X围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值X围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。
2023-2024学年广东省广州市增城区八年级上学期期中考数学试卷含答案精选全文
2023学年第一学期期中质量检测问卷八年级数学一、选择题(共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A. B. C. D.2.下面四个图形中,线段BE 是ABC △的高的图是()A.B.C.D.3.ABC △中,D 是BC 延长线上一点,40B ∠=︒,120ACD ∠=︒,则A ∠等于()A.60︒B.70︒C.80︒D.90︒4.如图,用直尺和圆规作已知角的平分线的示意图,则说明CAD DAB ∠=∠的依据()A.SSSB.SASC.ASAD.AAS5.如图,CD ,CE ,CF 分别是ABC △的高、角平分线、中线,则下列各式中错误的是()A.2AB BF =B.12ACE ACB ∠=∠C.AE BE= D.CD BE⊥6.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下条件仍不能判定ABE ACD ≌△△的是()A.B C ∠=∠B.AD AE =C.BD CE= D.BE CD =7.等腰三角形的一个角是80︒,则它的底角是()A.50︒B.80︒C.20︒或80︒D.50︒或80︒8.如图,ABC AED ≌△△,点E 在线段BC 上,140∠=︒,则AED ∠的度数是()A.70︒B.68︒C.65︒D.60︒9.如图,在ABC △中,90C ∠=︒,15A ∠=︒,60DBC ∠=︒,1BC =,则AD 的长为()A.1.5B.2C.3D.410.如图,已知ABC △中,24cm AB AC ==,B C ∠=∠,16cm BC =,点D 为AB 的中点,如果点P 在线段BC 上以4cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,当点Q 的运动速度为()cm /s 时,能够在某一时刻使BPD △与CQP △全等.A.4B.3C.4或3D.4或6二、填空题(共6小题,每小题3分,满分18分)11.已知点(3,2)P -与点Q 关于x 轴对称,则点Q 的坐标为__________.12.已知一个三角形的三边长为3,8,a ,则a 的取值范围是__________.13.一个多边形的内角和等于1080︒,这个多边形的边数为__________.14.如图,在ABC △中,AB AC =,D 为BC 中点,35BAD ∠=︒,则B ∠的大小为__________度.15.如图,AO 、BO 分别平分CAB ∠、CBA ∠.点O 到AB 的距离4OD =,若ABC △的周长为28,则ABC △的面积为__________.16.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E 、F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM △周长的最小值为__________.三、解答题:(本题有8个小题,共72分,解答要求写出文字说明、证明过程或计算步骤.)17.(满分4分)如图,已知//AB CD ,42B ∠=︒,64ACD ∠=︒,求ACB ∠的度数.18.(满分4分)如图,点E 、F 在BC 上,BE FC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.19.(满分6分)如图,在平面直角坐标系中,ABC △的三个顶点均在格点上.(1)在网格中作出ABC △关于y 轴对称的图形111A B C △;(2)若网格的单位长度为1,求111A B C △的面积.20.(满分6分)如图,在ABC △中,AD BC ⊥于点D ,ABC △的角平分线BE 交AD 于点O ,已知40ABC ∠=︒,求AOB ∠度数.21.(满分8分)如图,在ABC △,AB AC =.(1)作AB 垂直平分线DE ,交AC 于点D ,交AB 于点E (保留作图痕迹,不写作法);(2)连接BD ,若5AE =,BCD △的周长是17,求ABC △的周长.22.(满分10分)如图,ABC △中,90ACB ∠=︒,DC AE =,AE 是BC 边上的中线,过点C 作CF AE ⊥,垂足为点F ,过点B 作BD BC ⊥交CF 的延长线于点D .(1)求证:AC CB =.(2)若12cm AC =,求BD 的长.23.(满分10分)如图,在四边形ABDC 中,90D B ∠=∠=︒,O 为BD 的中点,且AO 平分BAC ∠.求证:(1)CO 平分ACD ∠.(2)AB CD AC +=.24.(满分12分)如图1,点A 、D 在y 轴正半轴上,点B 、C 在x 轴上,CD 平分ACB ∠与y 轴交于D 点,90CAO BDO ∠=︒-∠.图1图2图3(1)求证:AC BC =;(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且AD DE =,求BC EC +的长;(3)在(1)中,过D 作DF AC ⊥于F 点,点H 为FC 上一动点,点G 为OC 上一动点,(如图3),当H 在FC 上移动、点G 点在OC 上移动时,始终满足GDH GDO FDH ∠=∠+∠,试判断FH 、GH 、OG 这三者之间的数量关系,写出你的结论并加以证明.25.(满分12分)如图,在等边ABC △中,线段AM 为边BC 上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE △,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:CAM CBE ∠=∠;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.2023学年第一学期期中质量检测八年级数学评分标准一、选择题(本大题满分30分,每题3分)题号12345678910答案DBCACDDABD二、填空题(本大题满分18分,每题3分)题号111213141516答案(3,2)511a <<8555610三、解答题(本大题有8小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分4分)解://AB CD ,64ACD ∠=︒,64ACD A ∴∠=∠=︒,在ABC △中,180A B ACB ∠+∠+∠=︒,42B ∠=︒,18074ACB A B ∴∠=︒-∠-∠=︒.18.(本题满分4分)证明:BE CF = ,BE EF EF CF ∴+=+,BF EC ∴=,在ABF △和DCE △中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF DCE ∴≌△△,A D ∴∠=∠.19.(本题满分6分)解:(1)如图所示,111A B C △即为所求(2)111111432322145222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△.20.(本题满分6分)解:AD BC ⊥ ,90ADB ∴∠=︒,9050BAD ABC ∴∠=︒-∠=︒,40ABC ∠=︒ ,BE 平分ABC ∠,1202ABO ABC ∴∠=∠=︒.180110AOB ABO BAD ∴∠=︒-∠-∠=︒.21.(本题满分8分)解:(1)如图所示,DE 为所求.(2)DE 是AB 的垂直平分线,5AB BE ∴==,AD BD =,10AB AE BE ∴=+=.17BCD C BD DC BC =++= △,17AD DC BC ∴++=,17AC BC ∴+=,101727ABC C AB AC BC ∴=++=+=△.22.(本题满分10分)(1)AF DC ⊥ ,90ACF FAC ∴∠+∠=︒,90ACF FCB ∠+∠=︒ ,EAC FCB ∴∠=∠.BD BC ⊥ ,90ACB ∠=︒,90CBD ACB ∴∠=∠=︒.在DBC △和ECA △中EAC FCBACE CBD DC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DBC ECA ∴≌△△,AC BC ∴=.(2)DBC ECA ≌△△,12cm AC =,BD CE ∴=,12cm AC BC ==.E 是BC 的中点,11126cm 22EC BC ∴==⨯=.6cm BD CE ∴==.23.(本题满分10分)解:(1)证明:过点O 作OE AC ⊥于E ,90B ∠=︒ ,OA 平分BAC ∠,OB OE ∴=.点O 为BD 的中点,OB OD ∴=,OE OD ∴=,又90D ∠=︒ ,OC ∴平分ACD ∠.(2)证明:由(1)得OB OE OD ==,在Rt ABO △和Rt AEO △中,AO AOOB OE =⎧⎨=⎩,Rt Rt ABO AEO ∴≌△△,AB AE ∴=.在Rt CEO △和Rt CDO △中,CO COOE OD=⎧⎨=⎩,Rt Rt CEO CDO ≌△△,CD CE ∴=,AE CE AC += ,AB CD AC ∴+=.24.(本题满分12分)(1)解:(1)CD 平分ACB ∠,ACD BCD ∴∠=∠.90AOB AOC ∠=∠=︒ ,90CAO BDO ∠=︒-∠,90DBO BDO ∠=︒-∠ ,CAO DBO ∴∠=∠.在ACD △和BCD △中,CAO DBOACD BCD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACD BCD ∴≌△△,AC BC ∴=.(2)解:如图2,过点D 作DM AC ⊥于M ,CD 平分ACB ∠,OD BC ⊥,DO DM ∴=.在BOD △和AMD △中,90DBO DAM BOD AMD DO DM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,(AAS)BOD AMD ∴≌△△,OB AM ∴=.在Rt DOC △和Rt DMC △中,DO DMDC DC=⎧⎨=⎩,Rt Rt (HL)DOC DMC ∴≌△△,OC MC ∴=.CAO DBO ∠=∠ ,DEA DBO ∠=∠,DAE DEA ∴∠=∠,DM AC ⊥ ,AM EM ∴=,OB EM ∴=.(4,0)C ,4OC ∴=,28BC CE OB OC MC EM OC ∴+=++-==.图2(3)解:GH OG FH=+证明:如图3,在GO 的延长线上取一点N ,使ON FH =,CD 平分ACO ∠,DF AC ⊥,OD OC ⊥,DO DF ∴=.在DON △和DFH △中,90DO DF DON DFH ON FH =⎧⎪∠=∠=︒⎨⎪=⎩,(SAS)DON DFH ∴≌△△,DN DH ∴=,ODN FDH ∠=∠,GDH GDO FDH ∠=∠+∠ ,GDH GDO ODN GDN ∴∠=∠+∠=∠,在DGN △和DGH △中,DN DH GDN GDH DG DG =⎧⎪∠=∠⎨⎪=⎩,(SAS)DGN DGH ∴≌△,GH GN ∴=,ON FH = ,GH GN OG ON OG FH ∴==+=+.图325.(本题满分12分)解:(1)ABC △是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠,30CAM ∴∠=︒.(2)ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠.在ADC △和BEC △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ADC BEC ∴≌△△,MAC MBE ∴∠=.(3)AOB ∠是定值,60AOB ∠=︒.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≌△△,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC △是等边三角形,线段AM 为BC 边上的中线,AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒,903060BOA ∴∠=︒-︒=︒.图1②当点D 在线段AM 的延长线上时,如图2,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴≌△△,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.图2③当点D 在线段MA 的延长线上时,如图3,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴△△,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒,150CBE CAD ∴∠=∠=︒,30CBO ∴∠=︒,30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.图3。
2024年广东省广州市中考数学试卷正式版含答案解析
绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2024年广东省广州市中考数学试卷+答案解析
2024年广东省广州市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数,,0,10中,最小的数是()A. B. C.0 D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若,则下列运算正确的是()A. B. C. D.4.若,则()A. B. C. D.5.为了解公园用地面积单位:公顷的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在这一组的公园个数最多C.用地面积在这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A. B.C. D.7.如图,在中,,,D为边BC的中点,点E,F分别在边AB,AC上,,则四边形AEDF的面积为()A.18B.C.9D.8.函数与的图象如图所示,当时,,均随着x的增大而减小.A.B.C.D.9.如图,中,弦AB的长为,点C在上,,所在的平面内有一点P,若,则点P与的位置关系是()A.点P在上B.点P在内C.点P在外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径l是5,则该圆锥的体积是()A.B.D.二、填空题:本题共6小题,每小题3分,共18分。
11.如图,直线l分别与直线a,b相交,,若,则的度数为______.12.如图,把,,三个电阻串联起来,线路AB上的电流为I,电压为U,则,当,,,时,U的值为______.13.如图,▱ABCD中,,点E在DA的延长线上,,若BA平分,则______.14.若,则______.15.定义新运算:例如:,若,则x的值为______.16.如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数的图象上,,将线段AB沿x轴正方向平移得线段点A平移后的对应点为,交函数的图象于点D,过点D作轴于点E,则下列结论:①;②的面积等于四边形的面积;③AE的最小值是;其中正确的结论有______填写所有正确结论的序号三、解答题:本题共9小题,共72分。
2023年广东省广州市中考数学试卷及其答案
2023年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣(﹣2023)=()A.﹣2023B.2023C.D.2.(3分)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.3.(3分)学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是()A.众数为10B.平均数为10C.方差为2D.中位数为94.(3分)下列运算正确的是()A.(a 2)3=a 5B.a 8÷a 2=a 4(a ≠0)C.a 3•a 5=a8D.(2a )﹣1=(a ≠0)5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)已知正比例函数y 1=ax 的图象经过点(1,﹣1),反比例函数y 2=的图象位于第一、第三象限,则一次函数y =ax +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行10nmile 到达C 点,在C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为()nmile .A.B.C.20D.8.(3分)随着城际交通的快速发展,某次动车平均提速60km/h,动车提速后行驶480km与提速前行驶360km所用的时间相同.设动车提速后的平均速度为xkm/h,则下列方程正确的是()A.B.C.D.9.(3分)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A =α,则(BF+CE﹣BC)的值和∠FDE的大小分别为()A.2r,90°﹣αB.0,90°﹣αC.2r,D.0,10.(3分)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)近年来,城市电动自行车安全充电需求不断攀升.截至2023年5月底,某市已建成安全充电端口逾280000个,将280000用科学记数法表示为.12.(3分)已知点A(x1,y1),B(x2,y2)在抛物线y=x2﹣3上,且0<x1<x2,则y1y2.(填“<”或“>”或“=”)13.(3分)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a的值为.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为°.14.(3分)如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为.15.(3分)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E 分别是AB,MB的中点,当AM=2.4时,DE的长是.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2﹣6x+5=0.18.(4分)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.19.(6分)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是,所在圆的圆心坐标是;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)20.(6分)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.21.(8分)甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?22.(10分)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y 2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x(x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?23.(10分)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.24.(12分)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.25.(12分)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长FA,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.2023年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣(﹣2023)=()A.﹣2023B.2023C.D.【解答】解:﹣(﹣2023)=2023,故选:B.2.(3分)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:D.3.(3分)学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是()A.众数为10B.平均数为10C.方差为2D.中位数为9【解答】解:在10,11,9,10,12中,10出现的次数最多,故众数为10;把数据10,11,9,10,12从小到大排列,排在中间的数是10,故中位数是10;数据10,11,9,10,12的平均数为=10.4,方差为:[2×(10﹣10.2)2+(11﹣10.2)2+(9﹣10.2)2+(12﹣10.2)2]=1.08,所以这组数据描述正确的是众数为10.故选:A.4.(3分)下列运算正确的是()A.(a2)3=a5B.a8÷a2=a4(a≠0)C.a3•a5=a8D.(2a)﹣1=(a≠0)【解答】解:A.(a2)3=a6,故此选项不合题意;B .a 8÷a 2=a 6(a ≠0),故此选项不合题意;C .a 3•a 5=a 8,故此选项符合题意;D .(2a )﹣1=(a ≠0),故此选项不合题意.故选:C .5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:,解不等式①得:x ≥﹣1,解不等式②得:x <3,∴原不等式组的解集为:﹣1≤x <3,∴该不等式组的解集在数轴上表示如图所示:故选:B .6.(3分)已知正比例函数y 1=ax 的图象经过点(1,﹣1),反比例函数y 2=的图象位于第一、第三象限,则一次函数y =ax +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵正比例函数y 1=ax 的图象经过点(1,﹣1),点(1,﹣1)位于第四象限,∴正比例函数y 1=ax 的图象经过第二、四象限,∴a <0;∵反比例函数y 2=的图象位于第一、第三象限,∴b >0;∴一次函数y =ax +b 的图象经过第一、二、四象限,不经过第三象限,故选:C .7.(3分)如图,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行10nmile 到达C 点,在C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为()nmile.A.B.C.20D.【解答】解:连接AC,由题意得:AC⊥CB,在Rt△ACB中,∠ABC=90°﹣30°=60°,BC=10海里,∴AC=BC•tan60°=10(海里),∴此时渔船与小岛A的距离为10海里,故选:D.8.(3分)随着城际交通的快速发展,某次动车平均提速60km/h,动车提速后行驶480km与提速前行驶360km所用的时间相同.设动车提速后的平均速度为xkm/h,则下列方程正确的是()A.B.C.D.【解答】解:∵随着城际交通的快速发展,某次动车平均提速60km/h,且动车提速后的平均速度为xkm/h,∴动车提速前的平均速度为(x﹣60)km/h.根据题意得:=.故选:B.9.(3分)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A =α,则(BF+CE﹣BC)的值和∠FDE的大小分别为()A.2r,90°﹣αB.0,90°﹣αC.2r,D.0,【解答】解:如图,连接IF,IE.∵△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,∴BF=BD,CD=CE,IF⊥AB,IE⊥AC,∴BF+CE﹣BC=BD+CD﹣BC=BC﹣BC=0,∠AFI=∠AEI=90°,∴∠EIF=180°﹣α,∴∠EDF=∠EIF=90°﹣α.故选:D.10.(3分)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)近年来,城市电动自行车安全充电需求不断攀升.截至2023年5月底,某市已建成安全充电端口逾280000个,将280000用科学记数法表示为 2.8×105.【解答】解:280000=2.8×105,故答案为:2.8×105.12.(3分)已知点A(x1,y1),B(x2,y2)在抛物线y=x2﹣3上,且0<x1<x2,则y1<y2.(填“<”或“>”或“=”)【解答】解:由题意得抛物线y=x2﹣3的对称轴x=0,又a=1>0,∴抛物线y=x2﹣3开口向上.∴当x>0时y随x的增大而增大.∴对于A、B当0<x1<x2时,y1<y2.故答案为:<.13.(3分)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a的值为30.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为36°.【解答】解:由条形统计图可得,a=100﹣10﹣50﹣10=30,“一等奖”对应扇形的圆心角度数为:360°×=36°,故答案为:30,36.14.(3分)如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为.【解答】解:如图,连接AE交BD于一点F,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AF=CF,∴AF+EF=AE,此时CF+EF最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在BC上且BE=1,∴AE===,故CF+EF的最小值为.故答案为:15.(3分)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.【解答】解:过E作EH⊥AD于H,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=5,∵AE=12,∴AD==13,∵△ADE的面积=AD•EH=AE•DE,∴13EH=12×5,∴EH=,点E到直线AD的距离为.故答案为:.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E 分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3<S≤4.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3<S≤4.故答案为:1.2;3<S≤4.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2﹣6x+5=0.【解答】解:分解因式得:(x﹣1)(x﹣5)=0,x﹣1=0,x﹣5=0,x 1=1,x2=5.18.(4分)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.【解答】证明:∵B是AD的中点,∴AB=BD,∵BC∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(SAS),∴∠C=∠E.19.(6分)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是(5,2),所在圆的圆心坐标是(5,0);(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)【解答】解:(1)如下图,由平移的性质知,点D(5,2),所在圆的圆心坐标是(5,0),故答案为:(5,2)、(5,0);(2)在图中画出,并连接AC,BD,见下图;(3)和长度相等,均为×2πr=×2=π,而BD=AC=5,则封闭图形的周长=++2BD=2π+10.20.(6分)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.21.(8分)甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?【解答】解:(1)画树状图如下:一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,∴P(乙选中球拍C)=;(2)公平.理由如下:画树状图如下:一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,∴P(甲先发球)=,P(乙先发球)=,∵P(甲先发球)=P(乙先发球),∴这个约定公平.22.(10分)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y 2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x(x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?【解答】解:(1)当0≤x≤5时,设y1与x之间的函数解析式为y1=kx(k≠0),把(5,75)代入解析式得:5k=75,解得k=15,∴y1=15x;当x>5时,设y1与x之间的函数解析式为y1=mx+n(m≠0),把(5,75)和(10,120)代入解析式得,解得,∴y1=9x+30,综上所述,y1与x之间的函数解析式为y1=;(2)在甲商店购买:9x+30=600,解得x=63,∴在甲商店600元可以购买63千克水果;在乙商店购买:10x=600,解得x=60,∴在乙商店600元可以购买60千克,∵63>60,∴在乙商店购买更多一些.23.(10分)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.【解答】解:(1)如图1,作法:1.以点D为圆心,BC长为半径作弧,2.以点A为圆心,AC长为半径作弧,交前弧于点E,3.连接DE、AE,△ADE就是所求的图形.证明:∵四边形ABCD是菱形,∴AD=AB,∵DE=BC,AE=AC,∴△ADE≌△ABC(SSS),∴△ADE就是△ABC绕点A逆时针旋转得到图形.(2)①如图2,由旋转得AB=AD,AC=AE,∠BAC=∠DAE,∴=,∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△ABD∽△ACE.②如图2,延长AD交CE于点F,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵∠BAC=∠DAE,∴∠DAE=∠DAC,∵AE=AC,∴AD⊥CE,∴∠CFD=90°,设CF=m,CD=AD=x,∵=tan∠DAC=tan∠BAC=,∴AF=3CF=3m,∴DF=3m﹣x,∵CF2+DF2=CD2,∴m2+(3m﹣x)2=x2,∴解关于x的方程得x=m,∴CD=m,∴cos∠DCE===,∴cos∠DCE的值是.24.(12分)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.【解答】解:(1)把m=﹣2代入y=﹣(x<0)得n=﹣=1;故n的值为1;(2)①在y=(x﹣m)(x﹣n)中,令y=0,则(x﹣m)(x﹣n)=0,解得x=m或x=n,∴M(m,0),N(n,0),∵点P(m,n)在函数y=﹣(x<0)的图象上,∴mn=﹣2,令x=,得y=(x﹣m)(x﹣n)=﹣(m﹣n)2=﹣2﹣(m+n)2≤﹣2,即当m+n=0,且mn=﹣2,则m2=2,解得:m=﹣(正值已舍去),即m=﹣时,点E到达最高处;②假设存在,理由:对于y=(x﹣m)(x﹣n),当x=0时,y=mn=﹣2,即点G(0,﹣2),由①得M(m,0),N(n,0),G(0,﹣2),E(,﹣(m﹣n)2),对称轴为直线x=,由点M (m ,0)、G (0,﹣2)的坐标知,tan∠OMG ==,作MG 的中垂线交MG 于点T ,交y 轴于点S ,交x 轴于点K ,则点T (m ,﹣1),则tan∠MKT =﹣m ,则直线TS 的表达式为:y =﹣m (x ﹣m )﹣1.当x =时,y =﹣m (x ﹣m )﹣1=﹣,则点C 的坐标为:(,﹣).由垂径定理知,点C 在FG 的中垂线上,则FG =2(y C ﹣y G )=2×(﹣+2)=3.∵四边形FGEC 为平行四边形,则CE =FG =3=y C ﹣y E =﹣﹣y E ,解得:y E =﹣,即﹣(m ﹣n )2=﹣,且mn =﹣2,则m +n =,∴E (﹣,﹣),或(,﹣).25.(12分)如图,在正方形ABCD 中,E 是边AD 上一动点(不与点A ,D 重合).边BC 关于BE 对称的线段为BF ,连接AF .(1)若∠ABE =15°,求证:△ABF 是等边三角形;(2)延长FA ,交射线BE 于点G .①△BGF 能否为等腰三角形?如果能,求此时∠ABE 的度数;如果不能,请说明理由;②若,求△BGF 面积的最大值,并求此时AE 的长.【解答】(1)证明:由轴对称的性质得到BF=BC,∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=15°,∴∠CBE=75°,∵BC关于BE对称的线段为BF,∴∠FBE=∠CBE=75°,∴∠ABF=∠FBE﹣∠ABE=60°,∴△ABF是等边三角形;(2)解:①∵边BC关于BE对称的线段为BF,∴BC=BF,∵四边形ABCD是正方形,∴BC=AB,∴BF=BC=BA,∵E是边AD上一动点,∴BA<BE<BG,∴点B不可能是等腰三角形BGF的顶点,若点F是等腰三角形BGF的顶点,则有∠FGB=∠FBG=∠CBG,此时E与D重合,不合题意,∴只剩下GF=GB了,连接CG交AD于H,∵BC=BF,∠CBG=∠FBG,BG=BG,∴△CBG≌△FBG(SAS),∴FG=CG,∴BG=CG,∴△BGF为等腰三角形,∵BA=BC=BF,∴∠BFA=∠BAF,∵△CBG≌△FBG,∴∠BFG=∠BCG,∵AD∥BC,∴∠AHG=∠BCG,∴∠BAF+∠HAG=∠AHG+∠HAG=180°﹣∠BAD=90°,∴∠FGC=180°﹣∠HAG﹣∠AHG=90°,∴∠BGF=∠BGC==45°,∵GB=GC,∴∠GBC=∠GCB=(180°﹣∠BGC)=67.5°,∴∠ABE=∠ABC﹣∠GBC=90°﹣67.5°=22.5°;②由①知,△CBG≌△FBG,要求△BGF面积的最大值,即求△BGC面积的最大值,在△GBC中,底边BC是定值,即求高的最大值即可,如图2,过G作GP⊥BC于P,连接AC,取AC的中点M,连接GM,作MN⊥BC于N,设AB=2x,则AC=2x,∵∠AGC=90°,M是AC的中点,∴GM==x,MN==x,∴PG≤GM+MN=()x,当G,M,N三点共线时,取等号,∴△BGF面积的最大值==(1)×=;如图3,设PG与AD交于Q,则四边形ABPQ是矩形,∴AQ=PB=x,PQ=AB=2x,∴QM=MP=x,GM=x,∴,∵QE+AE=AQ=x,∴,∴=2()x=2(×()=.。
2024年广东省广州市名校中考数学模拟试卷+答案解析
2024年广东省广州市名校中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,最小的数是()A.0B.3C.D.2.苏步青是国际公认的几何学家,中国著名教育家,中国科学院院士,是我国微分几何学派的创始人.为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.将数据218000000用科学记数法表示应为()A. B.C.D.3.九班三名同学进行唱歌比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,后来要求这三名同学用抽签方式重新确定出场顺序,则抽签后每个同学的出场顺序都发生变化的概率为()A. B. C.D.4.若,,则的值为()A.8B.12C.24D.485.在平面直角坐标系中,已知,则点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.下列几何体均是由若干个大小相同的小正方体搭建而成的,其三视图都相同的是()A. B. C. D.7.如图,AB 、AC 是的切线,B 、C 为切点,D 是上一点,连接BD 、CD ,若,则的半径长为()A. B. C.D.8.若的整数部分为x ,小数部分为y ,则的值是()A.B.3C.D.9.我国南宋著名数学家秦九韶也提出了利用三角形三边长a,b,c求三角形面积的“秦九韶公式”,即已知在中,,,,则b边上的高为()A. B. C. D.10.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为雅系点.已知二次函数的图象上有且只有一个雅系点,且当时,函数的最小值为,最大值为,则m的取值范围是()A. B. C. D.二、填空题:本题共7小题,每小题4分,共28分。
11.已知二元一次方程组,则的值为______.12.将抛物线先向右平移2个单位,再向下平移3个单位,那么所得的抛物线的顶点坐标为______.13.如图.在中,,,是AC边上一点,且,连接BD,以点B为圆心,BD的长为半径画弧,交AB于点E,交BC的延长线于点F,则图中阴影部分的面积为______.14.若关于x的方程的两根,满足,则二次函数的顶点纵坐标的最大值是______.15.已知实数a,b满足,,则的值为______.16.如图所示,四边形ABCD是平行四边形,其中,垂足为H,若,,,则______.17.如图,在中,,,,点O是边AB的中点,点P是边BC上一动点,连接PO,将线段PO绕点P顺时针旋转,使点O的对应点D落在边AC上,连接OD,若为直角三角形,则BP的长为______.三、计算题:本大题共1小题,共6分。
2021年广东省广州市数学中考真题含答案解析及答案(word解析版)
解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。
2022-2023学年广州市花都区九年级数学上学期中考试卷附答案解析
2022-2023学年广州市花都区九年级数学上学期中考试卷本试卷分选择题和非选择题两部分, 共三大题25小题,共6页,满分120分,考试用时120分钟.注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写镇(街)、学校、试室号、姓名、学号及准考证号等自己的个人信息,再用2B 铅笔把对应准考证号的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡上交.第一部分 选择题(共30分)一、选择题 (本大题共10小题, 每小题3分,满分30分.在每小题给出的四个选项中, 只有一项是符合题目要求的.)1.一元二次方程 22370x x +-= 的二次项系数和常数项分别是( ※ ).A.2,7-B.2,3C. 2,7D. 3,7- 2.下列四个图形中,是中心对称图形的是( ※ ).A B C D3.将抛物线23y x =平移,得到抛物线()2312y x =--,下列平移方式中,正确的是(※). A .先向右平移1个单位,再向下平移2个单位 B .先向右平移1个单位,再向上平移2个单位 C .先向左平移1个单位,再向下平移2个单位D .先向左平移1个单位,再向上平移2个单位 4.一元二次方程230x x -=的解是( ※ ).A .0x =B .3x =C .3x =-D .10x =,23x = 5.关于二次函数()2246y x =-+的最大值或最小值,下列说法正确的是( ※ ). A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 6.如图,在ABC ∆中,以点C 为中心,将ABC ∆顺时针旋转o 35得到DEC ∆,边ED 、AC 相交于点F ,若︒=∠30A ,则EFC ∠的度数为( ※ ).A .o 60B .o 65C .o 72.5D .o 115第6题7.已知二次函数132--=x kx y 的图象和x 轴有交点,则k 的取值范围是( ※ ). A .49->k B .49-≥k C .49-≥k 且0≠k D .49->k 且0≠k 8.南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是:一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x 步,则可列方程为( ※ ).A .()60864x x ⋅+=B .()602864x x ⋅-=C .()30864x x ⋅-=D .()60864x x ⋅-= 9.二次函数)02≠++=a c bx ax y (的图象如图所示,则下列结论中不正确的是( ※ ). A .图象开口向下 B .1-=x 时,函数有最大值 C .方程02=++c bx ax 的解是1221=-=x x , D .1>x 时,函数y 随x 的增大而减小 10.如图,在Rt ABC ∆和Rt AEF ∆中,90BAC EAF ∠=∠=︒,9AB AC ==,3AEAF,点M 、N 、P 分别为EF 、BC 、CE 的中点,若AEF ∆绕点A 在平面内自由旋转,MNP △面积的最大值为( ※ ).A .12B .18C .20D .24第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,共18分.)11.在平面直角坐标系中,点),(15-关于原点对称的点的坐标是 ※ . 12. 方程03)x 1)x =+-((的解是 ※ .13.设)21y A ,(,)32y B ,( 是抛物线是常数)(k k x y ++-=2)1(上的两点,则1y ※ 2y (填<,=或>)14. 如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5=OA ,3=OC .若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点1A 的坐标为 ※ .15.若a 是方程0142=+-x x 的一个根,则=+-20251232a a ※ . 16.已知二次函数)02≠++=a c bx ax y (的图象如图所示,有下列结论:第10题第9题 x= -1①042>-ac b ;②0>abc ;③0>+-c b a ;④039<++c b a ,⑤02<+b a . 其中,正确结论的有 ※ .三、解答题(本大题共8小题,满分72分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分4分)解方程:0342=+-x x 18.(本小题满分4分)四边形ABCD 是正方形,ADF ∆绕旋转中心顺时针旋转一定角度后得到ABE ∆,点E 落在AD 上,如图所示,如果2=AF , 5=AB ,求: (1)旋转中心是_______,旋转角度是_______︒;(2)求DE 的长度.19.(本小题满分6分)已知ABC ∆的三个顶点的坐标分别为()1,1A 、()4,2B 、()3,4C (1)画出ABC ∆关于坐标原点O 成中心对称的'''A B C △; (2)连接'BC 、'B C ,则四边形''BCB C 的面积是 .20. (本小题满分6分)已知二次函数22y x x m =-+的顶点在x 轴下方,请完成以下问题:第18题第19题第14题(1)求m 的取值范围;(2)选一个合适的m 值,求:①此二次函数的顶点坐标;②二次函数与y 轴的交点坐标.21.(本题满分8分)如图是证明勾股定理时用到的一个图形,a ,b ,c 是Rt ABC ∆和Rt BED ∆的边长,显然2AE c =,我们把关于x 的一元二次方程022=++b cx ax 称为“弦系一元二次方程”。
2023年广东省广州市中考数学试卷真题
秘密★启用前2023年广州市初中学业水平考试(中考)数学考生号:姓名:本试卷共7页,四大题,满分120分。
考试用时120分钟。
注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10 小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. - (-2023)=(*).(A) -2023(B)2023 (C) −12023(D)12023数学试卷第1页(共7页)2. 一个几何体的三视图如图1所示, 则它表示的几何体可能是( * ).3. 学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10, 11, 9, 10, 12. 下列关于这组数据描述正确的是( * ). (A) 众数为 10 (B) 平均数为10 (C) 方差为2 (D) 中位数为94. 下列运算正确的是( * ).(A) (a ²)³=a ⁵ (B) a ⁸÷a ²=a ⁴(a ≠0) (C) a ³·a ⁵=a ⁸ (D) (2a )−1=2a (a ≠0) 5. 不等式组 {2x ≥x −1,x+12>2x 3的解集在数轴上表示为( * ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(A )10√33(B)20√33(C) 20 (D ) 10√3数学试卷 第 2页(共 7页)6. 已知正比例函数.y ₁=ax |的图象经过点(1,-1),反比例函数. y 2=bx的图象位于第一、第三象限,则一次函数y =ax +b 的图象一定不经过(*).7. 如图2,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行 10nm ile 到达C 点,在 C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为( * ) n m ile.8. 随着城际交通的快速发展, 某次动车平均提速 60km /h ,动车提速后行驶 480km 与提速前行驶 360 km 所用的时间相同. 设动车提速后的平均速度为 x km /h ,则下列方程正确的是( * ). (A) 360x=480x+60 (B)360x−60=480x(C)360x=480x−60(D)360x+60=480x(A) 2r , 90°-α (B) 0, 90°-α (C) 2r , 900∘−α2 (D) 0, 90∘−α210. 已知关于x 的方程. x ²-(2k -2)x +k ²-1=0; 有两个实数根,则 √(k −1)2−(√2−k)2的化简结果是( * ).(A) -1 (B)1 (C) -1-2k (D) 2k -3第二部分 非选择题 (共90分)二、填空题(本大题共6小题,每小题3分,满分 18分.)11. 近年来,城市电动自行车安全充电需求不断攀升. 截至2023年5月底,某市已建成安全充电端口逾280000个,将280 000用科学记数法表示为 * .数学试卷 第 3页(共 7页)9. 如图3, △ABC 的内切圆⊙I 与 BC, CA,AB 分别相切于点 D, E, F, 若⊙I 的半径为 r ,∠A=α, 则(BF+CE-BC)的值和∠FDE 的大小分别为( * ).12. 已知点A(x ₁,y ₁), B(x ₂,y ₂)在抛物线y =x ²-3 上,且( 0<x ₁<x ₂, 则y 1 ∗ y 2(填 “<” 或 “>” 或“=” )数学试卷 第 4页(共 7页)13.2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图4 所示的条形图,则a 的值为 * .若将获奖作品按四个等级所占比例绘制成扇形统计图, 则“一等奖”对应扇形的圆心角度数为* °.14. 如图5, 正方形ABCD 的边长为4, 点E 在边BC 上,且BE=1, F 为对角线BD 上一动点, 连接CF, EF,则CF+EF 的最小值为 * .15. 如图6, 已知AD 是△ABC 的角平分线, DE, DF 分别是△ABD 和△ACD 的高, AE=12, DF=5, 则点E 到直线 AD 的距离为 * .16. 如图7, 在 R t △ABC 中, ∠ACB=90°, AB= 10, AC=6,点 M 是边 AC上一动点, 点 D, E 分别是 AB, MB 的中点, 当AM= 2.4时, DE 的长是 * . 若点 N 在边 BC 上, 且CN=AM,点 F, G 分别是 MN, AN 的中点,当AM>2.4时, 四边形DEFG 面积S 的取值范围是 * .三、解答题(本大题共 9 小题,满分 72分. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分4分)解方程:x ²-6x +5=0.19. (本小题满分6分)如图9,在平面直角坐标系x O y 中,点A(-2,0), B(0,2), AB 所在圆的圆心为O.20. (本小题满分6分)已知a >3, 代数式: A=2a ²-8, B=3a ²+6a , C=a ³-4a ²+4a . (1) 因式分解A;(2) 在A ,B ,C 中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.数学试卷 第5页(共7页)18.(本小题满分4分)如图8, B 是AD 的中点, BC∥DE, BC=DE. 求证: ∠C=∠E.将AB 向右平移5个单位,得到 CD (点A平移后的对应点为C).(1) 点D 的坐标是 * , CD̂所在圆的圆心坐标是 * ;(2) 在图中画出 CD ̂,并连接 AC, BD;(3)求由 AB, BD,DC, CA 首尾依次相接所围成的封闭图形的周长.(结果保留π)21. (本小题满分 8分)甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A ,B , C ,D), 若甲先从中随机选取1个, 乙再从余下的球拍中随机选取1个,求乙选中球拍C 的概率; (2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球. 这个约定是否公平?为什么?22. (本小题满分 10分)(1) 求y ₁与x 之间的函数解析式;(2) 现计划用 600元购买该水果,选甲、 乙哪家商店能购买该水果更多一些?23. (本小题满分 10分)数学试卷 第 6页(共7页)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y ₁(元)与该水果的质量x (千克)之间的关系如图10所示;在乙商店购买该水果的费用y ₂(元)与该水果的质量 x (千克)之间的函数解析式为 y ₂=10x (x ≥0).如图11, AC 是菱形ABCD 的对角线.(1) 尺规作图: 将△ABC绕点A 逆时针旋转得到△ADE,点B 旋转后的对应点为D(保留作图痕迹,不写作法); (2) 在(1)所作的图中, 连接BD, CE.①求证: △ABD ∽△ACE;②若 tan∠BAC =13,求c os ∠DCE 的值.24. (本小题满分 12分)已知点P(m ,n )在函数 y =−2x (x <0)的图象上. (1) 若m =-2, 求n 的值;(2)抛物线y =(x -m )(x -n )与x 轴交于两点M, N (M 在N 的左边),与y 轴交于点 G ,记抛物线的顶点为E.① m 为何值时, 点E 到达最高处;②设△GMN 的外接圆圆心为C , ⊙C 与y 轴的另一个交点为F ,当m +n ≠0时, 是否存在四边形FGEC 为平行四边形?若存在,求此时顶点E 的坐标;若不存在,请说明理由.25. (本小题满分 12分)如图12, 在正方形ABCD 中, E 是边AD 上一动点(不与点A , D 重合).边BC 关于BE 对称的线段为BF , 连接AF.②若 AB =√3+√6,求△BGF 面积的最大值,并求此时AE 的长.数学试卷 第 7页(共 7页)(1)若∠ABE=15°, 求证: △ABF是等边三角形; (2)延长FA, 交射线BE 于点 G.①△BGF 能否为等腰三角形?如果能, 求此时∠ABE的度数;如果不能,请说明理由;。
2023年广州市中考数学试卷(含答案和解析)
2023年广州市中考数学试卷(含答案和解析)第一部分:选择题(共40分,每小题2分)1. 以下哪个数与1.2相等?A. 0.12B. 1.20C. 1.002D. 0.012答案:B解析:选项B中的数与1.2相等。
2. 下列各数不同的是:A. $\sqrt{2}$B. $\sqrt{8}$C. $\sqrt{16}$D. $\sqrt{25}$答案:B解析:选项B中的数为$\sqrt{8}$,其他选项均为完全平方数的平方根。
3. 现在是上午9点45分,那么离中午12点还有多少分钟?A. 75B. 105C. 135D. 165答案:B解析:中午12点与上午9点45分之间相差105分钟。
4. 下列运算中,结果是正数的是:A. $2.4 - 3.6$B. $(-5) \times 4$C. $\frac{6}{-2}$D. $(-3)^3$答案:D解析:选项D中的运算结果是正数。
5. 下列四个数中,最大的是:A. 0.34B. 0.6C. 0.45D. 0.8答案:D解析:选项D中的数最大。
第二部分:填空题(共40分,每小题2分)6. 已知直角三角形的一条直角边长为6cm,另一条直角边长为8cm,则斜边长为$\underline{\qquad}$ cm。
答案:107. 某数的百分之一是1.68,则这个数为$\underline{\qquad}$。
答案:1688. 若$\frac{a}{3}-\frac{1}{4}=\frac{1}{2}$,则$a=\underline{\qquad}$。
答案:$\frac{9}{4}$9. 某服装店汇款1600元到某地,如果每个快递包裹费用为60元,则可以寄出$\underline{\qquad}$个包裹。
答案:2610. 某数增加30%后等于130,则这个数为$\underline{\qquad}$。
答案:100第三部分:解答题(共20分)11. 小芳想买一件原价为800元的衣服,商场打折7折,又返现50元,问小芳最后需要支付多少钱?答案:最后需要支付450元。
2022年广东省广州市中考数学试题及答案
2022年广东省广州市中考数学试题及答案2022年广东省广州市中考数学试题及答案第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列四个数中,在-2和1之间的数是()A。
–3B。
0C。
2D。
32.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆沿,最后将正方形纸片展开,得到的图案是()3.下列各点中,在函数y^2=x+7的图像上的是()A.(2,3)B.(3,1)C.(,-7)D.(-1,9)4.不等式组{system}{x+2y\leq 8\y>x-2}{.}的解集是()5.已知a+2b=3,a-2b=1,则a与b的关系是()A。
a=bB。
ab=1C。
a=-bD。
ab=-16.如图,AE切圆O于E,AC=CD=DB=10,则线段AE的长为()A。
10√2B。
15C。
10√3D。
207.用计算器计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}$,根据你发现的规律,判断$\sum\limits_{n=1}^{+\infty}\frac{1}{2^n}$与Q(n为大于1的整数)的值的大小关系为()Pn=$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{ 2^n}$,Q=$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$。
A。
Pn<QB。
Pn=QC。
Pn>QD。
与n的取值有关8.当k>0时,双曲线$y=\frac{1}{x+k}$与直线$y=x$的公共点有()A。
0个B。
1个C。
2个D。
3个9.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A。
21B。
26C。
37D。
4210.如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A。
2023年广东省广州市中考数学真题
2023年广东省广州市中考数学真题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.A.20︒B.40︒C.50︒D.80︒10.如图,抛物线2=+经过正方形OABC的三个顶点A,B,C,点B在y轴上,y ax c则ac的值为()A.1-B.2-C.3-D.4-(2)已知一次函数y kx b =+的图象经过点(0,1)与点(2,5),求该一次函数的表达式. 17.某学校开展了社会实践活动,活动地点距离学校12km ,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min ,求乙同学骑自行车的速度.18.2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈,cos500.643︒≈,tan50 1.192︒≈)19.如图,在ABCD Y 中,30DAB ∠=︒.(1)实践与操作:用尺规作图法过点D 作AB 边上的高DE ;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,4=AD ,6AB =,求BE 的长.20.综合与实践主题:制作无盖正方体形纸盒素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上ABC ∠与纸盒上111A B C ∠的大小关系;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年广东省广州市中考数学试题
一、选择题(每小题3分,共30分) 1、(2008广州)计算3(2)-所得结果是( ) A 6- B 6 C 8- D 8
2、(2008广州)将图1按顺时针方向旋转90°后得到的是( )
3、(2008广州)下面四个图形中,是三棱柱的平面展开图的是( )
4、(2008广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-
5、(2008广州)方程(2)0x x +=的根是( )
A 2x =
B 0x =
C 120,2x x ==-
D 120,2x x ==
6、(2008广州)一次函数34y x =-的图象不经过( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限 7、(2008广州)下列说法正确的是( )
A “明天降雨的概率是80%”表示明天有80%的时间降雨
B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C “彩票中奖的概率是1%”表示买100张彩票一定会中奖
D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数
8、(2008广州)把下列每个字母都看成一个图形,那么中心对成图形有( )
O L Y M P I C
A 1个
B 2个
C 3个
D 4个
9、(2008广州)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A
B 2
C
D
10、(2008广州)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )
A P R S Q >>>
B Q S P R >>>
C S P Q R >>>
D S P R Q >>>
二、填空题(每小题3分,共18分) 11、(2008
的倒数是
12、(2008广州)如图4,∠1=70°,若m ∥n ,则∠2= 13、(2008广州)函数1
x y x =
-自变量x 的取值范围是
14、(2008广州)将线段AB 平移1cm ,得到线段A ’B ’,则点A 到点A ’的距离是 15、(2008广州)命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”) 16、(2008广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;
②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是 三、解答题(共102分)
17、(2008广州)(9分)分解因式3
2
a a
b - 图2
图3
图4
18、(2008广州)(9分)小青在九年级上学期的数学成绩如下表所示
(1)计算该学期的平时平均成绩;
(2)如果学期的总评成绩是根据图5所示的权重计算, 请计算出小青该学期的总评成绩。
19、(2008广州)(10分)如图6,实数a 、b 在数轴上的位置,
化简 -
20、(2008广州)(10分)如图7,在菱形ABCD 中,∠DAB=60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E ,求证:四边形AECD 是等腰梯形
21、(2008广州)(12分)如图8,一次函数y kx b =+的图象与反比例函数m y x
=的图象相交于A 、B 两
点
(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;
(3)根据图象回答:当x 为何值时, 一次函数的函数值大于反比例函数的函数值 图5
图6
图7
22、(2008广州)(12分)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度。
23、(2008广州)(12分)如图9,射线AM 交一圆于点B 、C ,射线
AN 交该圆于点D 、E ,且»»B
C D E = (1)求证:AC=AE
(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留作图痕迹,不写作法)求证:EF 平分∠CEN
24、(2008广州)(14分)如图10,扇形OAB 的半径OA=3,圆心角∠AOB=90°,点C 是»AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,点G 、H 在线段DE 上,且DG=GH=HE (1)求证:四边形OGCH 是平行四边形
(2)当点C 在»AB 上运动时,在CD 、CG 、DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度 (3)求证:2
2
3CD CH +是定值
25、(2008广州)(14分)如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰图8
图9
图10
△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米
(1)当t=4时,求S 的值
(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值
2008年广东省广州市中考试题答案
1-10 填空CAABC BDBCD11.
3
3, 12.700
, 13.1≠x , 14.1cm, 15.真命题,16.
3
1
17.))((b a b a a -+ 18.(1)
5.854
86
987088=+++(2)75.87%6087%3090%105.85=⨯+⨯+⨯ 19.-2b
20.提示:0
302
1=∠=∠DAB CAE 得DAB E ∠==∠0
60,由DC//AE,AD 不平行CE 得证
21.(1)y =0.5x +1,y =x
12(2)-6<x <0或x >4
22. 40和60千米/小时
23.(1)作OP ⊥AM ,OQ ⊥AN 证AQO APO ∆≅∆由BC =CD ,得EQ CP =得证 (2)同AC =AE 得CEN ECM ∠=∠,
由CE =EF 得CEN MCE FEC FCE ∠=
∠=
∠=∠2
12
1得证
24.(1)连结OC 交DE 于M ,由矩形得OM =CG ,EM =DM 因为DG=HE 所以EM -EH =DM -DG 得HM =DG
(2)DG 不变,在矩形ODCE 中,DE =OC =3,所以DG =1
(3)设CD =x ,则CE =2
9x -,由EC CD CG DE ⋅=⋅得CG =
3
92
x
x -
所以3
)3
9(
2
2
2
x
x
x x DG =
--=2
所以HG =3-1-
3
63
2
2
x x
-=
图11
所以3CH 2
=2
22
2
2
12))3
9(
)3
6((3x x
x x -=-+-
所以121232
22
2=-+=+x x CH
CD
25.(1)t =4时,Q 与B 重合,P 与D 重合, 重合部分是BDC ∆=
323222
1=⋅⋅。