33972A中文资料
MAX3397EEVKIT+中文资料
General DescriptionThe MAX3397E evaluation kit (EV kit) is a fully assem-bled and tested printed-circuit board (PCB) that demonstrates the capabilities of the MAX3397E ESD-protected, dual bidirectional low-level translator. The MAX3397E allows data translation in either direction (V L ↔V CC ) on any single data line. The MAX3397E EV kit accepts V L from +1.2V to +5.5V and V CC from +1.65V to +5.5V. The EV kit comes with the MAX3397EELA+installed.Features♦Jumper-Selectable Enable/Shutdown Configuration ♦+1.2V to +5.5V Supply Range for V L ♦+1.65V to +5.5V Supply Range for V CC ♦Proven PCB Layout♦Fully Assembled and TestedEvaluates: MAX3397EMAX3397E Evaluation Kit________________________________________________________________Maxim Integrated Products 119-0972; Rev 0; 8/07For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Ordering InformationComponent Supplier+E v a l u a t e s : M A X 3397EMAX3397E Evaluation Kit 2_______________________________________________________________________________________Quick StartRecommended EquipmentBefore beginning, the following equipment is needed: •One +5V DC power supply •One +3.3V DC power supply •One function generator •One oscilloscopeProcedureThe MAX3397E EV kit is fully assembled and tested.Follow the steps below to verify board operation.Caution: Do not turn on power supplies until all con-nections are completed.1)Turn off the +5V DC and +3.3V DC power supplies.2)Turn off the function generator.3)Make sure the shunt is on pin 1-2 of JU1.4)Connect the positive (+) terminal of the +5V DCpower supply to the VCC pad and connect the neg-ative (-) terminal to the adjacent GND pad.5)Connect the positive (+) terminal of the +3.3V DCpower supply to the VL pad and connect the nega-tive (-) terminal to the adjacent GND pad.6)Connect the positive (+) terminal of the functiongenerator to I/OVCC1 pad of the MAX3397E EV kit.Connect the negative (-) terminal of the DC signal source to the GND pad.7)Turn on the +5V DC and +3.3V DC power supplies.8)Turn on the function generator.9)Set the function generator to a 5V P-P , 1MHz, 2.5VDC offset square wave.10)Use the oscilloscope to measure the I/O V L1output atpin 5. Verify that the waveform is a 1MHz square wave and is approximately 3.3 V P-P with 1.625V DC offset.Detailed Description of HardwareThe MAX3397E is an ESD-protected, dual bidirectional low-level translator. The MAX3397E EV kit board pro-vides a proven layout for evaluating the MAX3397E.The EV kit comes with a MAX3397EELA+ installed.Enable/Shutdown ControlPlace the shunt on pin 1-2 of JU1 (as shown in Table 1)to drive the EN pin of the MAX3397E high and to enable the device. Place the shunt on pin 2-3 of JU1 to drive the EN pin of the MAX3397E low and to put the device in shutdown state.Power SupplyThe MAX3397E accepts V L from +1.2V to +5.5V and V CC from +1.65V to +5.5V. The voltage on V L must be less than or equal to the voltage on V CC .When V L is connected and V CC is disconnected or connected to ground, the device enters shutdown mode. In this mode, I/O V L can still be driven without damage to the device; however, data does not translate from I/O V L to I/O V CC . If V CC falls more than +0.8V (typ) below V L , the device disconnects the pullup resis-tors at I/O V L and I/O V CC . To achieve the lowest possi-ble supply current from V L when V CC is disconnected,it is recommended that the voltage at the V CC supply input be approximately equal to GND.Evaluates: MAX3397EMAX3397E Evaluation Kit3Figure 1. MAX3397E EV Kit SchematicFigure 3. MAX3397E EV Kit PCB Layout—Component SideMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.4_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.E v a l u a t e s : M A X 3397EMAX3397E Evaluation Kit Figure 4. MAX3397E EV Kit PCB Layout—Solder Side。
2SC3392-5-TB-E中文资料(sanyo)中文数据手册「EasyDatasheet - 矽搜」
7 5
3
2
基极 - 发射极
1.0
饱和电压,VBE(星期六) - V
7 5
3
5 --1.0 2 3 5 --10 2 3 5 集电极电流,IC - 毫安
SW时间 - IC
2
1.0
7
µs 5
tstg
3
2
--100 2 3 5 --1000
ITR05072
2SA1338 VCC=20V IC=10IB1=--10IB2
--100 2
集电极电流,IC - 毫安
3 5 7 --1000
ITR05064
fT -- IC
1000
2SA1338
7
VCE=--10V
5
3 2
100
增益带7宽产品,FT - 兆赫
5
3 2
10
--1.0 2 3 5 7 --10 2 3 5 7
--100 2
集电极电流,IC - 毫安
柯布 - VCB
3
2
3 5 7 --1000
ITR05066
2SA1338 f=1MHz
00
0.2
0.4
0.6
基极 - 发射极电压,VBE - V
hFE -- IC
2
1000
7
5
3
Ta=75 °C
2
25°C
100
DC电7流增益,hFE
--25°C
5
3 2 1.0
1000 7 5
2 3 5 7 10
2 3 5 7 100
2SA1338/2SC3392
Symbol
Conditions
DC339-A -B低压差稳压器数据手册说明书
12REFERENCEDESIGNATOR QUANTITY PART NUMBER DESCRIPTION VENDOR TELEPHONE ADJ10Optional ResistorC110603ZG105ZAT1A1µF 10V Y5V Chip Capacitor AVX(843) 946-0362 C210402ZG104ZAT1A0.1µF 10V Y5V Chip Capacitor AVX(843) 946-0362 C31LMK325BJ106MN10µF 10V X7R Chip Capacitor Taiyo-Yuden(408) 573-4150 E1 to E442308-2Pad Turret Mill-Max(516) 922-6000 JP10Optional JumperJP216351-12G1Connector, SMT2X6, 0.39" Gap Comm-Con(626) 301-4200 Shunts for2CTAIJ1MM-G Shunts for 0.39" Gap Comm-Con(626) 301-4200 JP1 and JP2R11CR05-2613FM261k 1/16W 1% Chip Resistor AAC(800) 508-1521 R21CR05-3653FM365k 1/16W 1% Chip Resistor AAC(800) 508-1521 R31CR05-4223FM422k 1/16W 1% Chip Resistor AAC(800) 508-1521 R41CR05-7683FM768k 1/16W 1% Chip Resistor AAC(714) 255-9186 R51CR05-2493FM249k 1/16W 1% Chip Resistor AAC(714) 255-9186 U11LT1762EMS8 or8-Lead MSOP IC Version -A LTC(408) 432-1900 LT1962EMS88-Lead MSOP IC Version -BPARTS LISTOPERATIOUHOOK-UPSolid turret terminals are provided for easy connection to supplies and test equipment. Connect a 0V to 20V, 0.5A power supply across the IN and GND terminals and the load across the OUT and GND terminals. The SHDN pin can be disconnected from IN via JP1 to allow for separate shutdown control via a secondary control line. JP2 can be used to select any of a number of common fixed output voltages, or used in conjunction with ADJ1 to create a custom output voltage using the formula:ADJ1 = (V OUT – 1.22V)/4.93µAOUTPUT CAPACITOR SELECTIONThe output capacitor C3 is a 10µF X7R ceramic chip capacitor. Should a different output capacitor be desired, care must be exercised with the selection. Many ceramic capacitor dielectrics exhibit strong temperature and voltage characteristics that reduce their effective capaci-tance to as low as 10% to 20% of nominal over the full range. For further information, see Linear Technology Application Note 83, “Performance Verification of Low Noise, Low Dropout Regulators,” Appendix␣B, “Capaci-tor Selection Considerations,” reprinted below.CAPACITOR SELECTION CONSIDERATIONSBypass Capacitance and Low Noise Performance Adding a capacitor between the regulator’s V OUT and BYP pins lowers output noise. A good quality, low leakage capacitor is recommended. This capacitor bypasses the regulator’s reference, providing a low frequency noise pole. A 0.01µF capacitor lowers the output voltage noise to 20µV RMS. Using a bypass capacitor also improves transient response. With no bypassing and a 10µF output capacitor, a 10mA to 500mA load step settles within 1% of final value in under 100µs. With a 0.01µF bypass capacitor, the output settles within 1% for the same load step in under 10µs; total output deviation is inside 2.5%. Regulator start-up time is inversely proportional to bypass capacitor size, slowing to 15ms with a 0.01µF bypass capacitor and 10µF at the output.34567Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.8dc339 LT/TP 0301 500 • PRINTED IN USA© LINEAR TECHNOLOGY CORPORA TION 2001Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 q FAX: (408) 434-0507 q 。
OB3393SCPA规格书 Datasheet
保证声明 昂宝电子有限公司依从其标准保单书承诺,出售时所有硬件产品性能参数均符合产品的相应使用规格书。产
恒
OB3393S 提供一系列全面的可自动恢复保护,包 括 LED 开路保护、LED 短路保护、逐周期峰值电流
深 限制,VDD 过压保护、欠压保护和锁存的过温保护
等。
to OB3393S 提供 SOP-8 封装。
内置前沿消隐 (LEB) 完善的自恢复保护功能
LED 短路保护 LED 开路保护 VDD 欠压保护
8-Pin Plastic SOP
OB3393S
高精度原边反馈 LED 控制器
恒
ht Confidential to 深 Symbol ig A
A1
r A2
b
Bc -D
E
nE1 e
OL
Dimensions In Millimeters
Min
Max
1.350
1.750
0.050
0.250
1.250
1.650
I/O 描述 I 电流采样端
无连接,必须悬空
P 电源供电端 I 内部高压功率管源极 I 内部高压功率管漏极 P 无连接,必须悬空并且不要放置焊盘 P地
©On-Bright Electronics
Confidential 3
Preliminary Datasheet OB_DOC_DS_3393S00_CN
启动电流 工作电流 VDD 欠压保护(OFF)阈值 VDD 欠压保护(ON)阈值 VDD 钳位阈值
LM339ADT中文资料
used).
3/10
元器件交易网
LM139,A-LM239,A-LM339,A
PIN CONNECTIONS (top view)
N DIP14 (Plastic Package)
D SO14 (Plastic Micropackage)
P TSSOP14 (Thin Shrink Small Outline Package)
ORDER CODE
Part Number
Temperature Range
more
than
0.3V.
The
upper
end
of
the
4. The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals 300ns can be obtained
VCC = Vo = 30V Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
0.1 1
0.1
nA
1
µA
Isink
Output Sink Currrent Vid= 1V, Vo = 1.5V
6 16
6 16
mA
Response Time - note 5)
Agilent 34972A&34970A中文资料
34970A
● ● ● ● ●
● ●
34972A
● ● ● ● ● ● ● ● ●
4
绝对超值的强大功能和灵活性
6 1/2 位 (22 比特) 内部数字万用表, 11 种测量功能, 且无需进行 外部信号调理
直观的前面板, 以及面向任务的 自引导菜单
非易失存储器可存储 5 万个 读数, 能够在断电时保持数据
● 控制仪器 ● 发送通知 ● 停止扫描
● 控制仪器 ● 发送通知 ● 停止扫描
● 控制仪器 ● 发送通知 ● 停止扫描
易学易用
从 34972A 简化的配置到内置的图形 Web 界面,我们 都投入了非常多的时间和精力,以帮助您节约宝贵的时 间。一些非常简单的东西,例如模块上螺旋型端子连接器、 内置热电偶参考结、包括众多实例和提示的完整用户文 档,以及使您能够在开机数分钟后即可进行测量的标准 “入门指南”套件 — 这一切都会帮助您提高效率,无论 您是否经常使用仪器。
Agilent 34970A 数据采集 / 开关单元系列
产品概述 34970A 34972A
卓越的安捷伦性能保证, 远低于其它独立
数据采集系统的成本
● 3 插槽主机,具有内置 61/2 位数字万用表和 8 种开关及 控制插入式模块
● 可以测量和转换 11 种不同的输入信号: 温度 (热电偶、 RTD 和热敏电阻); 直流 / 交流电压、2 线和 4 线电阻、 频率和周期; 直流 / 交流电流
障碍更少, 测量更精确
您是否已经厌倦了大多数数据记录仪或插入式数据采 集卡所提供的平庸的测量性能? 34970A/34972A 提供 61/2 位分辨率和 0.004% 的基本 dcV 年精度。
它是数据采集前端
OB3392 Datasheet
o
富
260 ℃
Absolute Maximum Ratings Parameter VDD Voltage GATE Voltage CS Input Voltage FB Input Voltage CMP Input Voltage Min/Max Operating Junction Temperature TJ Min/Max Storage Temperature Tstg Lead Temperature (Soldering, 10secs)
Value -0.3 to 35V -0.3 to 10V -0.3 to 7V -0.3 to 7V -0.3 to 7V
-55 to 150 ℃
Preliminary Datasheet OB_DOC_DS_339200
华
-40 to 150 ℃
OB3392
High PF, High Precision Offline LED Lighting Controller
TYPICAL APPLICATION
O
n-
©On-Bright Electronics
Br ig
ht
co
nf
id
Confidential -1-
en t
LED lighting
APPLICATIONS
ia
lt
o
富
Preliminary Datasheet OB_DOC_DS_339200
华
OB3392
ELECTRICAL CHARACTERISTICS
(TA = 25℃, VDD=15V, if not otherwise noted) Symbol Parameter Supply Voltage (VDD) Section I start-up I op UVLO(OFF) UVLO(ON) VDD_OVP TLEB Vth_ocp Vout_ovp Start-up Current Operation Current VDD Under Voltage Lockout Exit VDD Under Voltage Lockout Enter VDD Over Voltage Protection LEB Time Over Current Threshold Output Over Voltage Protection 19 8 27 VDD=20V 1 1.3 21 9 30 3 2.0 23 uA mA Test Conditions Min Typ Max Unit
LP339中文资料
LP339Ultra-Low Power Quad ComparatorGeneral DescriptionThe LP339consists of four independent voltage compara-tors designed specifically to operate from a single power supply and draw typically 60µA of power supply drain cur-rent over a wide range of power supply voltages.Operation from split supplies is also possible and the ultra-low power supply drain current is independent of the power supply volt-age.These comparators also feature a common-mode range which includes ground,even when operated from a single supply.Applications include limit comparators,simple analog-to-digital converters,pulse,square and time delay generators;VCO’s;multivibrators;high voltage logic gates.The LP339was specifically designed to interface with the CMOS logic family.The ultra-low supply current makes the LP339valuable in battery powered applications.Advantagesn Ultra-low power supply drain suitable for battery applicationsn Single supply operation n Sensing at groundn Compatible with CMOS logic family nPin-out identical to LM339Featuresn Ultra-low power supply current drain(60µA)—independent of the supply voltage (75µW/comparator at +5V DC )n Low input biasing current:3nA n Low input offset current:±0.5nA n Low input offset voltage:±2mVn Input common-mode voltage includes groundn Output voltage compatible with MOS and CMOS logic n High output sink current capability (30mA at V O =2V DC )n Supply Input protected against reverse voltagesSchematic and Connection DiagramsTypical Applications(V +=5.0V DC )DS005226-1DS005226-2Order Number LP339M for S.O.PackageSee NS Package Number M14AOrder Number LP339N for Dual-In-Line PackageSee NS Package Number N14ABasic ComparatorDS005226-3Driving CMOSDS005226-4September 1999LP339Ultra-Low Power Quad Comparator©1999National Semiconductor Corporation Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage36V DC or±18V DC Differential Input Voltage±36V DC Input Voltage−0.3V DC to36V DC Power Dissipation(Note2)Molded DIP570mW Output Short Circuit to GND(Note3)Continuous Input Current V IN<−0.3V DC(Note4)50mA Operating Temperature Range0˚C to+70˚C Storage Temperature Range−65˚to+150˚C Soldering Information:Dual-In-Line Package(10sec.)+260˚C S.O.Package:Vapor Phase(60sec.)+215˚C Infrared(15sec.)+220˚C See AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.Electrical Characteristics(V+=5V DC)(Note5)Parameter Conditions Min Typ Max Units Input Offset Voltage T A=25˚C(Note10)±2±5mV DC Input Bias Current I IN(+)or I IN(−)with the 2.525nA DCOutput in the Linear Range,T A=25˚C(Note6)Input Offset Current I IN(+)−I IN(−),T A=25˚C±0.5±5nA DC Input Common T A=25˚C(Note7)0V+−1.5V DC Mode Voltage RangeSupply Current R L=Infinite on all Comparators,T A=25˚C60100µA DC Voltage Gain V O=1V DC to11V DC,500V/mVR L=15kΩ,V+=15V DC,T A=25˚CLarge Signal V IN=TTL Logic Swing,V REF=1.4V DC, 1.3µSec Response Time V RL=5V DC,R L=5.1kΩ,T A=25˚CResponse Time V RL=5V DC,R L=5.1kΩ,T A=25˚C(Note8)8µSec Output Sink Current V IN(−)=1V DC,V IN(+)=0,V O=2V DC,1530mA DCT A=25˚C(Note12)V O=0.4V DC0.200.70mA DC Output Leakage Current V IN(+)=1V DC,V IN(−)=0,V O=5V DC,T A=25˚C0.1nA DC Input Offset Voltage(Note10)±9mV DC Input Offset Current I IN(+)−I IN(−)±1±15nA DC Input Bias Current I IN(+)or I IN(−)with Output in Linear Range440nA DC Input Common Single Supply0V+−2.0V DC Mode Voltage RangeOutput Sink Current V IN(−)=1V DC,V IN(+)=0,V O=2V DC10mA DC Output Leakage Current V IN(+)=1V DC,V IN(−)=0,V O=30V DC 1.0µA DC Differential Input Voltage All V IN’s≥0V DC(or V−on split supplies)(Note9)36V DC Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is func-tional,but do not guarantee specific performance limits.Note2:For elevated temperature operation,T j max is125˚C for the LP339.θja(junction to ambient)is175˚C/W for the LP339N and120˚C/W for the LP339M when either device is soldered in a printed circuit board in a still air environment.The low bias dissipation and the“ON-OFF”characteristic of the outputs keeps the chip dissipation very small(P D≤100mW),provided the output transistors are allowed to saturate.Note3:Short circuits from the output to V+can cause excessive heating and eventual destruction.The maximum output current is approximately50mA.Note4:This input current will only exist when the voltage at any of the input leads is driven negative.It is due to the collector-base junction of the input PNP tran-sistors becoming forward biased and thereby acting as input clamp diodes.In addition to this diode action,there is also lateral NPN parasitic transistor action on the IC chip.This transistor action can cause the output voltage of the comparators to go to the V+voltage level(or to ground for a large input overdrive)for the time du-ration that an input is driven negative.This is not destructive and normal output states will re-establish when the input voltage,which is negative,again returns to a value greater than−0.3V DC(T A=25˚C).Note5:These specifications apply for V+=5V DC and0˚C≤T A≤70˚C,unless otherwise stated.The temperature extremes are guaranteed but not100%production tested.These parameters are not used to calculate outgoing AQL.Note6:The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of the state of the output,so no loading change exists on the reference or the input lines as long as the common-mode range is not exceeded.Note7:The input common-mode voltage or either input voltage should not be allowed to go negative by more than0.3V.The upper end of the common-mode volt-age range is V+−1.5V(T A=25˚C),but either or both inputs can go to30V DC without damage.Note8:The response time specified is for a100mV input step with5mV overdrive.For larger overdrive signals1.3µs can be obtained.See Typical Performance Characteristics section.2Electrical Characteristics(Continued)Note9:Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-mode range,the compara-tor will provide a proper output state.The low input voltage state must not be less than−0.3V DC(or0.3V DC below the magnitude of the negative power supply,if used)at T A=25˚C.Note10:At output switch point,V O=1.4V,R S=0Ωwith V+from5V DC;and over the full input common-mode range(0V DC to V+−1.5V DC).Note11:For input signals that exceed V+,only the overdriven comparator is affected.With a5V supply,V IN should be limited to25V maximum,and a limiting resistor should be used on all inputs that might exceed the positive supply.Note12:The output sink current is a function of the output voltage.The LP339has a bi-modal output section which allows it to sink large currents via a Darlington connection at output voltages greater than approximately1.5V DC and sink lower currents below this point.(See typical characteristics section and applications sec-tion).Typical Performance CharacteristicsSupply CurrentDS005226-35Input CurrentDS005226-36Output Sink CurrentDS005226-37Output Sink CurrentDS005226-38Response Times forVarious InputOverdrives—Negative TransitionDS005226-39Response Times forVarious InputOverdrives—Positive TransitionDS005226-40 3Application HintsAll pins of any unused comparators should be tied to the negative supply.The bias network of the LP339establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2V DC to 30V DC .It is usually unnecessary to use a bypass capacitor across the power supply line.The differential input voltage may be larger than V+without damaging the device.Protection should be provided to pre-vent the input voltages from going negative more than −0.3V DC (at 25˚C).An input clamp diode can be used as shown in the application section.The output section of the LP339has two distinct modes of operation-a Darlington mode and a grounded emitter mode.This unique drive circuit permits the LP339to sink 30mA at V O =2V DC (Darlington mode)and 700µA at V O =0.4V DC (grounded emitter mode).Figure 1is a simplified schematic diagram of the LP339output section.Notice that the output section is configured in a Darlington connection (ignoring Q3).Therefore,if the output voltage is held high enough (V O ≥1V DC ),Q1is not saturated and the output current is limited only by the product of the betas of Q1,Q2and I1(and the 60ΩR SAT of Q2).The LP339is thus capable of driving LED’s,relays,etc.in this mode while maintaining an ultra-low power supply current of typically 60µA.If transistor Q3were omitted,and the output voltage allowed to drop below about 0.8V DC ,transistor Q1would saturate and the output current would drop to zero.The circuit would,therefore,be unable to “pull”low current loads down to ground (or the negative supply,if used).Transistor Q3has been included to bypass transistor Q1under these condi-tions and apply the current I1directly to the base of Q2.The output sink current is now approximately I1times the beta of Q2(700µA at V O =0.4V DC ).The output of the LP339exhib-its a bi-modal characteristic with a smooth transition be-tween modes.(See Output Sink Current graphs in Typical Performance Characteristics section.)It is also important to note that in both cases the output is an uncommitted collector.Therefore,many collectors can be tied together to provide an output OR’ing function.An output pull-up resistor can be connected to any available power supply voltage within the permitted power supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+terminal of the LP339package.Typical Applications(V +=15V DC )DS005226-11FIGURE 1.One-Shot MultivibratorDS005226-13 4Typical Applications(V+=15V)(Continued)DCTime-Delay GeneratorDS005226-15ORing the OutputsDS005226-165Typical Applications(V+=15V)(Continued)DCSquarewave OscillatorDS005226-17Three Level Audio Peak IndicatorDS005226-19LED DriverDS005226-226Typical Applications(V+=15V)(Continued)DCPulse GeneratorDS005226-18Bi-Stable MultivibratorDS005226-21Relay DriverDS005226-237Typical Applications(V+=15VDC)(Continued)Buzzer DriverDS005226-24Comparator With60mA Sink CapabilityDS005226-25 Non-Inverting Comparator with HysteresisDS005226-26Inverting Comparator with HysteresisDS005226-27Comparing Input Voltagesof Opposite PolarityDS005226-28Basic ComparatorDS005226-29Output StrobingDS005226-30 8Typical Applications(V+=15VDC)(Continued)Transducer AmplifierDS005226-31Zero Crossing Detector(Single Power Supply)DS005226-32Split-Supply Applications Zero Crossing DetectorDS005226-33Comparator With a Negative ReferenceDS005226-34 9Physical Dimensions inches(millimeters)unless otherwise notedS.O.Package(M)Order Number LP339MNS Package M14AMolded Dual-In-Line Package(N)Order Number LP339NNS Package Number N14A 10NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507LP339Ultra-Low Power Quad ComparatorNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。
TS339CN资料
Rev 2August 20051/9TS339Micropower Quad CMOS Voltage Comparators■Extremely low supply current: 9µa typ/comp.■Wide single supply range 2.7V to 16V or dual supplies (±1.35V to ±8V)■Extremely low input bias current: 1pA typ.■Extremely low input offset current: 1pA typ.■Input common-mode voltage range includes GND■High input impedance: 1012Ω typ ■Fast response time: 1.5µs typ. for 5mV overdrive■Pin-to-pin and functionally compatible with bipolar LM339DescriptionThe TS339 is a micropower CMOS quad voltage comparator with extremely low consumption of 9µA typ / comparator (20 times less than bipolar LM339). Similar performances are offered by the quad micropower comparator TS3704 with a push-pull CMOS output.Thus response times remain similar to the LM339.Order CodesPart Number TemperatureRange Package Packaging Marking TS339CN 0°C, +70°CDIP14T ubeTS339CN TS339CD/CDT SO-14T ube or T ape & ReelS339C TS339IN -40°C, +125°C DIP14T ubeTS339IN TS339ID/IDT SO-14T ube or T ape & ReelS339I TS339IPT TSSOP14(Thin Shrink Outline Package)Tape & Reel S339I TS339IYD/IYDTSO-14 (automotive grade level)T ube or T ape & ReelS339IYAbsolute Maximum Ratings TS3392/91 Absolute Maximum RatingsTable 1.Key parameters and their absolute maximum ratingsSymbol ParameterValue Unit V CC +Supply Voltage (1)1.All voltage values, except differential voltage, are with respect to network ground terminal.18V V id Differential Input Voltage (2)2.Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.±18V V i Input Voltage (3)3.Excursions of input voltages may exceed the power supply level. As long as the common mode voltage[V icm =(V in + + V in -)/2] remains within the specified range, the comparator will provide a stable output state. However, the maximum current through the ESD diodes (IF) of the input stage must strictly be observed.18V V o Output Voltage 18V I o Output Current20mA I F Forward Current in ESD Protection Diodes on Inputs (4)4.Guaranteed by design.50mA p d Power Dissipation (5) DIP14SO14TSSOP145.Pd is calculated with T amb = +25°C, T j = +150°C andR thja = 80 °C/W for DIP14 package R thja = 150 °C/W for SO14 package R thja = 175°C/W for TSSOP14 package1500830710mW T stgStorage Temperature Range -65 to +150°C ESDHBM: Human Body Model (6)6.Human body model, 100pF discharged through a 1.5k Ω resistor into pin of device.50V MM: Machine Model (7)7.Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC withno external series resistor (internal resistor < 5Ω), into pin to pin of device.40V CDM: Charged Device Model800VTS339Typical Application Schematics3/92 Typical Application Schematics4/93 Electrical CharacteristicsTable 2.V CC + = 3V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 1.5VT min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 2.5V or down to 0.3V.56.5mVI ioInput Offset Current (2)V ic = 1.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ib Input Bias Current 2)V ic = 1.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = V icm min.70dB SVRSupply Voltage Rejection Ratio V CC + = 3V to 5V70dBI OHHigh Level Output Current V id = +1V , V OH = 3V T min . ≤ T amb ≤ T max.2401000nAV OL Low Level Output Voltage V id = -1V , I OL = +6mA T min . ≤ T amb ≤ T max.400550800mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.92025µAt PLHResponse Time Low to HighV ic = 0V , f = 10kHz, T min . ≤ T amb ≤ T max C L = 50pF , Overdrive = 5mV TTL Input1.50.7µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 50pF , Overdrive = 5mV TTL Input2.50.08µs5/9Table 3.V CC + = 5V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 2.5V , V cc + = 5V to 10V T min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 4.5V or down to 0.3V.1.456.5mVI ioInput Offset Current (2)V ic = 2.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ibInput Bias Current 2)V ic = 2.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = 0V75dB SVRSupply Voltage Rejection Ratio V CC + = +5V to +10V 85dBI OHHigh Level Output Voltage V id = 1V , V OH = +5V T min . ≤ T amb ≤ T max.27401000nAV OLLow Level Output Voltage V id = -1V , I OL = 6mA T min . ≤ T amb ≤ T max.260400650mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.102025µAt PLHResponse Time Low to HighV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input1.51.21.10.90.8µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input2.51.91.20.80.08µst fFall timef = 10kHz, C L = 50pF , R L = 5.1k Ω, Overdrive 50mV30ns4 Package Mechanical DataIn order to meet environmental requirements, ST offers these devices in ECOPACK® packages.These packages have a Lead-free second level interconnect. The category of second levelinterconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked onthe inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:.6/94.2 SO-14Package7/94.3 TSSOP14Package8/9TS339Revision History9/95 Revision HistoryDate RevisionChangesJan. 20031Initial release.Aug. 200521 - PP AP references inserted in the datasheet see T able : Order Codeson page 1.2 - ESD protection inserted in T able 1: Key parameters and their absolute maximum ratings on page 2.Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2005 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America。
MHW7222A中文资料
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MHW7222A/D
The RF Line 110-Channel (750 MHz) CATV Amplifier
The MHW7222A is designed specifically for up to 750 MHz CATV systems as amplifiers in trunk and line extender applications. This amplifier features ion–implanted, arsenic emitter transistors, an all gold metallization system and offers improved ruggedness and distortion performance. • Specified for 110–Channel Performance • Broadband Power Gain — @ f = 40 – 750 MHz Gp = 22.3 dB Typ @ 750 MHz • Broadband Noise Figure NF = 5.5 dB Typ • All Gold Metallization
–A– S –Z– J
T F
M
A
M
–F–
B
0.25 (0.010)
M
Z T A U
M
Y 2 PL
6–32UNC–2B
2 PL M
0.25 (0.010)
Z T A
M
1 2
3
5
7 8 9
N
MAXIM MAX338 MAX339 数据手册
The MAX338/MAX339 are monolithic, CMOS analog multiplexers (muxes). The 8-channel MAX338 is designed to connect one of eight inputs to a common output by control of a 3-bit binary address. The dual, 4-channel MAX339 is designed to connect one of four inputs to a common output by control of a 2-bit binary address. Both devices can be used as either a mux or a demux. On-resistance is 400Ωmax, and the devices conduct current equally well in both directions.These muxes feature extremely low off leakages (less than 20pA at +25°C), and extremely low on-channel leakages (less than 50pA at +25°C). The new design offers guaranteed low charge injection (1.5pC typ) and electrostatic discharge (ESD) protection greater than 2000V, per method 3015.7. These improved muxes are pin-compatible upgrades for the industry-standard DG508A and DG509A. For similar Maxim devices with lower leakage and charge injection but higher on-resis-tance, see the MAX328 and MAX329.The MAX338/MAX339 operate from a single +4.5V to +30V supply or from dual supplies of ±4.5V to ±20V.All control inputs (whether address or enable) are TTL compatible (+0.8V to +2.4V) over the full specified tem-perature range and over the ±4.5V to ±18V supply range. These parts are fabricated with Maxim’s 44V sili-con-gate process.________________________ApplicationsData-Acquisition Systems Sample-and-Hold Circuits Test Equipment Heads-Up Displays Military RadiosCommunications Systems Guidance and Control SystemsPBX, PABX____________________________Features♦On-Resistance, <400Ωmax ♦Transition Time, <500ns ♦On-Resistance Match, <10Ω♦NO-Off Leakage Current, <20pA at +25°C ♦1.5pC Charge Injection♦Single-Supply Operation (+4.5V to +30V)Bipolar-Supply Operation (±4.5V to ±20V)♦Plug-In Upgrade for Industry-Standard DG508A/DG509A ♦Rail-to-Rail Signal Handling ♦TTL/CMOS-Logic Compatible♦ESD Protection >2000V, per Method 3015.7Ordering InformationMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers________________________________________________________________Maxim Integrated Products 1_____________________Pin Configurations/Functional Diagrams/Truth Tables19-0272; Rev 3; 11/04Ordering Information continued at end of data sheet.*Contact factory for dice specifications.**Contact factory for availability.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Referenced to V-V+............................................................................-0.3V, 44V GND.........................................................................-0.3V, 25V Digital Inputs, NO, COM (Note 1)...........(V- - 2V) to (V+ + 2V) or30mA (whichever occurs first)Continuous Current (any terminal)......................................30mA Peak Current, NO or COM(pulsed at 1ms, 10% duty cycle max)..........................100mAContinuous Power Dissipation (TA = +70°C)Plastic DIP (derate 10.53mW/°C above +70°C)..........842mW Narrow SO (derate 8.70mW/°C above +70°C)............696mW 16-Pin TQFN (derate 21.3mW/°C above +70°C).......1702mW CERDIP (derate 10.00mW/°C above +70°C)...............800mW Operating Temperature RangesMAX33_C__........................................................0°C to +70°C MAX33_E__......................................................-40°C to +85°C MAX33_MJE ..................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Signals on NO, COM, EN, A0, A1, or A2 exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.MAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single Supply(V+ = +12V, V- = 0V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used inthis data sheet.Note 3:Guaranteed by design.Note 4:ΔR ON = R ON(MAX)- R ON(MIN).Note 5:Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.Note 6:Worst-case isolation is on channel 4 because of its proximity to the drain pin. Off isolation = 20log V COM /V NO , whereV COM = output and V NO = input to off switch.MAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________5600ON-RESISTANCE vs. V COM(DUAL SUPPLIES)500010*******-2020-1515-1010-55400V COM (V)R O N (Ω)ON-RESISTANCE vs. V COM OVER TEMPERATURE (DUAL SUPPLIES)100200300-1515-1010-550400V COM (V)R O N (Ω)12001400ON-RESISTANCE vs. V COM(SINGLE SUPPLY)100002004006001520105800V COM (V)R O N (Ω)600700ON-RESISTANCE vs. V COM OVER TEMPERATURE (SINGLE SUPPLY)500010020030015105400V COM (V)R O N (Ω)30CHARGE INJECTION vs. V COM200-30-20-100-1515-1010-55010V COM (V)Q j (p C )40100.0001-55125OFF LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O F F L E A K A G E (n A )250.010.001-35-15650.1100100045851055100.0001-55125ON LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O N L E A K A G E (n A )250.010.001-35-15650.11001000458510551000.001-55125SUPPLY CURRENT vs. TEMPERATURE10TEMPERATURE (°C)I +, I - (μA )250.10.01-35-156514585105510006001000900800700TRANSITION TIME vs.POWER SUPPLIES5000100200300OR 10V(SINGLE)OR 5V(SINGLE)400SUPPLY VOLTAGE (V)t T R A N S (n S )__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)__________Applications InformationOperation withSupply Voltages Other than 15VUsing supply voltages less than ±15V will reduce the analog signal range. The MAX338/MAX339 switches operate with ±4.5V to ±20V bipolar supplies or with a +4.5V to +30V single supply. Connect V- to GND when operating with a single supply. Both device types can also operate with unbalanced supplies such as +24V and -5V. The Typical Operating Characteristics graphs show typical on-resistance with 20V, 15V, 10V, and 5V supplies. (Switching times increase by a factor of two or more for operation at 5V.)Overvoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings, because stresses beyond the listed rat-ings may cause permanent damage to the devices.Always sequence V+ on first, then V-, followed by the logic inputs NO and COM. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage protection (Figure 1).Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but does not affect the devices’ low switch resistance and low leakage charac-teristics. Device operation is unchanged, and the differ-ence between V+ and V- should not exceed 44V.M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 6_____________________________________________________________________________________________________________________________________________________Pin DescriptionFigure 1. Overvoltage Protection Using External Blocking DiodesMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________7______________________________________________Test Circuits/Timing DiagramsFigure 2. Transition TimeM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 8________________________________________________________________________________________________________________________Test Circuits/Timing Diagrams (continued)Figure 5. Charge InjectionMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________9_________________________________Test Circuits/Timing Diagrams (continued)Figure 6. Off-Isolation Figure 7. CrosstalkFigure 8. NO/COM CapacitanceM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 10______________________________________________________________________________________________Pin Configurations/Functional Diagrams/Truth Tables (continued)A2A1A0EN ON SWITCH X 00001111X 00110011X 01010101011111111None 12345678MAX338LOGIC “0” V AL ≤ 0.8V, LOGIC “1” V AH ≥ 2.4VA1A0EN ON SWITCH X 0011X 010101111None 1234MAX339LOGIC “0” V AL ≤ 0.8V, LOGIC “1” V AH ≥ 2.4VMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers______________________________________________________________________________________11Ordering Information (continued)*Contact factory for dice specifications.**Contact factory for availability.Pin Configurations/Functional Diagrams/Truth Tables (continued)M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 12________________________________________________________________________________________________________________________________________________Chip TopographiesV+NO3EN 0.114"(2.89mm)0.078"(1.98mm)COM NO8NO5NO6N07A0A1A2GNDNO2 NO1 V-N.C.NO4V+NO3AEN0.114"(2.89mm)0.078"(1.98mm)COMA COMB NO1B NO2B N04BA0A1N.C.GNDNO2A NO1A V-NO3BNO4ATRANSISTOR COUNT: 224SUBSTRATE IS INTERNALLY CONNECTED TO V+Note:On Thin QFN packages connect exposed pad to V+.TRANSISTOR COUNT: 224SUBSTRATE IS INTERNALLY CONNECTED TO V+MAX338MAX339N.C. = NO INTERNAL CONNECTIONMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog MultiplexersMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
33977资料
Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as may be required, to permit improvements in the design of its products.Document Number: MC33977Rev. 2.0, 1/2007Freescale Semiconductor Technical Data© Freescale Semiconductor, Inc., 2007. All rights reserved.Single Gauge DriverThe 33977 is a Serial Peripheral Interface (SPI) Controlled, stepper motor gauge driver Integrated Circuit (IC). This monolithic IC consists of a dual H-Bridge coil driver and its associated control logic. The H-Bridge drivers are used to automatically control the speed, direction, and magnitude of current through the coils of a two-phaseinstrumentation stepper motor, similar to an MMT-licensed AFIC 6405 of Switec MS-X156.xxx motor.The 33977 is ideal for use in instrumentation systems requiring distributed and flexible stepper motor gauge driving. The device also eases the transition to stepper motors from air core motors by emulating the damped air core pointer movement. Features •MMT-Licensed Two-Phase Stepper Motor Compatible •Switec MS-X15.xxx Stepper Motor Compatible •Minimal Processor Overhead Required•Fully Integrated Pointer Movement and Position State Machine with Air Core Movement Emulation•4096 Possible Steady State Pointer Positions •340° Maximum Pointer Sweep •Maximum Acceleration of 4500°/s 2•Maximum Pointer Velocity of 400°/s•Analog Microstepping (12 Steps/Degrees of Pointer Movement)•Pointer Calibration and Return to Zero (RTZ)•Controlled via 16-Bit SPI Messages •Internal Clock Capable of Calibration •Low Sleep Mode Current•Pb-Free Packaging Designated by suffix code EGFigure 1. 33977 Simplified Application DiagramORDERING INFORMATIONDevice Temperature Range (T A )PackageMC33977DW/R2- 40°C to 125°C24 SOICWMCZ33977EG/R233977SINGLE GAUGE DRIVERAnalog Integrated Circuit Device Data33977INTERNAL BLOCK DIAGRAMINTERNAL BLOCK DIAGRAMFigure 2. 33977 Simplified Internal Block DiagramH-BRIDGE COS+INTERNAL VPWRVDDCOSCOS-REGULATORLOGICSPIILIMOVERTEMPERATUREAND CONTROLSINOSCILLATORDETECTUNDER -ANDOVERVOLTAGE DETECTCS SCLK SO SIRSTRTZSIN+SIN-GND (8)MULTIPLEXERSIGMA-DELTAADCAGNDSTATE MACHINEVDDAnalog Integrated Circuit Device Data 33977PIN CONNECTIONSPIN CONNECTIONSFigure 3. 33977 Pin ConnectionsTable 1. 33977 Pin DefinitionsA functional description of each pin can be found in the Functional Pin Description section beginning onpage 10.PinPin Name Pin Function Formal Name Definition1234(MS Motor Pin #)COS+ (MS #4)COS- (MS #3)SIN+ (MS #1)SIN- (MS #2)OutputH-Bridge Outputs 0Each pin is the output of a half-bridge, designed to source or sink current.5 to 8, 17 to 20GND N/A Ground Ground pins9CS Input Chip Select This pin is connected to a chip select output of a Large Scale Integration (LSI) Master IC and controls which device is addressed.10SCLK Input Serial Clock This pin is connected to the SCLK pin of the master device and acts as a bit clock for the SPI port.11SOOutput Serial Output This pin is connected to the SPI Serial Data Input pin of the Master device or to the SI pin of the next device in a daisy chain.12SIInput Serial Input This pin is connected to the SPI Serial Data Output pin of the Master device from which it receives output command data.13RTZ Multiplexed Output Return to ZeroThis is a multiplexed output pin for the non-driven coil, during a Return to Zero (RTZ) event.14VDD Input Voltage This SPI and logic power supply input will work with 5.0 V supplies. 15RSTInputResetThis pin is connected to the Master and is used to reset the device, or place it into a sleep state by driving it to Logic [1]. When this pin is driven to Logic [0], all internal logic is forced to the default state. This input has an internal active pull-up. 16VPWRInput Battery Voltage Power supply21, 22, 23, 24NC–No ConnectThese pins are not connected to any internal circuitry, or any other pin, and may be connected to the board where convenient.NC NC NC NC GND GND GND GND VPWR RST VDD RTZCOS +COS -SIN+SIN-GND GND GND GND CS SCLK SO SIAnalog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICS MAXIMUM RATINGSELECTRICAL CHARACTERISTICSMAXIMUM RATINGSTable 2. Maximum RatingsAll voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.RatingsSymbolValueUnitELECTRICAL RATINGS Power Supply Voltage Steady-State V PWRSS-0.3 to 41VInput Pin Voltage (1)V IN -0.3 to 7.0V SIN± COSI± Continuous Current Per Output (2)I OUTMAX 40mA ESD Voltage (3)Human Body Model (HBM) Machine Model (MM)Charge Device Model (CDM)V ESD±2000 ±2000±200V THERMAL RATINGS Operating Temperature Ambient JunctionT A T J -40 to 125-40 to 150°CStorage Temperature T STG-55 to 150°C Thermal Resistance Junction-to-Ambient Junction-to-LeadR ΘJA R ΘJL 6020°C/W Peak Package Reflow Temperature During Reflow (4), (5)T PPRTNote 5°CNotes1.Exceeding voltage limits on Input pins may cause permanent damage to the device.2.Output continuous output rating so long as maximum junction temperature is not exceeded. Operation at 125°C ambient temperaturewill require maximum output current computation using package thermal resistances.3.ESD testing is performed in accordance with the Human Body Model (HBM) (C ZAP = 100 pF, R ZAP = 1500 Ω), the Machine Model (MM)(C ZAP = 200 pF, R ZAP = 0 Ω), and the Charge Device Model (CDM).4.Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.5.Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL),Go to , search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.Analog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSTable 3. Static Electrical CharacteristicsCharacteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbol Min Typ Max UnitPOWER INPUT (VDD)Battery Supply Voltage Range Fully Operational Limited Operation (6),(7)V PWR6.54.0–2626VV PWR Supply CurrentGauge Outputs ON, No Output Loads I PWR–4.06.0mAVPWR Supply Current (All Outputs Disabled)Reset = Logic [0], V DD = 5.0 V Reset = Logic [0], V DD = 0 V I PWRSLP1I PWRSLP2––42156025µAOvervoltage Detection Level (8)V PWROV 263238V Undervoltage Detection Level (9)V PWRUV 5.0 5.6 6.2V Logic Supply Voltage Range (5.0 V Nominal Supply)V DD 4.5 5.0 5.5V Under V DD Logic Reset V DDUV––4.5VVDD Supply Current Sleep: Reset Logic [0]Outputs EnabledI DDOFF I DDON––401.0651.8µV mAPOWER OUTPUT (SIN-, SIN+, COS-, COS+)Microstep Output (Measured Across Coil Outputs)SIN± (COS±) (Refer to Pin Definitions onpage 3)R OUT = 200 Ω, PE6 = 0VSteps Pin Definitions 6, 18, 0, 125, 7, 17, 19 1, 11, 13, 234, 8, 16, 20 2, 10, 14, 223, 9, 15, 21 3, 9, 15, 212, 10, 14, 22 5, 7, 17, 191, 11, 13, 23 5, 7, 17, 190, 126, 18V ST6V ST5V ST4V ST3V ST2V ST1V ST0 4.820.94 V ST60.84 V ST60.68 V ST60.47 V ST60.23 V ST60.15.30.97 V ST60.87 V ST60.71 V ST60.50 V ST60.26 V ST60.06.01.0 V ST60.96 V ST60.8 V ST60.57 V ST60.31 V ST60.1Full Step Active Output (Measured Across Coil Outputs) (10)SIN± (COS±), Steps 1,3 (Pin Definitions 0 and 2)V FS4.95.36.0V Notes6.Outputs and logic remain active; however, the larger coil voltage levels may be clipped. The reduction in drive voltage may result in aloss of position control.7.The logic will reset at some level below the specified Limited Operational minimum.8.Outputs will disable and must be re-enabled via the PECCR command.9.Outputs remain active; however, the reduction in drive voltage may result in a loss of position control.10.See Figure 7.Analog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSPOWER OUTPUT (SIN-, SIN+, COS-, COS+) (Continued)Microstep Full Step Output (Measured from Coil Low Side to Ground)SIN± (COS±) I OUT = 30 mA V LS0.00.10.3VOutput Flyback Clamp (11)V FB –V ST6 + 0.5V ST6 + 1.0V Output Current Limit (Output - V ST6)I LIM 40100170mA Overtemperature Shutdown (12) T SD 155–180°C Overtemperature Hysteresis (12)T HYST 8.0–16°C CONTROL I/O (SI, SCLK, CS, RST, SO)Input Logic High Voltage (12)V IH 2.0––V Input Logic Low Voltage (12)V IL ––0.8V Input Logic Voltage Hysteresis (12)V INHYST –100–mV Input Logic Pull-Down Current (SI, SCLK)I DWN 3.0–20µA Input Logic Pull-Up Current (CS, RST)I UP 5.0–20µA SO High State Output Voltage (I OH = 1.0 mA)V SOH 0.8 V DD––V SO Low State Output Voltage (I OL = 1.6 mA)V SOL –0.20.4V SO Tri-State Leakage Current (CS = 3.5 V)I SOLK -5.00.0 5.0µA Input Capacitance (13)C IN – 4.012pF SO Tri-State Capacitance (13)C SO––20pFANALOG TO DIGITAL CONVERTER (RTZ ACCUMULATOR COUNT)ADC Gain (12), (14)G ADC100188270Counts/V/msNotes 11.Outputs remain active; however, the reduction in drive voltage may result in a loss of position control.12.This parameter is guaranteed by design; however, it is not production tested.13.Capacitance not measured. This parameter is guaranteed by design; however, it is not production tested. 14.Reference RTZ Accumulator (Typical) on page 30Table 3. Static Electrical Characteristics (continued)Characteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSTable 4. Dynamic Electrical CharacteristicsCharacteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbol Min Typ Max UnitPOWER OUTPUT AND CLOCK TIMINGS (SIN+, SIN-, COS+, COS-) CS SIN± (COS±) Output Turn ON Delay Time (Time from Rising CS Enabling Outputs to Steady State Coil Voltages and Currents)(15)t DLYON––1.0msSIN± (COS±) Output Turn OFF Delay Time (Time from Rising CS Disables Outputs to Steady State Coil Voltages and Currents) (15)t DLYOFF–– 1.0msUncalibrated Oscillator Cycle Time t CLU 0.651.01.7µs Calibrated Oscillator Cycle TimeCalibration Pulse = 8.0 µs, PECCR D4 = Logic [0]Calibration Pulse = 8.0 µs, PECCR D4 = Logic [1]t CLC1.00.91.11.0 1.21.1µsMaximum Pointer Speed (16) V MAX ––400°/s Maximum Pointer Acceleration (16)A MAX––4500°/s 2SPI INTERFACE TIMING (CS, SCLK, SO, SI, RST) (17)Recommended Frequency of SPI Operationf SPI – 1.0 2.0MHz Falling Edge of CS to Rising Edge of SCLK (Required Setup Time) (18)t LEAD 167––ns Falling Edge of SCLK to Rising Edge of CS (Required Setup Time) (18)t LAG 167––ns SI to Falling Edge of SCLK (Required Setup Time) (18)t SISU –2583ns Falling Edge of SCLK to SI (Required Hold Time) (18)t SIHOLD –2583ns SO Rise Time C L = 200 pF t RSO–2550nsSO Fall Time C L = 200 pFt FSO–2550nsSI, CS, SCLK, Incoming Signal Rise Time (19)t RSI ––50ns SI, CS, SCLK, Incoming Signal Fall Time (19)t FIS ––50ns Falling Edge of RST to Rising Edge of RST (Required Setup Time) (18)t W RST –– 3.0µs Rising Edge of CS to Falling Edge of CS (Required Setup Time) (18), (20)t CS –– 5.0µs Falling Edge of RST to Rising Edge of CS (Required Setup Time) (18)t EN––5.0µsNotes15.Maximum specified time for the 33977 is the minimum guaranteed time needed from the microcontroller.16.The minimum and maximum value will vary proportionally to the internal clock tolerance. These numbers are based on an ideallycalibrated clock frequency of 1.0 MHz. These are not 100 percent tested.17.The 33977 shall meet all SPI interface timing requirements specified in the SPI Interface Timing section of this table, over the specifiedtemperature range. Digital interface timing is based on a symmetrical 50 percent duty cycle SCLK Clock Period of 33 ns. The device shall be fully functional for slower clock speeds. Reference Figure 4 and 5.18.The required setup times specified for the 33977 are the minimum time needed from the microcontroller to guarantee correct operation. 19.Rise and Fall time of incoming SI, CS, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing. 20.The value is for a 1.0 MHz calibrated internal clock. The value will change proportionally as the internal clock frequency changes.Analog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSSPI INTERFACE TIMING (CS, SCLK, SO, SI, RST) ‘ (CONTINUED)Time from Falling Edge of CS to SO Low Impedance (22)t SOEN ––145ns Time from Falling Edge of CS to SO High Impedance (23)t SODIS –1.34.0µs Time from Rising Edge of SCLK to SO Data Valid (24)0.2 V DD = SO = 0.8 V DD , C L = 200 pFt VALID–90150nsNotes21.The 33977 shall meet all SPI interface timing requirements specified in the SPI Interface Timing section of this table, over the specifiedtemperature range. Digital interface timing is based on a symmetrical 50 percent duty cycle SCLK Clock Period of 33 ns. The device shall be fully functional for slower clock speeds.22.Time required for output status data to be terminated at SO 1.0 k Ω load on SO.23.Time required for output status data to be available for use at SO 1.0 k Ω load on SO.24.Time required to obtain valid data out from SO following the rise of SCLK.Table 4. Dynamic Electrical Characteristics (continued)Characteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSTIMING DIAGRAMSTIMING DIAGRAMSFigure 4. Input Timing Switching CharacteristicsFigure 5. Valid Data Delay Time and Valid Time WaveformstWRSTRST0.2 V DDV INCSSCLKSI0.7 V DD0.7 V DDt LEAD t CSt LAG0.7 V DD 0.2 V DDt RSIV ILV IH V ILV IH t FISt SISUt SI(HOLD)0.7 V DD 0.2 V DDValidDon’t CareValidDon’t CareDon’t Caret RSIt FISSCLK50%1.0VV OLV OH3.5VV OLV OHV OLV OHt SO(DIS)0.2 V DDt RSOt RSO t VALIDt SO(EN)0.7 V DD0.2 V DD0.7 V DDLow-to-HighHigh-to-LowSOSOAnalog Integrated Circuit Device Data33977FUNCTIONAL DESCRIPTION FUNCTIONAL PIN DESCRIPTIONFUNCTIONAL DESCRIPTIONINTRODUCTIONThis 33977 is a single-packaged, Serial PeripheralINterface (SPI) controlled, single stepper motor gauge driver integrated circuit (IC). This monolithic stepper IC consists of [deleted two per D. Mortensen] a dual output H-Bridge coil driver [deleted plural s for accurate tense] and theassociated control logic. The dual H-Bridge driver is used to automatically control the speed, direction, and magnitude of current through the coils of a two-phase instrumentation stepper motor, similar to an MMT-licensed AFIC 6405 of Switec MS-X 156.xxx motor.FUNCTIONAL PIN DESCRIPTIONCOSINE POSITIVE (COS0+)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.COSINE NEGATIVE (COS0-)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.SINE POSITIVE (SIN+)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.SINE NEGATIVE (SIN-)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.GROUND (GND)Ground pins.CHIP SELECT (CS)The pin enables communication with the master device. When this pin is in a logic [0] state, the 33977 is capable of transferring information to, and receiving information from, the master. The 33977 latches data in from the Input Shift registers to the addressed registers on the rising edge of CS.The output driver on the SO pin is enabled when CS is logic [0]. When CS is logic high, signals at the SCLK and SI pins are ignored and the SO pin is tri-stated (highimpedance). CS will only be transitioned from a logic [1] state to a logic [0] state when SCLK is logic [0]. CS has an internal pull-up (I UP ) connected to the pin, as specified in the section of the Static Electrical Characteristics Table.SERIAL CLOCK (SCLK)SCLK clocks the Internal Shift registers of the 33977device. The SI pin accepts data into the Input Shift register on the falling edge of the SCLK signal, while the Serial Output pin (SO) shifts data information out of the SO Line Driver on the rising edge of the SCLK signal. It is important that the SCLK pin be in a logic [0] state whenever the CS makes any transition.SCLK has an internal pull down (l DWN ), as specified in the section of the Static Electrical Characteristics Table. When CS is logic [1], signals at the SCLK and SI pins are ignored and SO is tri-stated (high impedance). Refer to the data transfer Timing Diagrams on page 9.SERIAL OUTPUT (SO)The SO data pin is a tri-stateable output from the Shift register. The Status register bits are the first 16 bits shifted out. Those bits are followed by the message bits clocked in FIFO, when the device is in a daisy chain connection or being sent words that are multiples of 16 bits. Data is shifted on the rising edge of the SCLK signal. The SO pin will remain in a high impedance state until the CS pin is put into a logic low state.SERIAL INPUT (SI)The SI pin is the input of the SPI. Serial input information is read on the falling edge of SCLK. A 16-bit stream of serial data is required on the SI pin, beginning with the mostsignificant bit (MSB). Messages that are not multiples of 16 bits (e.g., daisy chained device messages) are ignored. After transmitting a 16-bit word, the CS pin must be de-asserted (logic [1]) before transmitting a new word. SI information is ignored when CS is in a logic high state.RETURN TO ZERO (RTZ)This is a multiplexed output pin for the non-driven coil, during a Return to Zero (RTZ) event.VOLTAGE (VDD)The SPI and logic power supply input will work with 5.0 V supplies.RESET (RST)If the master decides to reset the device, or place it into a sleep state, the RST pin is driven to a Logic [0]. A Logic [0] on the RST pin forces all internal logic to the known default state. This input has an internal active pull-up.VOLTAGE POWER (VPWR)This is the power supply pin.FUNCTIONAL DESCRIPTIONFUNCTIONAL INTERNAL BLOCK DESCRIPTION (OPTIONAL) FUNCTIONAL INTERNAL BLOCK DESCRIPTION (OPTIONAL)Figure 6. Functional Internal 33977 Block IllustrationSERIAL PERIPHERAL INTERFACE (SPI) This circuitry manages incoming messages and outgoing status data.LOGICThis design element includes internal logic including state machines and message decoding.INTERNAL REFERENCEThis design element is used for step value levels.UNDER AND OVERVOLTAGE DETECTION This design element detects when V PWR is out of the normal operating range.OSCILLATORThe internal oscillator generates the internal clock for all timing critical features.H-BRIDGE AND CONTROLThis circuitry contains the output coil drivers and the multiplexers necessary for four quadrant operation and RTZ sequencing. This circuitry is repeated for the Sine and Cosine coils.•Overtemperature — Each output includes an overtemperature sensing circuit•ILIM — Each output is current limitedRETURN TO ZERO (RTZ)This circuitry outputs the voltage present on the non-driven coil during RTZ operation.SPI LogicUnder andOscillator OvervoltageDetectH-Bridge and Control Internal ReferenceRTZFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESSTATE MACHINE OPERATIONThe 33977 is ideal for use in instrumentation systemsrequiring distributed and flexible stepper motor gauge driving.The device also eases the transition to stepper motors fromair core motors by emulating the air core pointer movementwith little additional processor bandwidth utilization. The two-phase stepper motor has maximum allowable velocities andacceleration and deceleration. The purpose of the steppermotor state machine is to drive the motor with the maximumperformance while remaining within the motor’s voltage,velocity, and acceleration constraints.A requirement of the state machine is to ensure thedeceleration phase begins at the correct time and pointerposition. When commanded, the motor [will deleted PV]accelerates constantly to the maximum velocity, and then itmoves toward the commanded position at the maximumvelocity. Eventually, the pointer reaches the calculatedlocation where the movement has to decelerate, safelyslowing to a stop at the desired position. During thedeceleration phase, the motor does [will deleted PV] notexceed the maximum deceleration.During normal operation, both stepper motor rotors aremicrostepped at 24 steps per electrical revolution, illustratedin Figure 7. A complete electrical revolution results in twodegrees of pointer movement. There is a second smaller[parentheses removed-unnecessary] state machine in the ICcontrolling these microsteps. The smaller state machinereceives clockwise or counter-clockwise index commands attimed intervals, thereby stepping the motor in the appropriatedirection by adjusting the current in each coil. Normalizedvalues are provided in Table 5.Figure 7. Clockwise MicrostepsTable 5. Coil Step ValueStep Angle SINE(Angle)*COS (Angle -30)*PE6=0COS (Angle -30)*PE6=100.00.0 1.00.866 1150.2590.9650.966 2300.50.866 1.0 3450.7070.7070.966 4600.8660.50.866 5750.9660.2590.707 690 1.00.00.500 71050.966-0.2590.259 81200.866-0.50.0 91350.707-0.707-0.259 101500.5-0.866-0.500FUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESThe motor is stepped by providing index commands at intervals. The time between steps defines the motor velocity and the changing time defines the motor acceleration.The state machine uses a table to define the allowed time and the maximum velocity. A useful side effect of the table is that it also allows the direct determination of the position at which the velocity should reduce to stop the motor at the desired position.Motor motion equations follow: [reworded for efficient use of space](The units of position are steps and velocity and acceleration are in steps/second and steps/second2.) From an initial position of 0 with an initial velocity (u), the motor position (s) at a time (t) is:For unit steps, the time between steps is:This defines the time increment between steps when the motor is initially traveling at a velocity u. In the ROM, this time is quantized to multiples of the system clock by rounding upwards, ensuring acceleration never exceeds the allowed value. The actual velocity and acceleration is calculated from the time step actually used. Using:andand solving for v in terms of u, s, and t gives:The correct value of t to use in the equation is thequantized value obtained above.From these equations, a set of recursive equations can be generated to give the allowed time step between motor indexes when the motor is accelerating from a stop to its maximum velocity.Starting from a position p of 0 and a velocity v of 0, these equations define the time interval between steps at each position. To drive the motor at maximum performance, index commands are given to the motor at these intervals. A table is generated giving the time step *t at an index position n. Note: [chgd for format consistency AND deleted that as PV] For p n = n, on the nth step, the motor [has deleted as PV] indexed by n positions and has been accelerating steadily at the maximum allowed rate. This is critical because it also indicates the minimum distance the motor must travel while decelerating to a stop. For example, the stopping distance isalso equal to the current value of n.The algorithm of pointer movement can be summarized in two steps:1.The pointer is at the previously commanded positionand is not moving.2. A command to move to a pointer position (other thanthe current position) has been received. Timed indexpulses are sent to the motor driver at an ever-increasing rate, according to the time steps in Table 6, until:aThe maximum velocity (default or selected) isreached after which the step time intervals will nolonger decrease.bThe distance in steps that remain to travel are less than the current step time index value. The motorthen decelerates by increasing the step timesaccording to Table 6 until the commandedposition is reached. The state machine controlsthe deceleration so that the pointer reaches thecommanded position efficiently.An example of the velocity table for a particular motor is provided in Table 6. This motor’s maximum speed is 4800111650.259-0.966-0.707 121800.0-1.0-0.866 13195-0.259-0.966-0.966 14210-0.5-0.867-1.0 15225-0.707-0.707-0.966 16240-0.866-0.5-0.866 17255-0.966-0.259-0.707 18270-1.00.0-0.500 19285-0.9660.259-0.259 20300-0.8660.50.0 21315-0.7070.7070.259 22330-0.50.8660.500 23345-0.2590.9660.707 * Denotes normalized valuesTable 5. Coil Step Values = ut + 1/2 at 2⇒t =- u + √u2 + 2aav2 = u2 + 2asv = u + atv = 2/t - up0 = 0v0 = 0∆t n =⎡-vn -1 + √v2n -1 + 2aa⎤where ⎡ ⎤ indicates rounding upv n = 2/∆tn - V n -1p n = nFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESmicrosteps/s (at 12 microsteps/degrees), and its maximum acceleration is 54000 microsteps/s2. The table is quantized to a 1.0 MHz clock.Table 6. Velocity TableVelocity Position Time BetweenSteps (µs)Velocity(µSteps/s)VelocityPositionTime BetweenSteps (µs)Velocity(µSteps/s)VelocityPositionTime BetweenSteps (µs)Velocity(µSteps/s)00.00.00763802631.61522573891.1 12721736.7773772652.51532563906.3 21360773.5783742673.81542553921.6 31127188.7793722688.21552543937.0 47970125.5803692710.01562543937.0 55858170.7813662732.21572533952.6 64564219.1823642747.31582523968.3 73720268.8833612770.11592513984.1 83132319.3843582793.31602504000.0 92701370.2853562809.01612494016.1 102373421.4863542824.91622484032.3 112115472.8873512849.01632484032.3 121908524.1883492865.31642474048.6 131737575.7893472881.81652464065.0 141594627.4903442907.01662454081.6 151473678.9913422924.01672444098.4 161369730.5923402941.21682444098.4 171278782.5933382958.61692434115.2 181199834.0943362976.21702424132.2 191129885.7953342994.01712414149.4 201066938.1963323012.01722414149.4 211010990.1973303030.31732404166.7 229601041.7983283048.81742394184.1 239161091.7993263067.51752384201.7 248771140.31003243086.41762384201.7 258421187.61013223105.61772374219.4 268121231.51023213115.31782364237.3 277841275.51033193134.81792654255.3 287601315.81043173154.61802354255.3 297371356.91053153174.61812344273.5 307161396.61063143184.71822334291.8 316971434.71073123205.11832334291.8 326801470.61083103225.81842324310.3 336631508.31093093236.21852314329.0 346481543.21103073257.31862314329.0 356341577.31113063268.01872304347.8。
YW-UTC339中文资料
YW-UTC339 双极型线性集成电路
摘自—第一价值网(IC网络超市)
四差分比较器
1.UTC339/E内部包括有四个独立的电压比较器
在很宽的电源电压范围内适用于双电源工作模式,
也适用于单电源工作模式.它的使用范围包括方波发生
器、时间延长器、脉冲发生器、多谐振荡器、高压数字逻
辑门、A/D转换器和MOS时钟驱动器等。
2.UTC339/E的封装形式为14引线双列塑封直插式
特点:
★单或双电源工作模式
★电源电压范围宽:单电源(2—36V); 双电源(±1—±18V)
★低功耗电流,典型值为800μA
★开路集电极输出,便于线连
★输入偏置电流小,典型值为25nA
★输入失调电流小,典型值为±2.3nA
★输入失调电压小,典型值为±1.4mV
★共模输入电压范围宽,包括接地
★输出饱和压降小
★输出能与TTL、DTL和MOS逻辑系统相匹配
内部电路图
极限参数
第一价值网为您提供最低廉的价格,保证您最好的品质! YW-UTC339PDF资料下载/查看。
KA339中文资料
©2002 Fairchild Semiconductor CorporationRev. 1.0.2Features•Single or Dual Supply Operation •Wide Range of Supply V oltageKA239/KA239A, KA339/KA339A, KA2901 : 2 ~ 36V (or ±1 ~ ±18V)KA3302 : 2 ~ 28V (or ±1 ~ ±14V)•Low Supply Current Drain 800µA Typ.•Open Collector Outputs for Wired and Connectors •Low Input Bias Current 25nA Typ.•Low Input Offset Current ±2.3nA Typ.•Low Input Offset V oltage ±1.4mV Typ.•Input Common Mode V oltage Range Includes Ground.•Low Output Saturation V oltage•Output Compatible With TTL, DTL and MOS Logic SystemDescriptionThe KA239/KA239A, KA339/KA339A, KA3302, KA2901consist of four independent voltage comparators designed to operate from single power supply over a wide voltage range.14-SOP14-DIP11Internal Block Diagram141131*********4567-+--+++-OUT3OUT4IN4(+)GNDIN4(-)IN3(+)IN3(-)OUT2OUT1IN1(+)IN1(-)IN2(-)IN2(+)V CC KA239/KA239A,KA339/KA339A KA3302,KA2901Quad ComparatorKA239/KA239A,KA339/KA339A KA3302,KA29012Schematic DiagramAbsolute Maximum RatingsParameter Symbol Value Unit Supply VoltageV CC ±18 or 36V Supply Voltage Only KA3302V CC ±14 or 28V Differential Input VoltageV I(DIFF)36V Differential Input Voltage Only KA3302V I(DIFF)28V Input VoltageV I -0.3 to +36V Input Voltage Only KA3302V I -0.3 to +28V Output Short Circuit to GND -Continuous-Power Dissipation P D570mWOperating Temperature KA339/KA339A KA239/KA239A KA2901/KA3302T OPR 0 ~ +70-25 ~ +85-40 ~ +85°C Storage TemperatureT STG-65 ~ +150°CV CCQ9Q12Q14Q3Q1Q2Q7Q13Q8Q5Q6Q4D4D5D6D1D2D3R2R1GNDOUTPUTIN(-)IN(+)KA239/KA239A,KA339/KA339A KA3302,KA29013Electrical Characteristics(V CC = 5V, T A = 25°C, unless otherwise specified)Note:1. KA339 / KA339A: 0 ≤ T A ≤ +70°CKA239 / KA239A: -25 ≤ T A ≤ +85°C KA2901 / KA3302: -40 ≤ T A ≤ +85°C2. These parameters, although guaranteed, are not 100% tested in production.ParameterSymbol ConditionsKA239A/KA339A KA239/KA339Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) = 1.4V, R S = 0Ω-12- 1.45mVNote1-- 4.0--9.0Input Offset Current I IO I IN(+) - I IN(-), V CM = 0V- 2.350- 2.350nA Note1--150--150Input Bias Current I BIAS V CM = 0V-57250-57250nA Note1--400--400Input Common Mode Voltage Range V I(R)V CC = 30V0-V CC -1.50-V CC -1.5V Note10-V CC -20-V CC -2Supply Current I CC V CC = 5V, R L = ∞- 1.1 2.0- 1.1 2.0mA Voltage Gain G V V CC = 15V, R L ≥ 15k Ω(for large swing)50200-50200-V/mV Large Signal Response Time T LRES V I = TTL Logic Swing V REF = 1.4V, V RL = 5V, R L = 5.1k Ω (Note2)-300--300-ns Response Time T RES V RL = 5V, R L = 5.1k Ω (Note2)- 1.3-- 1.3-µs Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 618-618-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, V I(+) = 0V -140400-140400mV I SINK = 4mA Note1--700--700Output Leakage CurrentI o(LKG)V I(-) = 0V V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) =30V -- 1.0-- 1.0µA Differential VoltageV I(DIFF)Note1--36--36VKA239/KA239A,KA339/KA339A KA3302,KA29014Electrical Characteristics (Continued)(V CC = 5V, T A = 25°C, unless otherwise specified)Note:1. KA339 / KA339A: 0 ≤ T A ≤ +70°CKA239 / KA239A: -25 ≤ T A ≤ +85°C KA2901 / KA3302: -40 ≤ T A ≤ +85°C2. These parameters, although guaranteed, are not 100% tested in production.ParameterSymbol ConditionsKA2901KA3302Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) = 1.4V, R S = 0Ω-27-220mV Note1-915--40Input Offset Current I IO - 2.350-3100nA Note1-50200--300Input Bias Current I BIAS-57250-57250nANote1-200500--1000Input Common ModeVoltage Range V I(R)KA2901, V CC =30V KA3302, V CC =28V0-V CC -1.50-V CC -1.5VNote10-V CC -20-V CC -2Supply CurrentI CC R L =∞, V CC =5V- 1.1 2.0- 1.1 2.0mA R L =∞, V CC =30V (KA3302, V CC =28V)- 1.6 2.5- 1.6 2.5Voltage Gain G V V CC =15V, R L ≥15k Ω(for large swing)25100-230-V/mV Large Signal Response Time T LRES V I =TTL Logic Swing V REF =1.4V, V RL = 5V, R L =5.1k Ω (Note2)-300--300-ns Response Time T RES V RL = 5V, R L =5.1k Ω (Note2)- 1.3-- 1.3-µs Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 618-618-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, V I(+) =0V -140400-140400mV I SINK = 4mA Note1--700--700Output Leakage CurrentI O(LKG)V I(-) = 0V V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) = 30V -- 1.0-- 1.0µA Differential VoltageV I(DIFF)-Note1--36--28VKA239/KA239A,KA339/KA339A KA3302,KA29015Typical Performance CharacteristicsFigure 1.Supply Current vs Supply Voltage Figure 2.Input Current vs Supply VoltageFigure 3.Output Saturation Voltage vs Sink CurrentFigure 4.Response Time for Various InputOverdrive-Negative TransitionFigure 5.Response Time for Various InputOverdrive-Positive TransitionKA239/KA239A,KA339/KA339A KA3302,KA2901Mechanical DimensionsPackageDimensions in millimeters14-DIP6KA239/KA239A,KA339/KA339A KA3302,KA2901 Mechanical Dimensions (Continued)PackageDimensions in millimeters14-SOP7KA239/KA239A,KA339/KA339A KA3302,KA290111/19/02 0.0m 001Stock#DSxxxxxxxx2002 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureKA33914-DIP0 ~ +70°CKA339A KA339D 14-SOP KA339AD KA23914-DIP-25 ~ +85°CKA239A KA239D 14-SOP KA239AD KA290114-DIP -40 ~ +85°C KA2901D 14-SOP KA330214-DIP KA3302D14-SOP。
itech6332a参数
任务名称:itech6332a参数1. 介绍在计算机科学领域,参数(parameter)是指在函数或方法中用来传递数据的变量。
参数可以是输入参数(input parameter)或输出参数(output parameter),它们对于程序的运行起着至关重要的作用。
在本文中,我们将重点讨论itech6332a参数。
itech6332a是一个常见的参数命名规范,通常用于标识特定类型的输入参数。
我们将详细介绍该参数的含义、用途和示例。
2. itech6332a参数的含义itech6332a是一个由字母和数字组成的字符串,其含义如下:•“i”代表input(输入),表示该参数是一个输入参数;•“tech”代表technology(技术),表示该参数与技术相关;•“6332”代表一种特定的技术类型或标识符;•“a”代表该技术类型或标识符下的第一个具体实例。
综上所述,itech6332a可以理解为某个技术类型下的第一个输入参数。
3. itech6332a参数的用途itech6332a在编程中具有广泛的应用。
它可以作为函数或方法定义中的形式参数,在函数调用时传入实际值。
通过使用itech6332a,我们可以实现以下功能:3.1 数据传递itech6332a参数用于将数据从调用者传递给被调用的函数或方法。
通过在函数定义中声明itech6332a参数,我们可以将外部数据传递到函数内部,以供函数使用。
例如,假设我们有一个名为calculate_sum的函数,它接受两个数值作为输入,并返回它们的和。
我们可以使用itech6332a参数来实现这个功能:def calculate_sum(itech6332a, b):return itech6332a + bresult = calculate_sum(5, 3)print(result) # 输出8在上面的例子中,calculate_sum函数接受两个输入参数itech6332a和b,并返回它们的和。
72a材料化学成分表
72a材料化学成分表72a材料是一种常用的工程材料,它常常被用于制作各种零件和构件。
其中,其化学成分非常重要,可以决定其物理性质和机械性能。
接下来,我们将围绕“72a材料化学成分表”展开详细阐述。
第一步,我们需要了解72a材料的成分表。
通常情况下,我们可以从各种材料手册或者网络上找到相关的信息。
在72a材料化学成分表中,我们可以看到其主要元素包括:碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)等。
此外,还有一些杂质元素如铜(Cu)、镍(Ni)、铝(Al)等。
第二步,我们需要掌握这些元素的含量。
针对72a材料,其主要成分依次为:C(0.70-0.80%)、Si(0.20-0.50%)、Mn(0.60-0.90%)、P(不超过0.035%)、S(不超过0.035%)。
由此可见,C是72a材料的主要元素,其含量应该在0.70-0.80%之间,而且Si和Mn的含量也是比较重要的。
第三步,我们需要了解这些元素的作用。
在72a材料中,碳(C)是基本元素,对各种材料性能起到重要的影响作用。
通常情况下,含碳量越高,硬度也会越高,其热处理性能也会更好。
硅(Si)的作用是提高材料的强度和硬度,同时还可以提高材料的耐磨性和耐蚀性。
锰(Mn)的主要作用则是提高材料的强度、硬度和韧性,还可以提高材料的磨损和冲击韧性。
磷(P)和硫(S)则是常见的杂质元素,其少量加入可以提高材料的可加工性和塑性,但过多含量则会降低材料的强度和硬度。
综上所述,在应用72a材料时,我们需要仔细研究其成分表,从中了解其中各种元素的含量和作用。
只有这样,才能更好地控制材料的性能和机械强度,确保其在各种复杂条件下都具备可靠性和稳定性,发挥其最大的应用价值。
AQTIA-WDPM 477AV 475 476A 478A 477B 490A HM35 HM28
SERIESAQTIA-WDPM477AV475476A478A477B490AHM35HM28Range 2 to 350 in w.c.(0.5 to 87 kPa)1 in w.c. to 150 psi(.25 kPa to 10.34 bar)1 in w.c. to 150 psi(.25 kPa to 10.34 bar)±20 in w.c.(±5 kPa)±4 in w.c.; ±60 in w.c.(±1 kPa; ±15 kPa)20 in w.c. to 100 psi (4.982 to 689.5 kPa)15 to 200 psi (1 to 13.8 bar)10 in w.c. to 1305 psi (2.5 to 9000 kPa)10 in w.c. to 245 psi (2.5 to 1700 kPa)ServiceNon-corrosive dry gases Air and compatible gases Air and compatible combustible gasesAir and compatible gases Air and compatible gases Air and compatible gases Compatible gases and liquidsAir and compatible gasesAir and compatible gases Wetted MaterialsConsult factoryConsult factoryConsult factoryConsult factoryConsult factoryConsult factory316L SS; With 3-way valve: Buna-N, silicone grease, PTFE, brass 360, copper, reinforced acetal copolymer18/8 SS 18/8 SSAccuracy ±0.5% FS±0.5% FS±0.5% FS±1.0% FS ±0.5% FS ±0.1% FS ±0.5% FS (±0.2% FS, ±0.1% FS, or ±0.05%FS) ±1 digit(±0.2% FS, ±0.1% FS, or ±0.05% FS) ±1 digit Pressure Limits10 psi (2 to 10 in w.c.); 20 psi (20 to 30 in w.c.); 15 psi (100 in w.c.);45 psi (200 to 350 in w.c.) 5 psig (1 to 10 in w.c.); 10 psig (20 to 40 in w.c.);30 psig (200 in w.c. to 10 psi); 60 psig (20 to 30 psi); 150 psig (100 psi); 200 psig (150 psi) 5 psig (1 to 10 in w.c.);10 psig (20 to 40 in w.c.); 30 psig (200 in w.c. to 10 psi); 60 psig (20 to 30 psi); 150 psig (100 psi); 200 psig (150 psi)5 psig (.34 bar)5 psig (.34 bar)3 psig (20 to 40 in w.c.); 15 psig (200 in w.c.); 30 psig (10 psi); 60 psig (30 psi); 100 psig (50 psi); 200 psig (100 psi)30 psig (15 psi); 60 psig (30 psi); 100 psig (50 psi); 200 psig (100 psi); 400 psig (200 psi); 1000 psig (500 psi)N/A N/ATemperature Limits 14 to 140°F (-10 to 60°C)0 to 140°F (-17.8 to 60°C)0 to 140°F (-17.8 to 60°C)0 to 140°F (-17.8 to 60°C)0 to 140°F (-17.8 to 60°C)0 to 140°F (-17.8 to 60°C)32 to 140°F (0 to 60°C)32 to 122°F (0 to 50°C)23 to 122°F (-5 to 50°C)Comp. Temp. Limits 32 to 140°F (0 to 60°C)32 to 104°F (0 to 40°C)32 to 104°F (0 to 40°C)32 to 104°F (0 to 40°C)32 to 104°F (0 to 40°C)N/AN/AN/AN/AHousing Protection Handheld: IP68Rugged aluminum housing Rugged aluminum housing Rugged aluminum housing Rugged aluminum housing Rugged aluminum housing Rugged aluminum housing IP54 (NEMA 3)IP54 (NEMA 3)Display 4.3˝ QHD Gorilla glass, 960 x 5404-digit backlit LCD4-digit LCD4-digit LCD 4-digit LCD4-digit backlit LCD4-digit backlit LCDGraphical backlit LCD, 128 x 64 points2 line, 16 character, dot matrix LCD, with switchable display sizes Memory RAM 1 GB & ROM 4 GB40 readingsN/AN/A N/A40 readings Up to 40 readings10,742 readings10,742 readingsProcess Connection (2) Barbed connections for use with1/8˝ or 3/16˝ ID tubing (2) Barbed connections for use with 1/8˝ or 3/16˝ ID tubing (Compression fittings for -7, -8 ranges)(2) Barbed connections for use with 1/8˝ or 3/16˝ ID tubing (Compression fittings for -7, -8 ranges)Barbed connection for use with 3/16˝ or 1/4˝ ID tubing (2) Barbed connection for use with 3/16˝ or 1/4˝ ID tubing (2) Barbed connections for use with 1/8˝ or 3/16˝ ID tubing (Compression fittings for -6, -7 ranges)(2) 1/8˝ female NPT Hose 4/6 mm or 1/8˝ NPTHose 4/6 mm or 1/8˝ NPTApprovalsCE, FCCCECE, FMCECE CE CEN/A N/ADIGITALManometers®SERIESHPCHPA-396APCHPHCHPLPCPBCHPOutput Range-27˝ Hg to 45 psig (-0.91 to 3 bar)-28.8˝ Hg to 100 psi (-0.975 to 3.4 bar)<1 in w.c. to 72 psig (5 bar)-28˝ Hg to 600 psi (-0.945 to 40 bar)0 to 10,000 psi (0 to 700 bar)-5.8 psi to 5.8 psi (-0.4 to 0.4 bar)-28˝ Hg to 870 psi (-0.95 to 60 bar)Process Connection 1/4˝ female NPT1/8˝ female NPTBarbed fitting or 1/8˝ female NPT1/4˝ female NPT/BSPT1/4˝ female NPT/BSPT M20x1.5 or 1/4˝ female NPT1/4˝ female BSPT (NPT available)Gage Connection 1/4˝ female NPT 1/8˝ female NPTN/A 1/8˝ female NPT/BSPT1/4˝ female NPT/BSPTM20x1.5 or 1/4˝ female NPT1/2˝ female BSPTMaterialsN/AAcetel plastic and anodized aluminumN/ASS fittings, anodized aluminum housing, plastic/rubber handles, and nitrile O-ringsSS, polyurethane, anodized hard-coat aluminum, PTFE, and nitrileRam/adapters: 316 SS, Body: Steel/aluminum; Seals: Buna-NAnodized aluminum, brass, and ABSSERIESAQTIA-AP2AQTIA-VP2473B471BVT-300Air Velocity Range 0 to 6000 FPM (0 to 30 m/s)40 to 5000 FPM (0.25 to 25 m/s)40 to 5000 FPM (0.2 to 25 m/s)0 to 6000 FPM (0 to 30 m/s)98.4 to 3937 FPM (0.5 to 20 m/s)Air Velocity Accuracy ±3% FS±1.5% of reading ±20 FPM ±1.5% of reading ±20 FPM ±3% FS±3% of reading ± 0.2 m/s Temperature Range -40 to 212°F (-40 to 100°C)-22 to 140°F (-30 to 60°C)-20 to 212°F (-29 to 100°C)-40 to 212°F (-40 to 100°C)-4 to 140°F (-20 to 60°C)Temperature Accuracy ±0.5°F (±0.28°C)±0.54°F (±0.3°C)±0.54°F (±0.3°C)±0.5°F (±0.28°C)±1°F (±0.6°C)Humidity Range N/A 0 to 100% RH 0 to 100% RH N/A 0.1 to 99.9% RH Humidity Accuracy N/A±2% RH±2% RHN/A±3% RHAir Volume Range 999,999 in selected flow units 999,999 in selected flow units 19,999 in selected flow units 19,999 in selected flow units 99,999 (CFM or m3/s)Wet Bulb RangeN/AN/AN/AN/A-7.6 to 158°F (-22 to 70°C)Meter Temperature RangeOperating: -4 to 140°F (-20 to 60°C)Storage: -40 to 176°F (-40 to 80°C)Operating: -4 to 140°F (-20 to 60°C)Storage: -40 to 176°F (-40 to 80°C)Process: -20 to 212°F (-29 to 100°C)Ambient: 5 to 125°F (-15 to 51°C)Process Air Velocity: -20 to 212°F(-29 to 100°C); Process Temperature: -40 to 212°F (-40 to 100°C); Ambient: 5 to 125°F (-15 to 51°C)32 to 122°F (0 to 50°C)Meter Humidity Limits 5 to 95% RH5 to 95% RHN/AN/A<80% RHDisplay 4.3˝ QHD Gorilla glass, 960 x 540 4.3˝ QHD Gorilla glass, 960 x 540 4.5-digit backlit LCD 4.5-digit backlit LCD 1 x 1.8˝ (26 x 45 mm) graphical LCD Approvals CE, FCCCE, FCCN/ACEN/ATHERMOAnemometersCALIBRATIONPumps®。
LM339的中文资料以及在电磁炉里面的运用各脚电压
LM339的中文资料以及在电磁炉里面的运用各脚电压第1脚5.14V第2。
0.26V第3。
18.45V第4。
5.12V第5。
4.7V 第6。
3.86V第7。
4.02V第8。
1.37V第9。
4.76V第10。
5.64V第11。
1.88V第12。
0V由于LM339应用广泛控制使用灵活等特点,所以被很多生产电磁炉的厂家选用,美的电磁炉也不例外。
美的电磁炉主电路板也均有运算放大器LM339。
在早期生产美的电磁炉电路中,就采用二片运算放大器LM339。
从04年后随着电磁炉新产品电路设计不断更新提高,电磁炉主电路板运算放大器LM339也改为单片电路,减少了整机造价成本。
(典型代表型号有:MC-PY18B、MC-EF197、MC-SY1913、MC-SY191B第二代、MC-EP201)等机型。
电磁炉,主电路用LM339是来控制、同步电压、振荡电路、高压保护电路、浪涌保护电路。
我们今天了解、掌握、LM339工作原理、及性能参数和特点。
明天在售后维修电磁炉中就能得心应手维修好各种电磁炉故障,避免少走弯路。
从中节省维修时间,从而提高维修速度、质量、效率、和维修水平。
LM339内部有四组电压比较器,自身电压从(+2V-+36V)均可设计选定使用。
比较器有“反相输入端”分别为:第4脚,第6脚,第8脚,第10脚:有“同相输入端”分别为:第5脚,第7脚,第9脚,第11脚:有“输出端”分别为:第1脚,第2脚,第13脚,第14脚:(第12脚为负极接地端,第3脚为正极电源接整机电源+18V端)。
每个比较器“反相输入端”用“-”表示:“同相输入端”用:“+”表示:和一个输出端。
当+端电位高于,“-端时”输出端截止(输出端开路)。
当-端电位高于,“+端时”输出端翻转,使输出端变为低电位(输出端饱和)。
下面以维修美的MC—SY1913电磁炉为例:一、“浪涌”保护电路故障维修:测比较器LM339第1脚输出端为高电平+4.5V为正常,若为低电平时,应测LM339第7脚同相输入端对地+2.1V电压为正常,当电压偏低、或0电压时,则电阻R22变值、或开路损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pin Number Pin Name
Formal Name
Definition
1
GND
Ground
Ground for logic, analog, and switch to battery inputs.
2
SI
SPI Slave In
SPI control data input pin from MCU to 33972.
The 33972 device has two modes of operation, Normal and Sleep. Normal mode allows programming of the device and supplies switch contacts with pullup or pulldown current as it monitors switch change of state. The Sleep mode provides low quiescent current, which makes the 33972 ideal for automotive and industrial products requiring low sleep state currents.
+
–
Analog Mux Output
WAKE
INT
CS SCLK SI SO
AMUX
Figure 2. 33972 Simplified Internal Block Diagram
Analog Integrated Circuit Device Data Freescale Semiconductor
MAXIMUM RATINGS
Table 3. Maximum Ratings
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.
VBAT VBAT
33972
SP0
VPWR
SP1
VDD
VBAT
VDD
SP7 SG0 SG1
SG12
WAKE
SI SCLK
CS SO INT AMUX
MULTIPLE SWITCH DETECTION INTERFACE
DWB SUFFIX EW SUFFIX (Pb-FREE)
98ARH99137A 32-PIN SOICW
Open drain wake-up output. Designed to control a power supply enable pin.
Interrupt
Open-drain output to MCU. Used to indicate input switch change of state.
33972 33972A
The 33972 Multiple Switch Detection Interface with Suppressed Wake-Up is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). The device also features a 22-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on the AMUX output pin for the MCU to read.
Switch-to-Ground Inputs Switch-to-ground input pins. 0 – 13
Battery Input
Battery supply input pin. Pin requires external reverse battery protection.
Wake-Up
Features
• Designed to Operate 5.5 V ≤ VPWR ≤ 26 V • Switch Input Voltage Range -14 V to VPWR, 40 V Max • Interfaces Directly to MPU using 3.3 V/5.0 V SPI Protocol • Selectable Wake-Up on Change of State • Selectable Wetting Current (16 mA or 2.0 mA) • 8 Programmable Inputs (Switches to Battery or Ground) • 14 Switch-to-Ground Inputs • Typical Standby Current - VPWR = 100 µA and VDD = 20 µA • Active Interrupt (INT) on Change-of-Switch State • Pb-Free Packaging Designated by Suffix Code EW
Temperature Monitor and
Control
5.0 V
5.0 V VPWR
5.0 V 5.0 V 125 kΩ
WAKE Control
SPI Interface and Control
VDD 125 kΩ
INT Control MUX InDD
Ratings
Symbol
Value
Unit
ELECTRICAL RATINGS VDD Supply Voltage
CS, SI, SO, SCLK, INT, AMUX (1) WAKE (1) VPWR Supply Voltage (1) VPWR Supply Voltage at -40C(1) Switch Input Voltage Range
© Freescale Semiconductor, Inc., 2007. All rights reserved.
元器件交易网
DEVICE VARIATIONS
DEVICE VARIATIONS
Table 1. Device Variations
Device 33972 33972A
33972
4
Analog Integrated Circuit Device Data Freescale Semiconductor
元器件交易网
ELECTRICAL CHARACTERISTICS MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
ORDERING INFORMATION
Device
Temperature Range (TA)
Package
MC33972DWB/R2
MC33972EW/R2
-40°C to 125°C
32 SOICW
MCZ33972AEW/R2
VDD
Power Supply LVI
Enable Watchdog Reset MCU
+ –
To SPI
Comparator
VPWR VPWR
16.0
2.0
mA
mA
SG0
5.0 V VPWR
4.0 V Ref
+ –
To SPI
Comparator
VPWR VPWR
16.0
2.0
mA
mA
SG13
4.0 V Ref
+ –
To SPI
Comparator
Oscillator and
Clock Control
SP7
27
SP6
26
SP5
25
SP4
24
SG7
23
SG8
22
SG9
21
SG10
20
SG11
19
SG12
18
SG13
17
WAKE
Figure 3. 33972 Pin Connections
Table 2. 33972 Pin Definitions
A functional description of each pin can be found in the Functional Pin Description section beginning on page 10.
Analog Multiplex Output Analog multiplex output.
Voltage Drain Supply 3.3/5.0 V supply. Sets SPI communication level for SO driver.
SPI Slave Out
Provides digital data from 33972 to MCU.
MOSI SCLK CS MISO INT AN0
SG13
GND
Figure 1. 33972 Simplified Application Diagram
* This document contains certain information on a new product. Specifications and information herein are subject to change without notice.