NT73A12DC3VF中文资料
电子信息工程技术《集成稳压器》
)
由T16和T17组成的复合管,是整个电路的调整管。其集电极接整流滤波电路的输出, 其发射极通过R 11接负载电阻R L,可以输出较大的电流。
5 保护电路:
⑴ 过流保护电路由R11和T15组成。 ⑵ 调整管平安区保护电路由R13,D2和T15组成。 ⑶ 过热保护电路由D1、R7和T14组成。当芯片的温度超过允许的最大值时,R7的压降也增 大,而U BE14却减小,使得T14管导通。其集电极电流IC14使得T16管的基极电流分流,从 而限制了T16和T17管的电流,芯片功耗也会随之降低,起到过热保护的作用。
第六页,共六页。
整理可得: UF
4U
+
BE3
R2 R3
U T ln
R2 R1
第三页,共六页。
3 放大比较环节:
由T3和T4管组成的复合管构成,电流源T9作它的有源负载。T3和T4管既
是基准电压电路的一局部,又是比较放大器的放大管。取样电压UF
叠加在基准电压上。输出电压:
4 调整环节:
U
O=U(F 1+
R20 R19
常用的集成三端稳压器的外形及类型
类型:W7800系列 —— 稳定正电压
W7805 输出5V
W7809 输出9V
W7812 输出12V
W7815 输出15V
W7900系列 —— 稳定负电压
123
W7905 输出-5V W7909 输出-9V
1端: 输W入7端912 输出-12V 2端: 公W共7端915 输出-15V
3端: 输出端
第一页,共六页。
启动电 路
三Байду номын сангаас固定式集成稳压器
过压保 护
调整管
过流保 护
沈阳新维AMDP-D731 系列电动机保护器使用说明书
AMDP-□/D731 系列电动机保护器使用说明 产品概述主要特点:DSP 为核心,数字设定,数字显示,保护功能完备、保护性能可靠,2路与采集、保护 电路及DSP隔离、参数可设置电流范围的4-20mA输出。
检测、显示电压,除保护电动机的继电器触点输出信号外,还配有6个故障类型、1个故障预警、1个故障报警输出信号和1个清除故障状态输入信号。
保护功能:缺相、短路、接地、堵转、过载、电流不平衡、过压、欠压。
适用范围:额定电压不高于1140V,频率为50Hz或60Hz的三相交流电动机。
电动机保护器型号 AMDP-0.5 AMDP-1 AMDP-2AMDP-5AMDP-10AMDP-20AMDP-50 AMDP-100 AMDP-150AMDP-200最大设定电流(A) 0.55 1.1 2.3 5.5 11 23 55 110 165 220 最小设定电流(A) 0.1 0.2 0.4 1 2 4 10 20 30 40 电动机最大功率(KW) 0.22 0.4 1.1 2.2 4 11 22 45 75 110 电动机最小功率(KW) 0.055 0.11 0.22 0.55 1.1 2.2 5.5 11 18.5 22 电动机电源穿线孔Φ(mm)20 20 20 20 20 20 20 20 30 30 连接电缆:连接主单元与电流检测单元,6×0.3mm²×2.2 m双绞屏蔽电缆工作电压:AC 85V — 265V、DC 85V — 265V功率消耗:小于 2W检测电压:AC 0 — 500V(电压显示值可由参数设为检测值的1、1.732、3、5.196倍)采集精度:0.5环境温度:- 20℃ — 50℃继电器触点:1常开触点,AC 250V/10A(阻性负载)、DC 30V/10ADO/DI电压: DC 24V±10% Array DO驱动能力:最大100mA(DO1-DO8每路最大100mA)4-20mA负载电阻:小于600ΩAMDP-□/D731系列电动机保护器工作过程AMDP-□/D731 系列电动机保护器在电动机未发生故障时,显示电动机A、B、C相电流、电压,电动机故障类型输出信号DO1-DO6、故障预警输出信号DO7、故障报警输出信号DO8输出高电平;当电动机发生接地、短路、缺相、堵转/过载/电流不平衡、过压、欠压故障时,对应的故障类型输出信号(DO1-DO6中的1个)及故障预警输出信号DO7输出低电平,当故障持续到设定的报警时间,继电器触点O11、O12断开停止电动机运行(故障灯亮),故障预警输出信号DO7输出高电平,故障报警输出信号DO8输出低电平,保护器显示故障代码指示故障类型,并且显示电动机发生故障时的A、B、C相电流、电压。
M7 VHF数据传输器说明书
The M7 VHF data transceiver is a rugged ½ - 5 wattVHF data radio modem with an RS-232 or optional422/485 serial interface, perfect for SCADA andtelemetry applications. Additional options includeIP65-rated (“weatherproof”) enclosure and/or GPS.Product O verviewLong-Range OperationOperating in the VHF 136-155MHz frequency band (other bands available), the RV-M7-VA radio modem works over 60 miles point-to-point and many miles with omni-directional antennas. All RV-M7 modems support store-and-forward repeating for wide-area coverage.Fast PollingThe M7 transceiver has a 5mS PLL in it, making it one of the fastest telemetry radios available, especially well suited for polled, DNP and MODBUS applications. Its can send up to 50 transmissions per second.High Speed and High EfficiencyThe RV-M7 operates with user-selectable over-the air data rates of 800 to 19200bps. Faster rates for higher efficiency or lower-speed for increased communication range.GPS OptionThe optional internal GPS allows the RV-M7 to be a powerful Automatic Vehicle Locating (AVL) system or Time Space Position Information (TSPI) reporting device.Fully ProgrammableIt is configured with a serial connection using industry-standard AT commands. Parameters such as network IDs, unit ID and transmission rate are easily configured. The M7 is easily configured through the included PC program “Radio Manager”. Digital Base BandData rate, modulation, and IF bandwidth are digitally programmed. Wide (25kHz) and Narrow (12.5kH) IF bandwidths may be user-configured. The over-the-air data rate may be adjusted to suit a particular application.Real-time diagnostics and statisticsChannel performance, RSSI, RF power, packet counters, and radio configuration are easily accessed via the serial port or remotely over-the-air.Very Low Power ConsumptionThe advanced VHF transceiver is integrated with a 32-bit microprocessor-based modem in one easy-to mount package. It has very low power consumption, and sleep modes that allow it to be active and consume a minimum amount of resources.Rugged and “Weatherproof”The RV-M7 is available with optional IP65-rated “weatherproof”connections and enclosure. All models include protection against damage from over-temperature, high VSWR, and reverse voltage.Flexible Addressing and Error CorrectionThe RV-M7 uses a 16 bit address with a 16 bit network mask, allowing for many devices to be co-located without receiving each other, as well as the creation of sophisticated network topologies.For More InformationFor more information about this or any other Raveon product, call in the U.S.A. 1-760-444-5995.RV-M7-V ATechnical Specifications are subject to change without notice.Raveon Technologies Corporation2461 Impala DriveCarlsbad, CA 92010Copyright Raveon Technologies Corp, 2012Phone: +1-760-444-5995All rights reservedFax: +1-760-444-5997Email:****************Version C3. Printed in the USAGeneral SpecificationsModel:RV-M7-Vx-oo (x=band) (oo=options) RV-M7-VM (MURS model) Size: 4.60” X 2.60” X .956 (11.7cm X 6.6cm X 2.43cm) Weight:6 ozInput Voltage: 10 – 16 VDC Current draw:Receiving data: <65mA (55mA typ. at 12VDC)Transmitting data: (1.8A @ 5w, 1.1A @ 2W typical) Frequency Band:Band Frequency A 136-155MHz Available Frequencies: B 150-174MHz SRS-M7-VBMURS 5 MURS chan. SRS-M7-VM Serial Port Baud Rates (programmable)1.2k,2.4k, 4.8k, 9.6k, 19.2k, 38.4k, 57.6k, 115.2k Over-the-air baud rates (programmable) Narrow IF: 800, 1200, 2000, 2400, 4.8k, 5142, 8K, 9.6kWide IF: 1200, 2000, 2400, 4.8k, 8k, 9.6k, 19.2k Operating ModeSimplex or Half-duplex Full Spec Operating Temperature range -30°C to +60°CTX-RX and RX-TX turn-around time <5mS Wake-up time<500mS from OFF <5mS from Sleep Front Panel LEDsPower , Status (Carr Det, TX, mode…) RF I/O ConnectorBNC (Female) Power CableRaveon P/N: RT-CB-H1 AddressingIndividual address: 65,536 Groups: 254Transmitter SpecificationsRF Power Output 500mW – 5.0 W programmable (2W max for MURS model)Maximum Duty Cycle 100% @ 2W to 40C, 25% @5W (100% w/ optional heatsink) Frequency Deviation± 2.2kHz (N) ± 3.3kHz (W)RF BandwidthFull-band without tuning Occupied bandwidth 11 kHz (-N) 16kHz(-W)TX Spurious outputs < -70dBc TX Harmonic outputs < -80dBc Occupied BandwidthPer FCCFCC Emissions Designator 11K0F1D (narrowband mode) 15K0F1D (wideband mode) Frequency Stability Better than ±2.5ppmReceiver SpecificationsRX sensitivity (1% PER, N) ................... 9600bps < -108dBm4800bps < -114dB 1200bps < -118dBRF No-tune bandwidth ......................... Full-band without tuning Adjacent Channel Selectivity ................ -70dB (1200bps Wide) Adjacent Channel Selectivity ................ -65dB (1200bps Narrow) Adjacent Channel Selectivity ................ -60dB (4800bps Narrow) Alternate Channel Selectivity ............... -70dB Blocking and spurious rejection ........... -80dBRX intermodulation rejection ............... -75dB (4800bps Narrow) RX intermodulation rejection ............... -80dB (1200bps Narrow)Interface SpecificationsSerial Interface PortConnector Type DB-9IO Voltage Levels RS-232, RS-485, RS-422(user selectable) Word length7 or 8 bits, N, O, or E Modem handshake signalsRTS, CTS, CDAT Commands OverviewChannel Number, Operating Frequency, IF bandwidth Modem StatisticsPower-savings modesUnit Address and Destination address Network Address Mask ARQ error correction on/off Baud Rate, parity, stop bitsSelect Packet or Streaming mode of data transmission Store-and-forward Repeating configurationHardware flow control operation LEDs operation or disabledFor a complete feature list see the technical manual here:/support.html。
稳压管大全)
3.3V简易开关电源稳压器(1A)
LM1575T-5.0
5V简易开关电源稳压器(1A)
LM1575T-12
12V简易开关电源稳压器(1A)
LM1575T-15
15V简易开关电源稳压器(1A)
LM1575T-ADJ
简易开关电源稳压器(1A可调1.23 to 37)
LM1575HVT-3.3
LM2575HVT-ADJ
简易开关电源稳压器(1A可调1.23 to 37)
LM2576T-3.3
3.3V简易开关电源稳压器(3A)
LM2576T-5.0
5.0V简易开关电源稳压器(3A)
LM2576T-12
12V简易开关电源稳压器(3A)
LM2576T-15
15V简易开关电源稳压器(3A)
LM2576T-ADJ
79L08
-8V稳压器(100ma)
KA1L0380RB
Power Switch
KA5L0380R
Power Switch
KA78R05
Low Dropout Voltage Regulator(1A)
PQ05RD11
ASO保护功能低功耗稳压器(1A)[四端稳压]
PQ05RD21
ASO保护功能低功耗稳压器(2A)[四端稳压]
型号(规格)
功能简介
兼容型号
CA3130
高输入阻抗运算放大器
Intersil[DATA]
CA3140
高输入阻抗运算放大器
CD4573
四可编程运算放大器
MC14573
ICL7650
斩波稳零放大器
LF347(NS[DATA])
带宽四运算放大器
LTC4213 1 4213f 电子电路保护器说明书
2µs/DIV4213 TA01b124213fBias Supply Voltage (V CC )...........................–0.3V to 9V Input VoltagesON, SENSEP, SENSEN.............................–0.3V to 9V I SEL ..........................................–0.3V to (V CC + 0.3V)Output VoltagesGATE .....................................................–0.3V to 15V READY.....................................................–0.3V to 9V Operating Temperature RangeLTC4213C ...............................................0°C to 70°C LTC4213I.............................................–40°C to 85°C Storage Temperature Range.................–65°C to 150°C Lead Temperature (Soldering, 10sec)...................300°CORDER PART NUMBER DDB PART*MARKING T JMAX = 125°C, θJA = 250°C/WEXPOSED PAD (PIN 9)PCB CONNECTION OPTIONALConsult LTC Marketing for parts specified with wider operating temperature ranges.*The temperature grade is identified by a label on the shipping container.LBHVLTC4213CDDB LTC4213IDDB ABSOLUTE AXI U RATI GSW W WU PACKAGE/ORDER I FOR ATIOUUW (Note 1)ELECTRICAL CHARACTERISTICSThe ● denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V CC = 5V, I SEL = 0 unless otherwise noted. (Note 2)SYMBOL PARAMETER CONDITIONSMIN TYP MAX UNITSV CC Bias Supply Voltage ● 2.36V V SENSEP SENSEP Voltage ●06V I CC V CC Supply Current●1.63mA V CC(UVLR)V CC Undervoltage Lockout Release V CC Rising● 1.8 2.07 2.23V ∆V CC(UVHYST)V CC Undervoltage Lockout Hysteresis ●30100160mV I SENSEP SENSEP Input Current V SENSEP = V SENSEN = 5V, Normal Mode 154080µA V SENSEP = V SENSEN = 0, Normal Mode –1±15µA I SENSENSENSEN Input CurrentV SENSEP = V SENSEN = 5V, Normal Mode 154080µA V SENSEP = V SENSEN = 0, Normal Mode –1±15µA V SENSEP = V SENSEN = 5V,50280µAReset Mode or Fault ModeV CBCircuit Breaker Trip Voltage I SEL = 0, V SENSEP = V CC●22.52527.5mV V CB = V SENSEP – V SENSEN I SEL = Floated, V SENSEP = V CC ●455055mV I SEL = V CC, V SENSEP = V CC ●90100110mV V CB(FAST)Fast Circuit Breaker Trip Voltage I SEL = 0, V SENSEP = V CC●63100115mV V CB(FAST)= V SENSEP – V SENSEN I SEL = Floated, V SENSEP = V CC ●126175200mV I SEL = V CC, V SENSEP = V CC ●252325371mV I GATE(UP)GATE Pin Pull Up Current V GATE = 0V●–50–100–150µA I GATE(DN)GATE Pin Pull Down Current ∆V SENSEP – V SENSEN = 200mV, V GATE = 8V ●1040mA ∆V GSMAX External N-Channel Gate Drive V SENSEN = 0, V CC ≥ 2.97V, I GATE = –1µA ● 4.8 6.58V V SENSEN = 0, V CC = 2.3V, I GATE = –1µA ● 2.65 4.38V ∆V GSARMV GS Voltage to Arm Circuit BreakerV SENSEN = 0, V CC ≥ 2.97V ● 4.4 5.47.6V V SENSEN = 0, V CC = 2.3V●2.53.57VTOP VIEWDDB PACKAGE8-LEAD (3mm × 2mm) PLASTIC DFN567894321READY ON I SEL GND V CC SENSEP SENSEN GATE34213f∆V GSMAX – ∆V GSARM Difference Between ∆V GSMAX and V SENSEN = 0, V CC ≥ 2.97V ●0.3 1.1V ∆V GSARMV SENSEN = 0, V CC = 2.3V●0.150.8VV READY(OL)READY Pin Output Low Voltage I READY = 1.6mA, Pull Down Device On ●0.20.4V I READY(LEAK)READY Pin Leakage Current V READY = 5V, Pull Down Device Off ●0±1µA V ON(TH)ON Pin High Threshold ON Rising, GATE Pulls Up ●0.760.80.84V ∆V ON(HYST)ON Pin Hysteresis ON Falling, GATE Pulls Down104090mV V ON(RST)ON Pin Reset Threshold ON Falling, Fault Reset, GATE Pull Down ●0.360.40.44V I ON(IN)ON Pin Input Current V ON = 1.2V●0±1µA ∆V OV Overvoltage Threshold ●0.410.7 1.1V ∆V OV = V SENSEP – V CCt OVOvervoltage Protection Trip Time V SENSEP = V SENSEN = Step 5V to 6.2V 2565160µs t FAULT(SLOW)V CB Trips to GATE Discharging ∆V SENSE Step 0mV to 50mV,●71627µs V SENSEN Falling, V CC = V SENSEP = 5V t FAULT(FAST)V CB(FAST) Trips to GATE Discharging ∆V SENSE Step 0V to 0.3V, V SENSEN Falling,●12.5µs V SENSEP = 5Vt DEBOUNCE Startup De-Bounce Time V ON = 0V to 2V Step to Gate Rising,2760130µs (Exiting Reset Mode)t READY READY Delay Time V GATE = 0V to 8V Step to READY Rising,2250115µs V SENSEP = V SENSEN = 0t OFF Turn-Off Time V ON = 2V to 0.6V Step to GATE Discharging 1.5510µs t ON Turn-On Time V ON = 0.6V to 2V Step to GATE Rising,4816µs (Normal Mode)t RESETReset TimeV ON Step 2V to 0V2080150µsNote 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.ELECTRICAL CHARACTERISTICSThe ● denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V CC = 5V, I SEL = 0 unless otherwise noted. (Note 2)SYMBOLPARAMETERCONDITIONSMIN TYP MAX UNITSNote 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.4564213ft RESET vs Temperaturet FAULT(SLOW) vs V CCt FAULT(SLOW) vs Temperaturet FAULT(FAST) vs V CCt FAULT(FAST) vs TemperatureTYPICAL PERFOR A CE CHARACTERISTICSU WSpecifications are at T A = 25°C. V CC = 5Vunless otherwise noted.t F A U L T (F A S T ) (µs )4213 G230.90.80.71.01.11.21.3TEMPERATURE (°C)–50050100125–252575BIAS SUPPLY VOLTAGE (V)2.010t F A U L T (S L O W ) (µs )14121618 3.0 4.0 5.0 6.04213 G202022 2.53.54.55.5TEMPERATURE (°C)–500501001254213 G21–25257510t F A U L T (S L O W ) (µs )141216182022TEMPERATURE (°C)–500501001254213 G19–252575t R E S E T (µs )60708090100BIAS SUPPLY VOLTAGE (V)2.0t F A U L T (F A S T ) (µs )3.04.05.06.04213 G222.53.54.55.50.90.80.71.01.11.21.374213fPI FU CTIO SU U UREADY (Pin 1): READY Status Output. Open drain output that goes high impedance when the external MOSFET is on and the circuit breaker is armed. Otherwise this pin pulls low.ON (Pin 2): ON Control Input. The LTC4213 is in reset mode when the ON pin is below 0.4V. When the ON pin increases above 0.8V, the device starts up and the GATE pulls up with a 100µA current source. When the ON pin drops below 0.76V, the GATE pulls down. To reset a circuit breaker fault, the ON pin must go below 0.4V.I SEL (Pin 3): Threshold Select Input. With the I SEL pin grounded, float or tied to V CC the V CB is set to 25mV, 50mV or 100mV, respectively. The corresponding V CB(FAST)values are 100mV, 175mV and 325mV.GND (Pin 4): Device Ground.GATE (P in 5): GATE D rive Output. An internal charge pump supplies 100µA pull-up current to the gate of the external N-channel MOSFET. Internal circuitry limits thevoltage between the GATE and SENSEN pins to a safe gate drive voltage of less than 8V. When the circuit breaker trips, the GATE pin abruptly pulls to GND.SENSEN (Pin 6): Circuit Breaker Negative Sense Input.Connect this pin to the source of the external MOSFET.During reset or fault mode, the SENSEN pin discharges the output to ground with 280µA.SENSEP (P in 7): Circuit Breaker Positive Sense Input.Connect this pin to the drain of external N-channel MOSFET.The circuit breaker trips when the voltage across SENSEP and SENSEN exceeds V CB . The input common mode range of the circuit breaker is from ground to V CC + 0.2V when V CC < 2.5V. For V CC ≥ 2.5V, the input common mode range is from ground to V CC + 0.4V.V CC (Pin 8): Bias Supply Voltage Input. Normal operation is between 2.3V and 6V. An internal under-voltage lockout circuit disables the device when V CC < 2.07V.Exposed Pad (Pin 9): Exposed pad may be left open or connected to device ground.8910114213fsupply transient dips below 1.97V of less than 80µs are ignored.ON FunctionWhen V ON is below comparator COMP1’s threshold of 0.4V for 80µs, the device resets. The system leaves reset mode if the ON pin rises above comparator COMP2’s threshold of 0.8V and the UVLO condition is met. Leaving reset mode, the GATE pin starts up after a t DEBOUNCE delay of 60µs. When ON goes below 0.76V, the GATE shuts off after a 5µs glitch filter delay. The output is discharged by the external load when V ON is in between 0.4V to 0.8V. At this state, the ON pin can re-enable the GATE if V ON exceeds 0.8V for more than 8µs. Alternatively, the device resets if the ON pin is brought below 0.4V for 80µs. Once reset, the GATE pin restarts only after the t DEBOUNCE 60µs delay at V ON rising above 0.8V. To protect the ON pin from overvoltage stress due to supply transients, a series resistor of greater than 10k is recommended when the ON pin is connected directly to the supply. An external resis-tive divider at the ON pin can be used with COMP2 to set a supply undervoltage lockout value higher than the inter-nal UVLO circuit. An RC filter can be implemented at the ON pin to increase the powerup delay time beyond the internal 60µs delay.Gate FunctionThe GATE pin is held low in reset mode. 60µs after leaving reset mode, the GATE pin is charged up by an internal 100µA current source. The circuit breaker arms when V GATE > V SENSEN + ∆V GSARM . In normal mode operation,the GATE peak voltage is internally clamped to ∆V GSMAX above the SENSEN pin. When the circuit breaker trips, an internal MOSFET shorts the GATE pin to GND, turning off the external MOSFET.READY StatusThe READY pin is held low during reset and at startup. It is pulled high by an external pullup resistor 50µs after the circuit breaker arms. The READY pin pulls low if the circuit breaker trips or the ON pin is pulled below 0.76V, or V CC drops below undervoltage lockout.∆V GSARM and V GSMAXEach MOSFET has a recommended V GS drive voltage where the channel is deemed fully enhanced and R DSON is minimized. Driving beyond this recommended V GS volt-age yields a marginal decrease in R DSON . At startup, the gate voltage starts at ground potential. The GATE ramps past the MOSFET threshold and the load current begins to flow. When V GS exceeds ∆V GSARM , the circuit breaker is armed and enabled. The chosen MOSFET should have a recommended minimum V GS drive level that is lower than ∆V GSARM . Finally, V GS reaches a maximum at ∆V GSMAX.Trip and Reset Circuit BreakerFigure 2 shows the timing diagram of V GATE and V READY after a fault condition. A tripped circuit breaker can be reset either by cycling the V CC bias supply below UVLO thresh-old or pulling ON below 0.4V for >t RESET . Figure 3 shows the timing diagram for a tripped circuit breaker being reset by the ON pin.Calculating Current LimitThe fault current limit is determined by the R DSON of the MOSFET and the circuit breaker voltage V CB .I V R LIMIT CB DSON=()2The R DSON value depends on the manufacturer’s distribu-tion, V GS and junction temperature. Short Kelvin-sense connections between the MOSFET drain and source to the LTC4213 SENSEP and SENSEN pins are strongly recommended.For a selected MOSFET, the nominal load limit current is given by:I V R LIMIT NOM CB NOM DSON NOM ()()()()=3The minimum load limit current is given by:I V R LIMIT MIN CB MIN DSON MAX ()()()()=4APPLICATIO S I FOR ATIOW UUU1213144213fOperating temperature of 0° to 70°C.R DSON @ 25°C = 100%R DSON @ 0°C = 90%R DSON @ 70°C = 120%MOSFET resistance variation:R DSON(NOM) = 15m • 0.82 = 12.3m ΩR DSON(MAX) = 15m • 1.333 • 0.93 • 1.2 = 15m • 1.488= 22.3m ΩR DSON(MIN) = 15m • 0.667 • 0.80 • 0.90 = 15m • 0.480= 7.2m ΩV CB variation:NOM V CB = 25mV = 100%MIN V CB = 22.5mV = 90%MAX V CB = 27.5mV = 110%The current limits are:I LIMIT(NOM) = 25mV/12.3m Ω = 2.03A I LIMIT(MIN) = 22.5mV/22.3m Ω = 1.01A I LIMIT(MAX) = 27.5mV/7.2m Ω = 3.82AFor proper operation, the minimum current limit must exceed the circuit maximum operating load current with margin. So this system is suitable for operating load current up to 1A. From this calculation, we can start with the general rule for MOSFET R DSON by assuming maxi-mum operating load current is roughly half of the I LIMIT(NOM). Equation 7 shows the rule of thumb.I V R OPMAX CB NOM DSON NOM =()()•()27Note that the R DSON(NOM) is at the LTC4213 nominal operating ∆V GSMAX rather than at typical vendor spec.Table 1 gives the nominal operating ∆V GSMAX at the various operating V CC . From this table users can refer to the MOSFET’s data sheet to obtain the R DSON(NOM) value.Table 1. Nominal Operating ∆V GSMAX for Typical Bias Supply VoltageV CC (V)∆V GSMAX (V)2.3 4.32.5 5.02.7 5.63.0 6.53.37.05.07.06.07.0Load Supply Power-Up after Circuit Breaker Armed Figure 4 shows a normal power-up sequence for the circuit in Figure 1 where the V IN load supply power-up after circuit breaker is armed. V CC is first powered up by an auxiliary bias supply. V CC rises above 2.07V at time point 1. V ON exceeds 0.8V at time point 2. After a 60µs debounce delay, the GATE pin starts ramping up at time point 3. The external MOSFET starts conducting at time point 4. At time point 5, V GATE exceed ∆V GSARM and the circuit breaker is armed. After 50µs (t READY delay), READY pulls high by an external resistor at time point 6. READY signals the V IN load supply module to start its ramp. The load supply begins soft-start ramp at time point 7. The load supply ramp rate must be slow to prevent circuit breaker tripping as in equation (8).∆∆V t I I C IN OPMAX LOADLOAD<−()8Where I OPMAX is the maximum operating current defined by equation 7.For illustration, V CB = 25mV and R DSON = 3.5m Ω at the nominal operating ∆V GSMAX . The maximum operating current is 3.5A (refer to equation 7). Assuming the load can draw a current of 2A at power-up, there is a margin of 1.5A available for C LOAD of 100µF and V IN ramp rate should be <15V/ms. At time point 8, the current through the MOSFET reduces after C LOAD is fully charged.APPLICATIO S I FOR ATIOW UUU1516174213fThe selected MOSFET V GS absolute maximum rating should meet the LTC4213 maximum ∆V GSMAX of 8V.Other MOSFET criteria such as V BDSS , I DMAX , and R DSON should be reviewed. Spikes and ringing above maximum operating voltage should be considered when choosing V BDSS . I DMAX should be greater than the current limit. The maximum operating load current is determined by the R DSON value. See the section on “Calculating Current Limit” for details.Supply RequirementsThe LTC4213 can be powered from a single supply or dual supply system. The load supply is connected to the SENSEP pin and the drain of the external MOSFET. In the single supply case, the V CC pin is connected to the load supply, preferably with an RC filter. With dual supplies,V CC is connected to an auxiliary bias supply V AUX where V AUX voltage should be greater or equal to the load supply voltage. The load supply voltage must be capable of sourcing more current than the circuit breaker limit. If the load supply current limit is below the circuit breaker trip current, the LTC4213 may not react when the output overloads. Furthermore, output overloads may trigger UVLO if the load supply has foldback current limit in a single supply system.V IN Transient and Overvoltage ProtectionInput transient spikes are commonly observed whenever the LTC4213 responds to overload. These spikes can be large in amplitude, especially given that large decoupling capacitors are absent in hot swap environments. These short spikes can be clipped with a transient suppressor of adequate voltage and power rating. In addition, the LTC4213can detect a prolonged overvoltage condition. WhenAPPLICATIO S I FOR ATIOW UUU point 6 should be within the circuit breaker limits. Other-wise, the system fails to start and the circuit breaker trips immediately after arming. In most applications additional external gate capacitance is not required unless C LOAD is large and startup becomes problematic. If an external gate capacitor is employed, its capacitance value should not be excessive unless it is used with a series resistor. This is because a big gate capacitor without resistor slows down the GATE turn off during a fault. An alternative method would be a stepped I SEL pin to allow a higher current limit during startup.In the event of output short circuit or a severe overload, the load supply can collapse during GATE ramp up due to load supply current limit. The chosen MOSFET must withstand this possible brief short circuit condition before time point 6 where the circuit breaker is allowed to trip. Bench short circuit evaluation is a practical verification of a reliable design. To have current limit while powering a MOSFET into short circuit conditions, it is preferred that the load supply sequences to turn on after the circuit breaker is armed as described in an earlier section.Power-Off CycleThe system can be powered off by toggling the ON pin low.When ON is brought below 0.76V for 5µs, the GATE and READY pins are pulled low. The system resets when ON is brought below 0.4V for 80µs.MOSFET SelectionThe LTC4213 is designed to be used with logic (5V) and sub-logic (3V) MOSFETs for V CC potentials above 2.97V with ∆V GSMAX exceeding 4.5V. For a V CC supply range between 2.3V and 2.97V, sub-logic MOSFETs should be used as the minimum ∆V GSMAX is less than 4.5V.1819Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.201630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● © LINEAR TECHNOLOGY CORPORA TION 2005LT/TP 0405 500 • PRINTED IN USA。
ADG733资料
REV.0Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aADG733/ADG734One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700World Wide Web Site: Fax: 781/326-8703© Analog Devices, Inc., 2001CMOS, 2.5 ⍀ Low Voltage,Triple/Quad SPDT SwitchesFEATURES1.8 V to 5.5 V Single Supply ؎3 V Dual Supply2.5 ⍀ On Resistance0.5 ⍀ On Resistance Flatness 100 pA Leakage Currents 19 ns Switching Times Triple SPDT: ADG733Quad SPDT: ADG734Small TSSOP and QSOP Packages Low Power ConsumptionTTL/CMOS-Compatible Inputs APPLICATIONSData Acquisition Systems Communication Systems Relay ReplacementAudio and Video Switching Battery-Powered SystemsGENERAL DESCRIPTION The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole,double throw) switches and four independently selectable SPDT switches respectively.Low power consumption and operating supply range of 1.8 V to 5.5 V and dual ±3 V make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG733is used to enable or disable the device. When disabled, all chan-nels are switched OFF.These 2–1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.The ADG733 is available in small TSSOP and QSOP packages,while the ADG734 is available in a small TSSOP package.PRODUCT HIGHLIGHTS1.Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and ±3 V dual supply rails.2.Low On Resistance (2.5Ω typical).3.Low Power Consumption (<0.01 µW).4.Guaranteed Break-Before-Make Switching Action.FUNCTIONAL BLOCK DIAGRAMSS3BD3S3A SWITCHES SHOWN FOR A “1” INPUT LOGICENADG733/ADG734–SPECIFICATIONS1(V DD = 5 V ؎ 10%, V SS = 0 V, GND = 0 V, unless otherwise noted.)B Version–40؇CParameter25؇C to +85؇C Unit Test Conditions/CommentsANALOG SWITCHAnalog Signal Range0 V to V DD VOn Resistance (R ON) 2.5Ω typ V S = 0 V to V DD, I DS = 10 mA;4.55.0Ω max Test Circuit 1On-Resistance Match between0.1Ω typ V S = 0 V to V DD, I DS = 10 mAChannels (∆R ON)0.4Ω maxOn-Resistance Flatness (R FLAT(ON))0.5Ω typ V S = 0 V to V DD, I DS = 10 mA1.2Ω maxLEAKAGE CURRENTS V DD = 5.5 VSource OFF Leakage I S (OFF)±0.01nA typ V D = 4.5 V/1 V, V S = 1 V/4.5 V;±0.1±0.3nA max Test Circuit 2Channel ON Leakage I D, I S (ON)±0.01nA typ V D = V S = 1 V, or 4.5 V;±0.1±0.5nA max Test Circuit 3DIGITAL INPUTSInput High Voltage, V INH 2.4V minInput Low Voltage, V INL0.8V maxInput CurrentI INL or I INH0.005µA typ V IN = V INL or V INH±0.1µA maxC IN, Digital Input Capacitance4pF typDYNAMIC CHARACTERISTICS2t ON19ns typ R L = 300 Ω, C L = 35 pF;34ns max V S = 3 V, Test Circuit 4t OFF7ns typ R L = 300 Ω, C L = 35 pF;12ns max V S = 3 V, Test Circuit 4ADG733t ON(EN)20ns typ R L = 300 Ω, C L = 35 pF;40ns max V S = 3 V, Test Circuit 5t OFF(EN)7ns typ R L = 300 Ω, C L = 35 pF;12ns max V S = 3 V, Test Circuit 5Break-Before-Make Time Delay, t D13ns typ R L = 300 Ω, C L = 35 pF;1ns min V S = 3 V, Test Circuit 6Charge Injection±3pC typ V S = 2 V, R S = 0 Ω, C L = 1 nF;Test Circuit 7Off Isolation–62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 8Channel-to-Channel Crosstalk–62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 9–3 dB Bandwidth200MHz typ R L = 50 Ω, C L = 5 pF, Test Circuit 8C S (OFF)11pF typC D, C S (ON)34pF typPOWER REQUIREMENTS V DD = 5.5 VI DD0.001µA typ Digital Inputs = 0 V or 5.5 V1.0µA maxNOTES1Temperature range is as follows: B Version: –40°C to +85°C.2Guaranteed by design, not subject to production test.Specifications subject to change without notice.–2–REV. 0REV. 0–3–ADG733/ADG734B Version–40؇CParameter25؇C to +85؇CUnit Test Conditions/CommentsANALOG SWITCH Analog Signal Range 0 V to V DDV On Resistance (R ON )6Ω typ V S = 0 V to V DD , I DS = 10 mA;1112Ω max Test Circuit 1On-Resistance Match between 0.1Ω typ V S = 0 V to V DD , I DS = 10 mA Channels (∆R ON )0.4Ω max On-Resistance Flatness (R FLAT(ON))3Ω typ V S = 0 V to V DD , I DS = 10 mA LEAKAGE CURRENTSV DD = 3.3 VSource OFF Leakage I S (OFF)±0.01nA typ V S = 3 V/1 V, V D = 1 V/3 V;±0.1±0.3nA max Test Circuit 2Channel ON Leakage I D , I S (ON)±0.01nA typ V S = V D = 1 V or 3 V;±0.1±0.5nA max Test Circuit 3DIGITAL INPUTSInput High Voltage, V INH 2.0V min Input Low Voltage, V INL 0.4V max Input Current I INL or I INH 0.005µA typ V IN = V INL or V INH±0.1µA max C IN , Digital Input Capacitance 4pF typ DYNAMIC CHARACTERISTICS 2t ON 28ns typ R L = 300 Ω, C L = 35 pF;55ns max V S = 2 V, Test Circuit 4t OFF9ns typ R L = 300 Ω, C L = 35 pF;16ns max V S = 2 V, Test Circuit 4ADG733t ON (EN )29ns typ R L = 300 Ω, C L = 35 pF;60ns max V S = 2 V, Test Circuit 5t OFF (EN )9ns typ R L = 300 Ω, C L = 35 pF;16ns max V S = 2 V, Test Circuit 5Break-Before-Make Time Delay, t D 22ns typ R L = 300 Ω, C L = 35 pF;1ns min V S = 2 V, Test Circuit 6Charge Injection ±3pC typ V S = 1 V, R S = 0 Ω, C L = 1 nF;Test Circuit 7Off Isolation–62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 8Channel-to-Channel Crosstalk –62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 9–3 dB Bandwidth 200MHz typ R L = 50 Ω, C L = 5 pF, Test Circuit 8C S (OFF)11pF typ CD , C S (ON)34pF typ POWER REQUIREMENTS V DD = 3.3 VI DD0.001µA typ Digital Inputs = 0 V or 3.3 V1.0µA maxNOTES 1Temperature ranges are as follows: B Version: –40°C to +85°C.2Guaranteed by design, not subject to production test.Specifications subject to change without notice.(V DD = 3 V ؎ 10%, V SS = 0 V, GND = 0 V, unless otherwise noted.)SPECIFICATIONS1ADG733/ADG734–SPECIFICATIONS1DUAL SUPPLY(V DD = +3 V ؎ 10%, V SS = –3 V ؎ 10%, GND = 0 V, unless otherwise noted.)B Version–40؇CParameter25؇C to +85؇C Unit Test Conditions/CommentsANALOG SWITCHAnalog Signal Range V SS to V DD VOn Resistance (R ON) 2.5Ω typ V S = V SS to V DD, I DS = 10 mA;4.55.0Ω max Test Circuit 1On-Resistance Match between0.1Ω typ V S = V SS to V DD, I DS = 10 mAChannels (∆R ON)0.4Ω maxOn-Resistance Flatness (R FLAT(ON))0.5Ω typ V S = V SS to V DD, I DS = 10 mA1.2Ω maxLEAKAGE CURRENTS V DD = +3.3 V, V SS = –3.3 VSource OFF Leakage I S (OFF)±0.01nA typ V S = +2.25 V/–1.25 V, V D = –1.25 V/+2.25 V;±0.1±0.3nA max Test Circuit 2Channel ON Leakage I D, I S (ON)±0.01nA typ V S = V D = +2.25 V/–1.25 V, Test Circuit 3±0.1±0.5nA maxDIGITAL INPUTSInput High Voltage, V INH 2.0V minInput Low Voltage, V INL0.4V maxInput CurrentI INL or I INH0.005µA typ V IN = V INL or V INH±0.1µA maxC IN, Digital Input Capacitance4pF typDYNAMIC CHARACTERISTICS2t ON21ns typ R L = 300 Ω, C L = 35 pF;35ns max V S = 1.5 V, Test Circuit 4t OFF10ns typ R L = 300 Ω, C L = 35 pF;16ns max V S = 1.5 V, Test Circuit 4ADG733t ON(EN)21ns typ R L = 300 Ω, C L = 35 pF;40ns max V S = 1.5 V, Test Circuit 5t OFF(EN)10ns typ R L = 300 Ω, C L = 35 pF;16ns max V S = 1.5 V, Test Circuit 5Break-Before-Make Time Delay, t D13ns typ R L = 300 Ω, C L = 35 pF;1ns min V S = 1.5 V, Test Circuit 6Charge Injection±5pC typ V S = 0 V, R S = 0 Ω, C L = 1 nF;Test Circuit 7Off Isolation–62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 8Channel-to-Channel Crosstalk–62dB typ R L = 50 Ω, C L = 5 pF, f = 10 MHz;–82dB typ R L = 50 Ω, C L = 5 pF, f = 1 MHz;Test Circuit 9–3 dB Bandwidth200MHz typ R L = 50 Ω, C L = 5 pF, Test Circuit 8C S (OFF)11pF typC D, C S (ON)34pF typPOWER REQUIREMENTS V DD = 3.3 VI DD0.001µA typ Digital Inputs = 0 V or 3.3 V1.0µA maxI SS0.001µA typ V SS = –3.3 V1.0µA max Digital Inputs = 0 V or 3.3 VNOTES1Temperature range is as follows: B Version: –40°C to +85°C.2Guaranteed by design, not subject to production test.Specifications subject to change without notice.–4–REV. 0REV. 0ADG733/ADG734–5–ABSOLUTE MAXIMUM RATINGS 1(T A = 25°C unless otherwise noted)V DD to V SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 V V DD to GND . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +7 V V SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . .+0.3 V to –3.5 V Analog Inputs 2 . . . . . . . . . . . . . .V SS – 0.3 V to V DD + 0.3 V or30 mA, Whichever Occurs FirstDigital Inputs 2. . . . . . . . . . . . . . . . .–0.3 V to V DD + 0.3 V or30 mA, Whichever Occurs FirstPeak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . .100 mA(Pulsed at 1 ms, 10% Duty Cycle max)Continuous Current, S or D . . . . . . . . . . . . . . . . . . . .30 mA Operating Temperature RangeIndustrial (A, B Versions) . . . . . . . . . . . . .–40°C to +85°C Storage Temperature Range . . . . . . . . . . . .–65°C to +150°CCAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection.Although the ADG733/ADG734 features proprietary ESD protection circuitry, permanent dam-age may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .150°C 16-Lead TSSOP, θJA Thermal Impedance . . . . . . .150.4°C/W 20-Lead TSSOP, θJA Thermal Impedance . . . . . . . .143°C/W 16-Lead QSOP, θJA Thermal Impedance . . . . . . .149.97°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . .300°C IR Reflow, Peak Temperature . . . . . . . . . . . . . . . . . . . .220°CNOTES 1Stresses above those listed under Absolute Maximum Ratings may cause perma-nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.2Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.ORDERING GUIDEModel Temperature Range Package DescriptionPackage Option ADG733BRU –40°C to +85°C Thin Shrink Small Outline Package (TSSOP)RU-16ADG733BRQ –40°C to +85°C Quarter Size Outline Package (QSOP)RQ-16ADG734BRU–40°C to +85°CThin Shrink Small Outline Package (TSSOP)RU-20PIN CONFIGURATIONSTSSOP/QSOPTSSOPS2B DD S2A S3B D3S3A EN V SS GNDNC = NO CONNECTDDVREV. 0ADG733/ADG734–6–Table I.ADG733 Truth TableA2A1A0EN ON SwitchX X X 1None0000D1-S1A, D2-S2A, D3-S3A 0010D1-S1B, D2-S2A, D3-S3A 0100D1-S1A, D2-S2B, D3-S3A 0110D1-S1B, D2-S2B, D3-S3A 1000D1-S1A, D2-S2A, D3-S3B 1010D1-S1B, D2-S2A, D3-S3B 1100D1-S1A, D2-S2B, D3-S3B 111D1-S1B, D2-S2B, D3-S3BX = Don’t Care.Table II. ADG734 Truth TableLogic Switch A Switch B 0OFF ON 1ONOFFV DD Most Positive Power Supply Potential.V SSMost Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.I DD Positive Supply Current.I SS Negative Supply Current.GND Ground (0 V) Reference.S Source Terminal. May be an input or output.D Drain Terminal. May be an input or output.IN Logic Control Input.V D (V S )Analog Voltage on Terminals D, S R ON Ohmic Resistance between D and S.∆R ON On Resistance Match between Any Two Channels, i.e., R ON max – R ON minR FLAT(ON)Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.I S (OFF)Source Leakage Current with the Switch “OFF.”I D , I S (ON)Channel Leakage Current with the Switch “ON.”V INL Maximum Input Voltage for Logic “0.”V INH Minimum Input Voltage for Logic “1.”I INL (I INH )Input Current of the Digital Input.C S (OFF)“OFF” Switch Source Capacitance.Measured with reference to ground.C D , C S (ON)“ON” Switch Capacitance. Measured with reference to ground.C IN Digital Input Capacitance.t ONDelay time measured between the 50% and 90% points of the digital inputs and the switch “ON” condition.t OFFDelay time measured between the 50% and 90% points of the digital input and the switch “OFF” condition.t ON (EN )Delay time between the 50% and 90% points of the EN digital input and the switch “ON”condition.t OFF (EN )Delay time between the 50% and 90% points of the EN digital input and the switch “OFF”condition.t OPEN“OFF” time measured between the 80%points of both switches when switching from one address state to another.Charge A measure of the glitch impulse transferred Injection from the digital input to the analog output during switching.Off Isolation A measure of unwanted signal coupling through an “OFF” switch.CrosstalkA measure of unwanted signal that is coupled through from one channel toanother as a result of parasitic capacitance.Bandwidth The frequency at which the output is attenuated by 3 dBs.On ResponseThe Frequency Response of the “ON” Switch.Insertion Loss The loss due to the ON resistance of the switch.TERMINOLOGYREV. 0–7–Typical Performance Characteristics–ADG733/ADG734V D , V S , DRAIN OR SOURCE VOLTAGE – V1O N R E S I S T A N C E – ⍀TPC 1. On Resistance as a Function of V D(V S ) for Single SupplyV D OR V S – DRAIN OR SOURCE VOLTAGE – V76543210O N R E S I S T A N C E – ⍀8TPC 4. On Resistance as a Function of V D (V S ) for Different Temperatures,Single Supply V S (V D ) – V0.10C U R R E N T – n A0.080.060.040.020–0.02–0.04–0.06–0.08–0.10TPC 7. Leakage Currents as a Function of V D (V S )V D , OR V S /DRAIN OR SOURCE VOLTAGE – V 876543210O N R E S I S T A N C E – ⍀TPC 2. On Resistance as a Function of V D (V S ) for Dual SupplyV D , OR V S DRAIN OR SOURCE VOLTAGE – V 1O N R E S I S T A N C E – ⍀TPC 5. On Resistance as a Function of V D (V S ) for Different Temperatures,Dual SupplyV S (V D ) – V0.15C U R R E N T – n A0.100.050–0.05–0.10–0.15TPC 8. Leakage Currents as a Function of V D (V S )V D , OR V S DRAIN OR SOURCE VOLTAGE – V876543210O N R E S I S T A N C E – ⍀TPC 3. On Resistance as a Function of V D (V S ) for Different Temperatures,Single SupplyV S (V D ) – V0.1C U R R E N T – n A0.05–0.05–0.1–0.15TPC 6. Leakage Currents as a Function of V D (V S)TEMPERATURE – ؇C0.25C U R R E N T – n A0.200.150.100.050–0.05–0.10TPC 9. Leakage Currents as a Function of TemperatureREV. 0ADG733/ADG734–8–TEMPERATURE – ؇C 0.25C U R R E N T – n A0.200.150.100.050–0.05–0.10TPC 10.Leakage Currents as a Function of TemperatureFREQUENCY – kHzC U R R E N T – A100101TPC 13.Input Current, I DD vs.Switching FrequencyVOLTAGE –V2010–10Q I N J – p CTPC 16.Charge Injection vs. Source VoltageTEMPERATURE – ؇C40T I M E – n s35302520151005TPC 11.t ON /t OFF Times vs.TemperatureFREQUENCY – kHz030kA T T E N U A T I O N – d B–20–40–60–80–100–120100k1M 10M100M TPC 14.Off Isolation vs. Frequency FREQUENCY – H Z–4–2–6O N R E S P O N S E – dBTPC 12.On Response vs. FrequencyFREQUENCY – kHz030kA T T E N U A T I O N – d B–20–40–60–80–100–120100k1M 10M 100MTPC 15.Crosstalk vs. FrequencyREV. 0ADG733/ADG734–9–V Test Circuit 1.On ResistanceTest CircuitsDV STest Circuit 2.I S (OFF)DTest Circuit 3.I D (ON)VTest Circuit 4.Switching Times, t ON , t OFFOVTest Circuit 5.Enable Delay, t ON (EN ), t OFF (EN )OUTV *A0, A1, A2 FOR ADG733, IN1-4 FOR ADG734ADDRESS3VV OUT0V V Test Circuit 6.Break-Before-Make Delay, t OPENREV. 0ADG733/ADG734–10–* IN1–4 FOR ADG734OUTV V Test Circuit 7.Charge InjectionSWITCH OPEN FOR OFF ISOLATION MEASUREMENTS SWITCH CLOSED FOR BANDWIDTH MEASUREMENTS OFF ISOLATION = 20LOG 10(V OUT /V S )INSERTION LOSS = 20LOG 10(V OUT WITH SWITCH V OUT WITHOUT SWITCH)V V OUTTest Circuit 8.OFF Isolation and BandwidthV SV NC = NO CONNECTTest Circuit 9.Channel-to-Channel CrosstalkREV. 0ADG733/ADG734–11–16-Lead TSSOP (RU-16)OUTLINE DIMENSIONSDimensions shown in inches and (mm).20-Lead TSSOP (RU-20)16-Lead QSOP(RQ-16)BSC 0.007 (0.18)C 01602–2.5–1/01 (r e v . 0)P R I N T E D I N U .S .A .元器件交易网。
台积电 TPS73x01DRBEVM-518 评估模块用户指南说明书
TPS73201DRBEVM-518User's GuideSBVU014–August2009TPS73x01DRBEVM-518 This user’s guide describes the characteristics,operation,and use of the TPS73x01DRBEVM-518 evaluation module.This document includes setup instructions,a schematic diagram,thermal guidelines,a bill of materials(BOM),and printed circuit board(PCB)layout drawings.Contents1Overview (2)2Setup (2)3Operation (3)4Thermal Guidelines (3)5Board Layout,Schematic,and Parts List (4)List of Figures1Assembly Layer (6)2Top Layer Routing (7)3Bottom Layer Assembly (8)4Bottom Layer Routing (8)5TPS73x01DRBEVM-518Schematic (9)List of Tables1Device Summary (2)2Related Documentation (2)3Maximum Input Voltage (4)5TPS73x01DRBEVM-518Bill of Materials (10)All trademarks are the property of their respective owners.1 SBVU014–August2009TPS73x01DRBEVM-518 Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedOverview 1OverviewThis document describes the characteristics,operation,and use of the TPS73x01DRBEVM-518evaluation module(EVM).This EVM demonstrates the capabilities and features of Texas Instruments'TPS73201DRB,TPS73601DRB,and TPS73701DRB low-dropout(LDO)linear regulators.Theseregulators,each available in a3-mm×3-mm SON package,are capable of250-mA,400-mA,and1-A output currents,respectively.The TPS73x01DRBEVM-518module helps designers evaluate the operation and performance of the TPS73201,TPS73601,and TPS73701LDO devices in a variety of configurations.The output voltage from the LDO device can be selected by a jumper to obtain1.8V,2.5V,2.8V,3.0V or3.3V.Table1summarizes the LDOs that are suitable for use with this EVM.Table1.Device SummaryDevice Package Size DescriptionCap-Free,NMOS,250-mA Low Dropout RegulatorTPS73201DRB3-mm×3-mm SONwith Reverse Current ProtectionCap-Free,NMOS,400-mA Low Dropout RegulatorTPS73601DRB3-mm×3-mm SONwith Reverse Current Protection1-A Low Dropout Regulator with Reverse CurrentTPS73701DRB3-mm×3-mm SONProtection1.1Related Documentation from Texas InstrumentsThe following related documents are available through the Texas Instruments web site at.Table2.Related Documentation2SetupThis section describes the jumpers and connectors on the EVM as well as how to properly connect,set up,and use the TPS73x01DRBEVM-518.2.1Input/Output Connector Descriptions2.1.1J1:VINThis connector is the positive input supply voltage.The leads to the input supply should be twisted and kept as short as possible to minimize electromagnetic interference(EMI)transmission.Additional bulkcapacitance should be added between J1and J2if the supply leads are greater than6inches(15,24cm).An additional47-µF or greater capacitor improves the transient response of the TPS73x01DRB and helps to reduce ringing on the input when long supply wires are used.The TPS73x01DRBEVM-518has afootprint(C4)on the EVM available for this purpose.2.1.2J3:VOUTThis jumper is the positive connection from the output.Connect this pin to the positive input of the load. 2.1.3J2:GNDThis jumper is the return connection for the input power supply of the regulator.2TPS73x01DRBEVM-518SBVU014–August2009Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedT = T + P J A D JA´q Operation2.1.4J4:GNDThis point is the return connection for the output.2.1.5JP1:ENABLEThis jumper is used to enable or disable the output of the TPS73x01DRB.Placing a shorting jumperbetween pins 1and 2(ON position)enables the TPS73x01DRB.Placing the shorting jumper between pins 2and 3(OFF position)disables the TPS73x01DRB.2.1.6JP2:V OUT SelectionThis jumper sets the desired output voltage from the TPS73x01DRB.Placing a shorting jumper between the appropriate pins gives the corresponding outputs.3OperationThis section provides information about the operation of the TPS73x01DRBEVM.3.1Configuration and Initial OperationConnect the positive input power supply to J1.Connect the input power return (ground)to J2.TheTPS73x01DRB has an absolute maximum input voltage of 6.0V.The recommended maximum operating voltage is 5.5V.The actual highest input voltage may be less than 5.5V as a result of thermal conditions.See the Thermal Considerations section of this manual to determine the highest input voltage for maintaining a safe junction temperature.Connect the desired load between J3(positive lead)and J4(negative or return lead).Configure jumper JP2for the desired output voltage.4Thermal GuidelinesThis section presents guidelines for the thermal management of the TPS73x01DRBEVM-518board.4.1Thermal ConsiderationsThermal management is a key design component of any power converter,and is especially important when power dissipation in the LDO is high.To better help you design the TPS73x01DRB family into your applications,the following formula should be used to approximate the maximum power dissipation (P DMax )at a particular ambient temperature:(1)where:•T J is the junction temperature •T A is the ambient temperature•P D is the power dissipation in the IC•θJA is the thermal resistance from junction to ambient3SBVU014–August 2009TPS73x01DRBEVM-518Submit Documentation FeedbackCopyright ©2009,Texas Instruments IncorporatedBoard Layout,Schematic,and Parts List All temperatures are in degrees Celsius.The measured thermal resistance from junction to ambient for the TPS73x01EVM has a typical value of 40°C/W.The recommended maximum operating junction temperature specified in the product data sheet for the TPS73x01family is+125°C.With these two pieces of information,the maximum power dissipation can be found by using Equation(1).Example1.Sample CalculationWhat is the maximum input voltage that can be applied to a TPS73701DRB with a1.8-V output voltage if the ambient temperature is+85°C and the full1A of load current is required?Given:T J =+125°C,TA=+85°C,θJA=40°C/WUsing Equation1,we substitute in the given values above and find that the maximum power dissipation for the part is PD=1W.125°C=85°C+PD(40°W/C)This result means that the total power dissipation of the TPS73701DRB must be less than1W.Now the input voltage can be calculated.PD =(VIN–VOUT)×IOUT=(VIN–1.8V)×1A=1WSo the maximum input voltage would need to be2.8V or less in order to maintain a safe junction temperature.Similar analysis can be performed to determine the maximum input voltage at room temperature(+25°C) or+85°C to provide full output current while maintaining the junction temperature at or below+125°C.The answer depends on the desired output voltage,as Table3shows.Table3.Maximum Input VoltageTPS73701DRB TPS73601DRB TPS73201DRBOutputAmbient Temperature Ambient Temperature Ambient TemperatureVoltageV OUT+25°C+85°C+25°C(1)+85°C+25°C(1)+85°C(1)1.8V 4.3V2.8V 5.5V 4.3V 5.5V 5.5V2.5V 5.0V3.5V 5.5V 5.0V 5.5V 5.5V2.8V 5.3V3.8V 5.5V 5.3V 5.5V 5.5V3.0V 5.5V4.0V5.5V 5.5V 5.5V 5.5V3.3V 5.5V(1)4.3V5.5V 5.5V(1) 5.5V 5.5V(1)Limited by recommended operating maximum temperature,not thermal resistance.5Board Layout,Schematic,and Parts ListThis section provides the TPS73x01DRBEVM-518board layout and illustrations.It also provides theTPS73x01DRBEVM-518schematic and bill of materials.5.1PCB LayoutFigure1through Figure4show the layout for the TPS73x01DRBEVM-518PCB.NOTE:Board layouts are not to scale.These figures are intended to show how the board is laidout;they are not intended to be used for manufacturing TPS73x01DRBEVM-518PCBs.4TPS73x01DRBEVM-518SBVU014–August2009Submit Documentation FeedbackCopyright©2009,Texas Instruments Incorporated Board Layout,Schematic,and Parts List5 SBVU014–August2009TPS73x01DRBEVM-518 Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedBoard Layout,Schematic,and Parts List 6TPS73x01DRBEVM-518SBVU014–August2009Submit Documentation FeedbackCopyright©2009,Texas Instruments Incorporated Board Layout,Schematic,and Parts List7 SBVU014–August2009TPS73x01DRBEVM-518 Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedBoard Layout,Schematic,and Parts List 8TPS73x01DRBEVM-518SBVU014–August2009Submit Documentation FeedbackCopyright©2009,Texas Instruments Incorporated Board Layout,Schematic,and Parts List 5.2Schematic and BOMFigure5illustrates the TPS73x01DRBEVM-518schematic.Table4lists the bill of materials for this EVM.Figure5.TPS73x01DRBEVM-518Schematic9 SBVU014–August2009TPS73x01DRBEVM-518 Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedBoard Layout,Schematic,and Parts List Table4.TPS73x01DRBEVM-518Bill of Materials(1)(2)(3)-01-02-03Ref Des(4)Value Description Size Part Number MfrCapacitor,ceramic,6.3V,111C110µF0603Std StdX5R,10%Capacitor,ceramic,10V,111C2 2.2µF0603Std StdX5R,10%Capacitor,ceramic,16V,000C3—0603Std StdX5R,10%Capacitor,aluminum,16V,0.260×0.307000C447µF EEEVFK1C470P Panasonic±20%inchJ1,J2,J3,PEC02S Header,male2-pin,100-mil4440.100inch×2PEC02SAAN SullinsJ4AAN spacingPEC03S Header,3-pin,100-mil111JP10.100inch×3PEC03SAAN SullinsAAN spacingPEC05D Header,male2x5-pin,0.100inch×5111JP2PEC05DAAN SullinsAAN100-mil spacing×2111R144.2kΩResistor,chip,1/16W,1%0603Std Std 111R288.7kΩResistor,chip,1/16W,1%0603Std Std 111R341.2kΩResistor,chip,1/16W,1%0603Std Std 111R433.2kΩResistor,chip,1/16W,1%0603Std Std 111R529.4kΩResistor,chip,1/16W,1%0603Std Std 111R625.5kΩResistor,chip,1/16W,1%0603Std StdIC,Cap-free,NMOS,250-mATPS7320Texas 100U1LDO regulator with reverse QFN-8TPS73201DRB1DRB Instrumentscurrent ProtectionIC,Cap-free,NMOS,400-mATPS7360Texas 010U1LDO regulator with reverse QFN-8TPS73601DRB1DRB Instrumentscurrent ProtectionTPS7370IC,1-A LDO regulator with Texas 001U1QFN-8TPS73701DRB1DRB reverse current protection Instruments 222——Shunt,100-mil black0.1929950-003MPCB,FR-4,2-layer,SMOBC,111N/A——HPA518**Any1.620-in×1.500in×.062in(1)These assemblies are ESD sensitive.ESD precautions must be observed.(2)These assemblies must be clean and free from flux and all e of no-clean flux is not acceptable.(3)These assemblies must comply with workmanship standards IPC-A-610Class2.(4)Components can be substituted with equivalent manufacturer components except where indicated with**.10TPS73x01DRBEVM-518SBVU014–August2009Submit Documentation FeedbackCopyright©2009,Texas Instruments IncorporatedEVALUATION BOARD/KIT IMPORTANT NOTICETexas Instruments(TI)provides the enclosed product(s)under the following conditions:This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,DEMONSTRATION,OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use.Persons handling the product(s)must have electronics training and observe good engineering practice standards.As such,the goods being provided are not intended to be complete in terms of required design-,marketing-,and/or manufacturing-related protective considerations,including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards.This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility,restricted substances(RoHS),recycling (WEEE),FCC,CE or UL,and therefore may not meet the technical requirements of these directives or other related directives.Should this evaluation board/kit not meet the specifications indicated in the User’s Guide,the board/kit may be returned within30days from the date of delivery for a full refund.THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES,EXPRESSED,IMPLIED,OR STATUTORY,INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.The user assumes all responsibility and liability for proper and safe handling of the goods.Further,the user indemnifies TI from all claims arising from the handling or use of the goods.Due to the open construction of the product,it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE,NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT,SPECIAL,INCIDENTAL,OR CONSEQUENTIAL DAMAGES.TI currently deals with a variety of customers for products,and therefore our arrangement with the user is not exclusive.TI assumes no liability for applications assistance,customer product design,software performance,or infringement of patents or services described herein.Please read the User’s Guide and,specifically,the Warnings and Restrictions notice in the User’s Guide prior to handling the product.This notice contains important safety information about temperatures and voltages.For additional information on TI’s environmental and/or safety programs,please contact the TI application engineer or visit /esh.No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine,process,or combination in which such TI products or services might be or are used.FCC WarningThis evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,DEMONSTRATION,OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use.It generates,uses,and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part15of FCC rules,which are designed to provide reasonable protection against radio frequency interference.Operation of this equipment in other environments may cause interference with radio communications,in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.EVM WARNINGS AND RESTRICTIONSIt is important to operate this EVM within the input voltage range of 1.7V to 5.5V and the output voltage range of 1.2V to 3.3V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM.If there are questions concerning the input range,please contact a TI field representative prior to connecting the input power.Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output.If there is uncertainty as to the load specification, please contact a TI field representative.During normal operation,some circuit components may have case temperatures greater than+85°C.The EVM is designed to operate properly with certain components above +85°C as long as the input and output ranges are maintained.These components include but are not limited to linear regulators,switching transistors,pass transistors,and current sense resistors.These types of devices can be identified using the EVM schematic located in the EVM User's Guide.When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2009,Texas Instruments IncorporatedTPS73201DRBEVM-518。
常用稳压管型号
常用稳压型号参数查询DZ是稳压管的电器编号,1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体上直接标稳压电压,如5V6就是5.6V的稳压管;美标稳压二极管型号:HITACHI日立:HITACHI日立0.5W稳压二极管型号参数稳压HZ3A1 2.5~2.7VHZ3A2 2.6~2.8VHZ3A3 2.6~2.9VHZ3B1 2.8~3.0VHZ3B2 2.9~3.1VHZ3B3 3.0~3.2V线性稳压器件输入输出电流相等,压降3V以上型号稳压V 最大输出电流可替代型号79L05 -5V 100mA79L06 -6V 100mA79L08 -8V 100mALM7805 5V 1A L7805,LM340T5 LM7806 6V 1A L7806LM7808 8V 1A L7808LM7809 9V 1A L7809LM7812 12V 1A L7812,LM340T12 LM7815 15V 1A L7815,LM340T15 LM7818 18V 1A L7815LM7824 24V 1A L7824LM7905 -5V 1A L7905LM7906 -6V 1A L7906,KA7906 LM7908 -8V 1A L7908LM7909 -9V 1A L7909LM7912 -12V 1A L7912LM7915 -15V 1A L7915LM7918 -18V 1A L7918LM7924 -24V 1A L792478L05 5V 100mA78L06 6V 100mA78L08 8V 100ma78L09 9V 100ma78L12 12V 100ma78L15 15V 100ma78L18 18V 100ma78L24 24V 100ma开关稳压器件电压转换效率高型号说明最大输出电流LM1575T-3.3 3.3V简易开关电源稳压器 1ALM1575T-5.0 5V简易开关电源稳压器 1A LM1575T-12 12V简易开关电源稳压器 1A LM1575T-15 15V简易开关电源稳压器 1A LM1575T-ADJ 简易开关电源稳压器可调1.23V~37V 1ALM1575HVT-3.3 3.3V简易开关电源稳压器 1A LM1575HVT-5.0 5V简易开关电源稳压器 1A LM1575HVT-12 12V简易开关电源稳压器 1ALM1575HVT-15 15V简易开关电源稳压器 1ALM1575HVT-ADJ 简易开关电源稳压器可调1.23V~37V 1ALM2575T-3.3 3.3V简易开关电源稳压器 1A LM2575T-5.0 5V简易开关电源稳压器 1A LM2575T-12 12V简易开关电源稳压器 1A LM2575T-15 15V简易开关电源稳压器 1A LM2575T-ADJ 简易开关电源稳压器可调1.23V~ 37V 1ALM2575HVT-3.3 3.3V简易开关电源稳压器 1A LM2575HVT-5.0 5V简易开关电源稳压器 1A LM2575HVT-12 12V简易开关电源稳压器 1A LM2575HVT-15 15V简易开关电源稳压器 1A LM2575HVT-ADJ 简易开关电源稳压器可调1.23V~37V 1ALM2576T-3.3 3.3V简易开关电源稳压器 3A LM2576T-5.0 5.0V简易开关电源稳压器 3A LM2576T-12 12V简易开关电源稳压器 3A LM2576T-15 15V简易开关电源稳压器 3A LM2576T-ADJ 简易开关电源稳压器可调1.23V~37V 3ALM2576HVT-3.3 3.3V简易开关电源稳压器 3A LM2576HVT-5.0 5.0V简易开关电源稳压器 3ALM2576HVT-12 12V简易开关电源稳压器 3ALM2576HVT-15 15V简易开关电源稳压器 3ALM2576HVT-ADJ 简易开关电源稳压器可调1.23V~37V 3A。
FM7318A电流模式PWM控制芯片说明书
FM7318A(文件编号:S&CIC1756)PWM控制功率开关概述FM7318A是内置高压功率MOSFET的电流模式PWM控制芯片,适用于全电压18W离线式反激开关电源,具有高性能、低待机功耗、低成本的优点。
为了保证芯片正常工作,FM7318A针对各种故障设计了一系列完善的具有可恢复功能的保护措施,包括软启动、VDD欠压锁定保护(UVLO)、过压保护(OVP)、逐周期电流限制(OCP)、过载保护(OLP)和图腾柱输出驱动高箝位等,特别对音频噪声和FM干扰进行了处理。
芯片内置的频率抖动和图腾柱栅极软驱动技术可容易地获得良好的EMI性能。
特点内置软启动:4ms优化的Burst控制模式,以提高效率和降低待机功耗(低于0.3W)正常工作时无音频噪声设计固定工作频率:65KHz内置斜波补偿电路较低的启动电流和工作电流 内置前沿消隐电路欠压锁定保护过载保护(OLP)过压保护(OVP)保护解除后自动恢复功能VCC工作电压高达35V,在输出5-12V快充系统中,无需外加VCC稳压电路应用快充电源电池充电器机顶盒电源开放式开关电源数码相机、摄像机适配器电脑/服务器/液晶电视待机电源VCR、SVR、DVD&DVCD播放器电源引脚示意图及说明SOP-8FM7318A(文件编号:S&CIC1756)PWM控制功率开关典型应用电路备注:次级推荐使用快充同步整流IC FM9918内部框图FM7318A(文件编号:S&CIC1756)PWM控制功率开关绝对最大额定值注:超过上表中规定的额定参数会导致器件永久损坏。
不推荐将该器件工作在以上额定条件,工作在额定条件以上,可能会影响器件的可靠性。
电气特性(无特殊说明,VDD=16V,T A=25℃。
)特性(典型参数)(曲线图,Ta=25℃)FM7318A(文件编号:S&CIC1756)PWM控制功率开关功能描述FM7318A是小功率离线反激式开关电源功率转换器。
常用开关电源芯片大全之欧阳育创编
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
TMP320LC2401AVFA资料
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 TMS320x240xA Device Summary . . . . . . . . . . . . . . . . . 5 Functional Block Diagram of the 2407A DSP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Peripheral Memory Map of the 2407A/2406A . . . . . . . 29 Device Reset and Interrupts . . . . . . . . . . . . . . . . . . . . . 30 DSP CPU Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TMS320x240xA Instruction Set . . . . . . . . . . . . . . . . . . . 34 Scan-Based Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Functional Block Diagram of the 2407A DSP CPU . . 35 Internal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Event Manager Modules (EVA, EVB) . . . . . . . . . . . . 45 Enhanced Analog-to-Digital Converter (ADC) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Serial Communications Interface (SCI) Module . . . . 53
7812规格书
7812规格书一、芯片概述7812是一款三端稳压器,可以将输入的交流或直流电压稳定地输出为+12V的直流电压。
其主要应用于各种电子设备中,为电路提供稳定的电源。
二、引脚定义7812的引脚排列如下:1. 输入端(Vin):输入电压的接入端。
2. 地线(GND):接地端,用于将稳压器与地线连接。
3. 输出端(Vo):输出直流电压的接入端。
三、电气特性1. 输入电压范围:7-40V(AC或DC)。
2. 输出电压:+12V(可调整)。
3. 输出电流:最大可达1A。
4. 输出精度:±5%。
5. 保护功能:过热保护和过流保护。
四、热特性7812具有良好的热性能,可以在较宽的温度范围内正常工作。
其最大温升为50℃。
五、封装信息7812采用TO-220封装,尺寸为42mm x 30mm x 16mm。
六、推荐电路推荐使用7812的典型电路如下:```+ Vin ————- || ————-———-———————-———————-———————-———————-———————-———————-———————-———————-——————— GNDVo ————> Load```七、操作与控制7812的工作状态可以通过接入适当的输入电压和控制信号进行控制。
其内部具有过热保护和过流保护功能,可以有效地保护电路安全。
八、应用与设计7812适用于各种需要+12V直流电源的电子设备中,如电源适配器、充电器、电子仪器等。
在设计电路时,需要根据实际需求选择适当的元件和参数,以确保电路的正常运行和稳定性。
九、测试与验收在生产过程中,需要对7812进行一系列的测试和验收,以确保其性能和质量符合规格书的要求。
测试项目包括电气特性测试、热特性测试、封装测试等。
在验收时,需要检查产品的外观、标识、参数等是否符合要求,并确保产品无缺陷或问题。
十、质保与售后我司提供的7812产品均享有质保服务。
在正常使用条件下,产品自购买之日起一年内出现性能故障,我们将提供免费维修或更换的服务。
SOD4007 SOD-123FL 规格书推荐
3.7±0.2
Dimensions in millimeters
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25 C ambient temperature unless otherwise specified. Single phase half-wave 60Hz,resistive or inductive load,for capacitive load current derate by 20%.
SYMBOLS
Part Number Maximum repetitive peak reverse voltage Maximum RMS voltage Maximum DC blocking voltage Maximum average forward rectified current at TA=65 C (NOTE 1) Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) TL=25 C Maximum instantaneous forward voltage at 1.0A Maximum DC reverse current TA=25 C at rated DC blocking voltage TA=125 C Typical junction capacitance (NOTE 2) Typical thermal resistance (NOTE 3) Operating junction and storage temperature range VRRM VRMS VDC I(AV)
Televac MP7ER FR 双反磁性磁管冷电子仪器产品说明书
INSTRUCTION MANUALMP7ER/FR RemoteDouble Inverted Magnetron Cold Cathode GaugeRange: 7ER 10-8 to 10-2 Torr7FR 10-11 to 10-2 TorrTELEVACA DIVISION OF THE FREDERICKS COMPANY2400 PHILMONT AVE.HUNTINGDON VALLEY, PA 19006PARTS LISTDescription and Instrument OperationThe MP7ER/FR series Remote Module provides a compact stand-alone measurement solution for applications that do not require traditional panel-mounted instrument readouts. These modules can provide local readout and control or can be interfaced directly with a PLC, chart recorder, or data acquisition system. The MP7ER/FR series of instruments use the time proven reliable and rugged TELEVAC 7ER/FR Sensor, which can be changed in seconds. These instruments operate from low voltage DC and are easily integrated into the largest process system with a minimal effort. Likewise, the MP7ER/FR Remote Gauge can be used as a small stand-alone vacuum measurement solution.Features» Wide range 10-2 to 10-11 Torr» Fast restart at high vacuum» No x-ray limit» Reduced external magnetic field» Compact design» Rugged/durable» No-filament burnout»No degassing required» Long life» Cleanable sensor (7ER)START BY READING THESE IMPORTANT SAFETY INSTRUCTIONS AND NOTES collected herefor your convenience and repeated with additional information at appropriate points in these instructionsIn these instructions the word “product” refers to the MP7ER/FR and all of its approved parts and accessories.NOTE: These instructions do not and cannot provide for every contingency that may arise inconnection with the installation, operation, or maintenance of this product. Should you requirefurther assistance; please contact Televac at the address on the title page of this manual.This product has been designed and tested to offer reason ably safe service provided in it’s installed, operated and serviced in strict accordance with these safety instructions.These safety precautions must be observed during all phases of operation, installation, and service of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Televac disclaims all liability for the customer’s failure to comply with these requir ements.√READ Instructions– Read all safety and operating instructions before operating the product.√RETAIN instructions– Retain the Safety and Operating Instructions for future reference.√ HEED warnings– Adhere to all warnings on the product and in the operating instructions.√FOLLOW instructions–Follow all operating and maintenance instructions.√ACCESORIES– Do not use accessories not recommended in this manual as they may requirea technician to restore the product to its normal operation.CHAPTER 3Principles of Sensor OperationDouble Inverted MagnetronCold Cathode GaugeThe cold cathode gauge is a high vacuum sensor that measures pressure by ionizing the residual gases in a magnetron discharge. The body of the gauge serves as a cathode, and is at ground potential. The anode operates at voltages up to 4000 volts. The permanent magnet traps electrons in the gauge to sustain the discharge at very low pressure. This gauge is sensitive to gas type. Because of the relative ruggedness of this gauge and since it has no filament to burn out, it is often used in applications where hot cathode gauges are not reliable.SENSOR OPERATION AND INSTALLATION1.0 Connect the gauge to the vacuum system, (can be connected in any position, but mounting withthe vacuum port facing down eliminates any chance of particles entering into the gauge).2.0 Assure that there are no leaks.3.0 Apply 24 DC volt power between pin #4 (+) and #2 (-). Monitor the signal output with a digital voltmeter between pin # 3 (+) and pin # 7. The display will show “OFF” and the signal output will be between 10.5 volts and 14.5 volts.4.0 The gauge is activated by grounding the wire from pin # 1 of the connector and may be operatedover any vacuum range, however, the following cautions.4.1 Activate the gauge only at pressures below 10-2 Torr. Continuous operation above thisrange will result in build up of contaminants inside the gauge and will produce errors inreading. In addition, at even higher pressures the gauge may falsely indicate lowerpressures by having passed beyond the peak of its curve.4.2 Initial activation of the gauge at pressures below 10-6 Torr may exhibit a delay inproviding an accurate reading of pressure until the electrical discharge within the tubehas established itself. This initial delay increases significantly at even lower pressures.Once established the discharge within the tube is maintained over the entire range. Avery rough estimate of start time can be calculated as T, sec = 1/pressure in µTorr.5.0 While the pressure is above the range of the gauge it will display “HI” and the signal output will bejust above the highest reading. If, on the other hand the pressure is below the lower gauge limit, the display will display “LO” and the signal output will remain at its lowest value.6.0 The trip pressure for the setpoint relay can be displayed by pressing the “Display Setpoint”button. It can also be read as a voltage – anytime – on the wire pin # 9 of the connector. Thedisplay will show the setpoint pressure as a blinking number (to distinguish it from a pressurereading) until the button is again pressed or it times out automatically after 60 seconds. Thesetpoint pressure can be changed only during the blinking display by means of the labeledadjustment screw. The new value is retained in memory and the corresponding new voltage isprovided at the setpoint terminal on the connector and is scaled in the same way as the signaloutput.SENSOR OPERATION AND INSTALLATION (cont.)M P 7F R lo g 10-110123456789101.00E -111.00E -101.00E -091.00E -081.00E -071.00E -061.00E -051.00E -041.00E -031.00E -02P R E S S U R E (T O R R )V O L T A G ERecorder Outputs“HI”9.210.2Maintenance1.0 1.1 1.2 1.3 1.42.02.2 2.3 2.4 Blast the2.5 After cleaning, blow out any residual glass beads or dust with dry air.2.6 Rinse with alcohol, followed with a rinse of de-ionized water. 2.7 Dry anode assembly and the body in a clean oven @ ~ 200° F.2.8 Re-grease the “O” ring with Apiezon L or M Grease. (A vacuum approved grease).DO NOT APPLY EXCESS GREASE. “O” ring should be shiny. 2.9 Install “O” ring in body..2.10 Replace the anode assembly in the body after the “O” ring has been installed.2.11 Screw the cap on and hand tighten.CHAPTER 6TELEVACCHAPTER 8CHAPTER 73.1 Without removing the sensor from the vacuum system, separate the electronic block from the sensor as described in Section 1.0 (Disassembling the 7ER/7FR ).3.2 After separating the electronics from the sensor, but before disassembling of the sensor for cleaning, use a marker to mark the orientation and positions of the magnets relative to each other and relative to the stainless steel sensor tube. These are aligned at the factory for optimum performance of the sensor. When reassembling after cleaning, reassemble I reverse order with the magnets in their original respective locations and like pole surfaces facing each other (N to N, S to S).3.3 Holding the magnets, use a 1/32” Allen wrench to remove three setscrews on the top alumin um holding ring.3.4 Slide away the magnet’s washers and aluminum spacers from the tube’s body. Do not remove the lower aluminum holding ring (one that is closest to the flange).3.5 Bake out the sensor using heat tape, blanket or other means with temperature controls. Temperature on the gauge’s surface should not exceed 350°C. NOTE : if the bake out temperature does not exceed 180°C for 2 hours, the sensor could be baked out with the magnets in place.3.6 After cooling the sensor down to room temperature, re-assemble with the magnets in their original respective locations and like pole surfaces facing each other (N to N, S to S).3.7 Put the electronic block onto the sensor and secure it with flat socket screw.CalibrationAll instrumentation is calibrated at the factory. No further calibration at the customer’s facility should be required, even if the gauge tube is replaced.For a reliable recalibration at a later date, it is necessary to have a reference standard vacuum system whose pressure is known to be accurate. For such a calibration, the instrument and sensor tube should be returned to the factory for re-certification. However, if the vacuum calibration verification must be done at the custo mer’s facility, a knowledgeable electronics technician trained in vacuum calibration should operate equipment of certifiable accuracy.Troubleshooting1.0 If display consistently displays “HI”, the pressure may be above the gauge upper limit (1 x 10-2 TORR) units to the gauge or there may be a leak locally. Check the integrity of the vacuum connection and, if the 7E sensor is used, check the o-ring seal on the sensor tube.2.0 If the display constantly reads “LO”, the sensor may ha ve become inoperative. Check for correct reassembly after bake out.3.0 If the display continues to read “LO” or “HI” after completing step 1.0 or 2.0, the sensor may be contaminated. Contamination can prevent the sensor from properly discharging (reference chapter 4, paragraph4.0 of this manual for information on operation of the sensor). To clean the sensor, refer to chapter 6, paragraph 2.0 of this manual.NOTE: If, after doing some or all of the above, the unit is still inoperative, return to the factory for repair.SpecificationsMeasurement Range RangeOutput Options1. Log 10 -10 to 10-2 Torr MP7ER: 10-2 TO 10-8 TORR2. Linear 10-8 to 10-3 Torr MP7FR 10-2 TO 10-11 TORR3. Log 2 X 10-11 to 10-2 TorrAccuracy Mounting Orientation+/-0.2 of decade of reading NoneInput Voltage/Power Ion ControlRequired +24 V DC @ 250 mA Ion ON/OFF Control is included Power ON Indicator LED is includedSetpoint Relay Adjustment PotentiometerForm C Contact SetpointOperating Temperature Calibration Medium+ 15 to 50C Dry Air or NitrogenSensor Material Overpressure ToleranceStainless Steel (Type 304) 150 PSIUnpacking and InspectionBefore each unit is installed or operated, a quick inspection should be performed and the following noted:a. damage to the unit (scratches, nicks, dents, cracks, etc.)b. missing: screws, switches or switch hardwarec. broken barrier strips, etc.d. broken or loose components within instrumentShould any of the above problems be encountered, contact the factory immediately. Any unauthorized repairs will void the warranty.CHAPTER 12Warranty informationThe Televac division warrants instruments and components to be free of defects in material and workmanship for a period of one year after the date of shipment unless otherwise specified in the quotation pr product literature. No salesman, Representative or agent of the Fredericks Company, or its divisions is authorized to give any guarantee or warranty or make any representation in addition or contrary to those stated herein.Other than those expressly stated herein, there are no other warranties of any kind, express or implied and specially excluded but not by way of limitation, are the implied warranties of fitness for a particular purpose and merchantability. It is understood and agreed the seller’s liability whether in contract, in tort, under any warranty, in negligence or otherwise shall not exceed the return of the amount of the purchase price paid by the purchases and under no circumstances shall seller be liable for special, indirect, incidental or consequential damages. The price stated for the equipment is a consideration in limiting seller’s liability. No action regardless of form, arising out of transactions of this agreement may be brought by purchase more than one year after the ca use of action has accrued, seller’s maximum liability shall not exceed and buyer’s remedy is limited to either (1) repair or replacement.。
signaltek nt 用户指南说明书
SignalTEK NT 用户指南
156875 第 3 版 第5页
电源
SignalTEK NT 可采用以下电源:
可充电电源模块。 连接到电源模块内置 DC 插口的直流电源。 电源模块管理
充满电的电源模块将支持最长五小时的高强度、连续使用。为最大限度地延长电源模块的使用寿命,建议每 月至少进行一次完全放电后再完全充电。
弃置
当 SignalTEK NT 已达到使用寿命时,您必须依照当地的环境法规完全弃置这两个设备。
电源模块第一次使用必须完全充电后才能用它
安全信息
使用 SignalTEK NT 时,请务必采取基本的安全防护措施,降低火灾、电击和人员受伤的风险。这些措施包括: 连接到线缆时,必须特别小心,因为线缆上可能存在高压,并且可能存在触电死亡的危险。 避免在暴风雨天气下使用 SignalTEK NT - 存在被闪电击中的风险。 只使用您的 SignalTEK NT 随附的交流电源适配器。 1 类激光产品。来自光纤端口的光输出虽然不可见,但可能会损害视力。切勿直接凝视打开的光链路端口或 光纤末端确认是否有光线射出。 连接器安全性 以下连接器符合 EN60950 SELV 安全规范: RJ-45 以太网端口。 USB 端口。 DC 插口。
用户不可自行维修电源模块。当它达到使用寿命时,请联系您当地的 IDEAL 代表进行更换。
电源模块充电
电源模块可在 SignalTEK NT(任一设备)开启或关闭的情况下在三小时内充满。要对电池模块充电,将随 附的电源适配器连接到 DC 插口。为方便起见,充电时可将电源模块取出或继续连接到设备上。DC 插口旁 的电源 LED 灯发出绿光,表明电池正在充电,绿灯闪烁时表明未充电。
cms79f723规格书
cms79f723规格书CMF79F723规格书CMF79F723是一款集成电路芯片,具有多种功能和特性。
该规格书旨在详细介绍CMF79F723的技术指标、主要特性以及应用领域。
一、技术指标CMF79F723的主要技术指标如下:1. 工作电压:3.3V2. 工作温度范围:-40°C至85°C3. 集成了多个模块,包括CPU、存储器、串口、定时器等4. 支持多种通信接口,如SPI、I2C、UART等5. 内置多个外设控制器,如ADC、PWM等6. 支持低功耗模式,以节省能源7. 提供完善的保护机制,包括过压、过流、过温等保护功能二、主要特性CMF79F723具有以下主要特性:1. 高性能:CMF79F723采用先进的制程工艺和优化的架构设计,具有出色的性能表现,能够满足复杂应用的需求。
2. 低功耗:CMF79F723支持多种低功耗模式,可根据需要灵活调整功耗,以延长电池寿命或降低系统能耗。
3. 多功能:CMF79F723集成了丰富的外设和通信接口,可满足不同应用场景的需求。
同时,其灵活的软件架构可支持用户自定义功能的扩展。
4. 高可靠性:CMF79F723具有稳定可靠的性能,经过严格的测试和验证,能够在各种恶劣环境下稳定运行。
5. 易于开发:CMF79F723提供了完善的开发工具和软件支持,包括开发板、编译器、调试器等,可帮助开发者快速进行产品开发和调试工作。
三、应用领域由于CMF79F723具有高性能、低功耗和多功能等特点,因此在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 工业自动化:CMF79F723可用于工业控制系统、机器人控制、传感器采集等领域,实现高效稳定的自动化控制。
2. 智能家居:CMF79F723可应用于智能家居设备中,如智能插座、智能灯具、智能门锁等,实现智能化的家居控制。
3. 汽车电子:CMF79F723具有高可靠性和抗干扰能力,适用于汽车电子系统,如车载娱乐系统、车身控制系统等。
F F1.73 电动机电路保护器商品说明书
FE n c l o s e d M o t o r C i r c u i t C o n t r o l l e rs➊ Horsepower ratings shown in the table above are for reference. The finalselection of the controller depends on the actual motor full load current and service factor.• For motor with service factor less than 1.15. Usemotor nameplate full load current times 0.9 and choose the motor starter with the appropriate current range. Example: Motor FLC = 4.2A; S.F. = 1.0. 4.2A x 0.9 = 3.78A. Select catalog number KTA9-32S-4.0A.➋ CX7 may be applied to single phase loads. See footnote 1 for device selection criteria. To order single phase unit, change “CX7” in catalog number to “CBX7”. Three pole series connection will be provided. Ex: Change CX7-9-10-✱-0.16A-A10-WG to CBX7-9-10-✱-0.16A-A10-WJ.➌ A red and yellow handle may be selected instead of the standard gray and black handle. Change “WG” suffix to “WJ”. Ex: Change CX7-9-10-✱-0.16A-A10-WG to CX7-9-10-✱-0.16A-A10-WJ .➍ Other voltages available, see Section A in this catalog.➎ KAIC Assembly Rating Index. See pages F73-F76 for Application Rating Guide.➏ Catalog number (–A10) includes front-mounted auxiliary KT9-PE1-10 with 250 VAC maximum control circuit matching line voltage, or provided from separate source, used to de-energize contactor coil under fault condition (auxiliary not available for customer use). For control circuits greater than 300 VAC, which is common with line voltage, the auxiliary will not be wired into the control circuit since the contactor coil will be de-energized when KTA9 is tripped due to overload or short circuit; therefore, the KT9-PE1-10 auxiliary is available for customer use.Includes:• T ype 4 / 12 enclosure - watertight, dustight • K TA9 “Type E/F” Self-protected Combination Motor Controller with 1 NO front mount Auxiliary Contact (Cat #: KT9-PE1-10)• T erminal Adaptor for Type E Applications (Cat.# KT9-40-TE orKT7-45-TE)• C A7 contactor (for remote operation), AC coil • P ower wiring • G ray and black Type 4/4X/12; IP66 handle (Cat.# KT9-HTN) ➌• P ilot device shown is factory installed optionSee page F1.77 for factory installedmodificationsContactorE n c l o s e d M o t o r C i r c u i t C o n t r o l l e rsIncludes:• T ype 4 / 12 enclosure - watertight, dustight • K T9 “Type E/F” Combination Motor Controller with 1 NO front mount Auxiliary Contact (Cat #: KT9-PE1-10)• T erminal Adaptor for Type EApplications (Cat.# KT9-40-TE or KT7-45-TE)• C A7 contactor (for remote operation), Electronic DC coil • P ower wiring • G ray and black Type 4/4X/12; IP66 handle (Cat.# KT9-HTN) ➌• P ilot device shown is factory installed optionSee page F1.77 for factory installedmodifications➊ Horsepower ratings shown in the table above are for reference. The final selection of the controller depends on the actual motor full load current and service factor.• For motor with service factor less than 1.15. Usemotor nameplate full load current times 0.9 and choose the motor starter with theappropriate current range. Example: Motor FLC = 4.2A; S.F. = 1.0. 4.2A x 0.9 = 3.78A. Select catalog number KTA9-32S-4.0A.➋ CX7 may be applied to single phase loads. Contact factory for these specifications.➌ A red and yellow handle may be selected instead of the standard gray and black handle. Change “WG” suffix to “WJ”. Ex: Change CX7-9E-10-✱-0.16A-A10-WG to CX7-9E-10-✱-0.16A-A10-WJ .➍ CX7-9E…43E with electronic coils are not interchangeable with non-electronic DC or AC coils.➎ KAIC Assembly Rating Index. See pages F73-F76 for Application Rating Guide.Contactor ElectronicFE n c l o s e d M o t o r C i r c u i t C o n t r o l l e rs➊ Horsepower ratings shown in the table above are for reference. The finalselection of the controller depends on the actual motor full load current and service factor.• For motor with service factor less than 1.15. Usemotor nameplate full load current times 0.9 and choose the motor starter with the appropriate current range. Example: Motor FLC = 4.2A; S.F. = 1.0. 4.2A x 0.9 = 3.78A. Select catalog number KTA9-32S-4.0A.➋ CXU7 may be applied to single phase loads. Contact factory for these applications.➌ A red and yellow handle may be selected instead of the standard gray and black handle. Change “WG” suffix to “WJ”. Ex: Change CXU7-9-10-✱-0.16A-A10-WG to CXU7-9-10-✱-0.16A-A10-WJ .➍ Other voltages available, see Section A in this catalog.➎ KAIC Assembly Rating Index. See pages F73-F76 for Application Rating Guide.➏ Catalog number (–A10) includes front-mounted auxiliary KT9-PE1-10 with 250 VAC maximum control circuit matching line voltage, or provided from separate source, used to de-energize contactor coil under fault condition(auxiliary not available for customer use). For control circuits greater than 300 VAC, which is common with line voltage, the auxiliary will not be wired into the control circuit since the contactor coil will be de-energized when KTA9 is tripped due to overload or short circuit; therefore, the KT9-PE1-10 auxiliary is available for customer use.Includes:• T ype 4 / 12 enclosure - watertight, dustight • K T9 “Type E/F” Combination Motor Controller with 1 NO front mount Auxiliary Contact (Cat #: KT9-PE1-10)• T erminal Adaptor for Type E Applications (Cat.# KT9-40-TE orKT7-45-TE)• C A7 contactors (for remote operation), AC coil • P ower wiring • G ray and black Type 4/4X/12; IP66 handle (Cat.# KT9-HTN) ➌• C ontrol power transformer, pilotdevice, terminals and other equipment shown are factory installed optionsSee page F1.77 for factory installedmodificationsPainted Steel, Type 4 / 12 EnclosureContactorE n c l o s e d M o t o r C i r c u i t C o n t r o l l e rsPainted Steel, Type 4 / 12 Enclosure➊ Horsepower ratings shown in the table above are for reference.The final selection of the controller depends on the actual motor full load current and service factor.• For motor with service factor less than 1.15. Usemotor nameplate full load current times 0.9 and choose the motor starter with the appropriate current range. Example: Motor FLC = 4.2A; S.F . = 1.0. 4.2A x 0.9 = 3.78A. Select catalog number KTA9-32S-4.0A.➋ CXU7 may be applied to single phase loads. Contact factory for these applications.Includes:• T ype 4 / 12 enclosure - watertight, dustight • K TA9 “Type E/F” Combination Motor Controller with 1 NO front mount Auxiliary Contact (Cat #: KT9-PE1-10)• T erminal Adaptor for Type EApplications (Cat.# KT9-40-TE or KT7-45-TE)• C A7 contactors (for remote operation), Electronic DC coil • P ower wiring • G ray and black Type 4/4X/12; IP66 handle (Cat.# KT9-HTN) ➌• C ontrol power transformer, pilotdevice, terminals and other equipment shown are factory installed optionsSee page F1.77 for factory installedmodificationsContactor Electronic➌ A red and yellow handle may be selected instead of the standard gray and black handle. Change “WG” suffix to “WJ”. Ex: Change CXU7-9E-10-✱-0.16A-A10-WG to CXU7-9E-10-✱-0.16A-A10-WJ .➍ CXU7-9E…43E with electronic coils are not interchangeable with non-electronic DC or AC coils.➎ KAIC Assembly Rating Index. See pages F73-F76 for Application Rating Guide.FE n c l o s e d M o t o r C i r c u i t C o n t r o l l e rs➊ Currently supply D7 multi-function pushbuttons as standard which do not requireprotective boots to meet Type 4X. See Section H in this catalog for description (all suffix’s ending in “U”).➋ Factory modifications often change the enclosure size. Refer to factory for dimensions when critical to the installation.➌ Pilot Lights may be applied with 24VAC/VDC, 120VAC or 240VAC Control Circuit. Pilot Lights with 277 VAC...575VAC require a control circuit transformer.➍ CRI7E-24 will be used. CRI7E-12 by special order only.➎ Additional auxiliaries are per contactor. Number of auxiliaries is double forreversing applications. Multiply price adder by two (2).E n c l o s e d M o t o r C i r c u i t C o n t r o l l e rs➊ Horsepower ratings shown in the table above are for reference. The finalselection of the controller depends on the actual motor full load current and service factor.• For motor with service factor less than 1.15. Use motor nameplate full load current times 0.9 and choose the motor starter with the appropriate current range. Example: Motor FLC = 4.2A; S.F. = 1.0. 4.2A x 0.9 = 3.78A. Select catalog number KTA9-32S-4.0A.➋ Magnetic trip is fixed at 14x the maximum value of the current adjustment range.➌ CX7 may be applied to single phase loads. See footnote 1 for device selection criteria. To order single phase unit, change “CX7” in catalog number to “CBX7”. Three pole series connection will be provided. Ex: Change CX7-9-10-✱-0.16A-A10-EZ to CBX7-9-10-✱-0.16A-A10-EZ.➍ Other voltages available, see Section A in this catalog.Includes:• C lass I, Div I, Group B, C & D –Class II, Div I, Group E, F & G enclosure Class III, Zone I, IIB & H2• K T9 “Type E” Self-protected Combination Manual Motor Controller with 1 NO front mount auxiliary contact (Cat.# KT9-PE1-10)• T erminal Adaptor for Combo Type E/F Applications (Cat.# KT9-40-TE or KT7-45-TE)• C A7 contactor (for remote operation), AC coil • Power wiring➍➎ Catalog number (–A10) includes front-mounted auxiliary KT9-PE1-10 with 300 VAC maximum control circuit matching line voltage, or provided from separate source, used to de-energize contactor coil under fault condition (auxiliary not available for customer use). For control circuits greater than 300 VAC, which is common with line voltage, the auxiliary will not be wired into the control circuit since the contactor coil will be de-energized when KTA9 is tripped due to overload or short circuit; therefore, the KT9-PE1-10 auxiliary is available for customer use.。
AD736中文好资料
AD736主要用途:真有效值AC-DC转换器简单描述:采用双列直插式8脚封装。
准确度高、灵敏性好(满量程为RMS 200mV)。
引脚功能及参数:脚号12345678 引脚代码CcV INCF-VsCAVVo+VsCOM引脚功能低阻抗输入端高阻抗输入端滤波电容负电源端平均电容连接端输出端正电源端公共端主要特点:1、测量速率快,频率特性好(工作频率范围可达0~460kHz)。
2、输入阻抗高,输出阻抗低,电源范围宽。
3、功耗低,最大电源工作电流为200μ。
4、测量正弦波电压的综合误差不超过±0.3%。
AD736主要由输入放大器、全波整流器、有效值单元(又称有效值芯子RMS CORE)、偏置电路、输出放大器等组成。
芯片②脚为被测信号VIN输入端。
工作时,被测信号电压加到输入放大器的同相输入端,而输出电压则经全波整流后送到RMS单元并将其转换成代表真有效值的直流电压,然后再通过输出放大器的VO端输出。
偏置电路的作用是为芯片内部各单元电路提供合适的偏置电压。
应用电路AD736有多种应用形式。
图1为双电源供电时的典型应用电路,该电路中的+Vs与COM、-Vs与COM之间均应并联一只0.1μF的电容以便滤掉该电路中的高频干扰。
Cc起隔直作用。
若按图中虚线方向将①脚与⑧脚短接而使CC失效,则所选择的是AC十DC 方式;而去掉短路线即为AC方式。
R为限流电阻,D1、D2为双向限幅二极管,可起到过压保护作用,通常选1N4148高速开关二极管即可。
图2为采用9V电池的供电电路。
其中R1、R2为均衡电阻,通过它们可使VCOM=E/2=4.5V。
C1、C2为电源滤波电容。
由于图1和图2电路均为高阻抗输入方式,因而适合于接高阻抗的分压器。
图3为低阻抗输入方式时,用双电源供电和采用9V单电源供电时的典型应用电路。
1n4733a稳压二极管参数
1n4733a稳压二极管参数
1n4733a稳压二极管是主要提供电子设备供电稳压输出的重要组件。
它非常常用,可以广泛应用于各类电子产品,可以每次运行恒流、恒压、恒功率等。
1n4733a稳压二极管有一定的参数要求,型号为1n4733a。
静态雪崩反向电压为 3.3V,正向电流为500mA,正向电感为5uH,正向压正负电压为2.48V~3.0V,工作温度为-55~+155℃。
1n4733a稳压二极管的极性要求简单明了,反向极为负极,正向极为正极,反向电流为500mA,工作电压为2.7V-5.5V。
1n4733a稳压二极管的封装非常多样,如TO-92、SOT-89、SOT-23和SOT-223等。
它们可以用于各种环境,这样它不仅可以满足设计的元器件尖峰电压要求,而且可以实现电子产品的小型化,重复使用稳定、可靠,使用寿命可长达几十年。
1n4733a稳压二极管也有一定的注意事项,如与晶体管同时使用时,要求风扇有效空气流量要大于0.45m^3/min、噪音小于30dB,确保它的可靠性、长久的使用寿命。
1n4733a稳压二极管是一种供电模块,它具有参数要求非常严格、工作温度范围较大和易装配、相对稳定等特点,它受到很多电子设备制造商的青睐,可以用于各种现代电子设备中。