仪器分析

合集下载

仪器分析完整版(详细)

仪器分析完整版(详细)

第一章绪论1.仪器分析是以物质的物理组成或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与被分析物质组成的内在关系和规律,进而对其进行定性、定量、进行形态和机构分析的一类测定方法,由于这类方法的测定常用到各种比较贵重、精密的分析仪器,故称为仪器分析。

与化学分析相比,仪器分析具有取样量少、测定是、速度快、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量低于1%的微量、痕量组分,是分析化学的主要发展方向。

2.仪器分析的特点:速度快、灵敏度高、重现性好、样品用量少、选择性高局限性:仪器装置复杂、相对误差较大3.精密度:是指在相同条件下对同一样品进行多次测评,各平行测定结果之间的符合程度。

4、灵敏度:仪器或方法的灵敏度是指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的该变量,它受校正曲线的斜率和仪器设备本身精密度的限制。

5.准确度:是多次测定的平均值与真实值相符合的程度,用误差或相对误差来描述,其值越小准确度越高。

6.空白信号:当试样中没有待测组分时,仪器产生的信号。

它是由试样的溶剂、基体材质及共存组分引起的干扰信号,具有恒定性,可以通过空白实验扣除。

7.本底信号:通常将没有试样时,仪器所产生的信号主要是由随机噪声产生的信号。

它是由仪器本身产生的,具有随机性,难以消除,但可以通过增加平行测定次数等方法减小;、8.仪器分析法与化学分析法有何异同:相同点:①都属于分析化学②任务相同:定性和定量分析不同点:①与化学分析相比,仪器分析具有取样量少、测定快速、灵敏、准确和自动化程度高等特点②分析对象不同:化学分析是常量分析,而仪器分析是用来测定相对含量低于1%的微量、衡量组分,是分析化学的主要发展方向9.仪器分析主要有哪些分类:①光分析法:分为非光谱分析法和光谱法两类。

非光谱法:是不涉及物质内部能级跃迁的,通过测量光与物质相互作用时其散射、折射、衍射、干涉和偏振等性质的变化,从而建立起分析方法的一类光学分析法。

名词解释-仪器分析

名词解释-仪器分析
提纯。
适用范围有限
不同的仪器分析方法有不同的适用范围, 对于某些特定类型的样品或特定组分的测 定可能不适用。
对操作人员要求高
仪器分析需要操作人员具备较高的专业知 识和技能,能够正确使用和维护仪器,保 证分析结果的准确性和可靠性。
05 仪器分析的发展趋势
高通量和高灵敏度仪器的发展
总结词
随着科学技术的发展,仪器分析的高通量和 高灵敏度已成为重要的发展趋势。
红外光谱法是通过测量样品对红外光的吸收程度,来确定样品中分子的结构和组成。紫外-可见光谱法则是通过测量样品对紫 外-可见光的吸收和反射程度,来确定样品中分子的结构和组成。拉曼光谱法则是通过测量拉曼散射光的波长和强度,来确定 样品中分子的结构和组成。
电化学分析法
电化学分析法是利用电化学反应进行分析的方法。根据电化学反应过程中电流、电压、电导等参数的 变化,可以确定样品中物质的种类和浓度。电化学分析法包括电位分析法、伏安分析法、电导分析法 等。
详细描述
高灵敏度仪器能够检测更低浓度的物质,有 助于发现和诊断早期疾病,保护环境和食品 安全。高通量仪器能够在短时间内处理大量 样本,提高分析效率,满足大规模筛查和个 性化医疗的需求。
微型化与便携式仪器的发展
要点一
总结词
要点二
详细描述
仪器分析的微型化和便携化使得检测更为便捷,特别适用 于现场快速检测和移动医疗。
多技术联用仪器将电化学、光学、质谱等多种检测技术 集成在一个仪器中,充分发挥各种技术的优势,提高检 测的准确性和可靠性。这种仪器可以同时检测多种指标 ,提供更全面的信息,适用于复杂样品的分析和跨学科 的研究领域。
感谢您的观看
THANKS
VS
原子吸收光谱法是通过测量样品中原 子对特定波长光的吸收程度,来确定 样品中元素的含量。原子发射光谱法 则是通过测量样品中原子发射出的光 子能量和数量,来确定样品中元素的 种类和含量。

仪器分析 01仪器分析概述

仪器分析 01仪器分析概述

0.9
1 1.5 5 0.328
1.2
1 1.5 5 0.468
1.5
1 1.5 5 0.573
5.0
1 1.5 5 0.428
混匀后放置3-5 min
定容至50mL,放置10 min后于510 nm处测定A
解:求出标准系列溶液的浓度
cFe/mgL-1 A 0.6 0.112 1.2 0.227 1.8 0.328 2.4 0.468 3.0 0.573
吸附
分配 吸附 光、电、 质谱等
分配
静电 筛分 亲和
Signal
Time
1-4 分析仪器(1)
1-4 分析仪器(2)
分析仪器的基本结构单元
分析仪器种类繁多、型号多变、计算机应用和智能化程度 相差很大,但一般都是以下四个基本部件组成:
输出 信号
信号 发生器
分析 信号
检测器
输入 信号
信号 处理器
信号 显示装置
仪器校正灵敏度与所选标准物和测定条件有关!
有些仪器方法有习惯使用的表示方式。
1-4-2 检出限(1)
检出限指仪器所能检测到的最小有效信号对应的待测组分的浓 度或质量。最小有效信号如何确定?这就需要了解一下试样及 测量信号的组成。 试样:待测组分+基体 待测液:待测组分+基体+相关试剂+溶剂 理想空白:基体+相关试剂+溶剂(不含待测组分) 试剂空白:相关试剂+溶剂(选择合适的测定条件或前处理方
能消除,但可通过仪器的改善或适当的数据处理而减小,是影
响测量精密度的原因,也是决定检出限的主要因素之一。即所 测信号过小时,就难以区分是由待测组分产生还是仪器的自身 噪音,因此最小有效信号应大于本底信号一定倍数。

仪器分析

仪器分析

0.1025应该保留 0.1025应该保留. 应该保留
x = 0.1017
~= 0.1015 √ x
2.3
直线相关和回归
在进行数据分析时常用到标准曲线法,常用的 标准曲线就是直线。 (1)相关和直线回归方程 变量之间既有关系又无确定性关系,称为相 关关系。它们之间的关系式称为回归方程式,最 简单的直线回归方程为y=ax+b,式中的a、b为常 数,可根据最小二乘法求得。 (2)相关系数 相关系数是表示两种变量之间关系的密切程 度的指标,符号“r”,其值在-1—+1。
仪器分析具有准确、灵敏、快速、自动化程度高 的特点,常用来测定含量很低的微、痕量组分,是分 析化学发展的方向。
1、仪器分析方法的主要评价指标 2、数据处理方法
1、仪器分析方法的主要评价指标
1.1 精密度 精密度是指在相同条件下用同一方法对同一试样 进行的多次平行测定结果之间的符合程度。一般用测 定结果的标准偏差(S)或相对标准偏差(Sr)表示:
一种分析方法,具有较好的精密度且消除了系统 误差后,才有较高的准确度。 1.3 选择性
选择性是指分析方法不受试样中基体共存物质 的干扰程度。选择性越好,即干扰越少。 1.4 标准曲线 标准曲线是待测物质的浓度或含量与仪器响应 信号的关系曲线。由标准溶液测定绘制而成。 (1)线性范围 标准曲线直线部分所对应的待测物质的浓度或 含量的范围称-µ
x
-T
µ
× 100%
式中,x为试样多次测定的平均值;µ 为真值(或标 准值)。
例:测定含铁样品中w(Fe), 比较结果 的准确度 A. 铁矿中, T=62.38%,
x = 62.32%
Ea = x -T= - 0.06%
Ea Er = × 100% =-0.06/62.38= - 0.1% T

仪器分析

仪器分析

仪器分析1.原子光谱:原子核外电子在院子能级之间跃迁产生的。

2.分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。

3.光致发光:被测粒子吸收辐射能后被激发,当跃迁至低能态或基态时,便产生发射光谱,以此建立的光谱分析方法有荧光、磷光等。

4.激发发光:主要用电弧、电火花及高压放电装置产生的电能或火焰等放出的热能激发粒子,产生发光。

5.生色团:分子中能吸收紫外或可见光的结构单元称为生色团。

6.助色团:带有非键电子对的能使生色团吸收峰向长波方向移动并增强其强度的官能团。

7.红移效应:在有机化合物中,常常因取代基的变更或溶剂的改变而使其吸收带的最大吸收波长发生移动。

如某些有机化合物经取代反应引入含有未共用电子对的集团(如羟基)之后,吸收峰的波长将向长波长方向移动。

8.蓝移效应:与红移效应相反,有时在某些生色团(如羟基)的碳原子一端引入一些取代基之后,吸收峰的波长会想短波长方向移动。

9.紫外-可见分光光度计的组成:光源、单色器(棱镜、光栅)、吸收池、检测器、信号读出装置。

类型:单波长单光束分光光度计、单波长双光束分光光度计、双波长分光光度计10.红外光谱法的特点:①利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,得到由分子振动能级和转动能级变化产生的振动-转动光谱②有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱是有机化合物结构解析的重要手段之一③红外吸收谱带的谱峰的位置、谱峰的数目及其强度,反映了分子结构的特点,通过官能团、顺反异构、取代基位置、氢键结合以及配合物的形成等结构信息可以推测未知物的分子结构。

吸收谱带的吸收强度与分子组成或其化学基团的含量有关④在发生振动跃迁的同时,分子转动能级也发生改变,因而红外光谱形成的是带状光谱⑤红外光谱分析特征性强,气体、液体、固体样品都能测定,并具有样品用量少、分析速度快、不破坏样品的特点。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。

以下是对常见仪器分析方法的知识点总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。

其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。

原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。

优点:选择性好、灵敏度高、分析范围广、精密度好。

局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。

(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。

原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。

其仪器包括激发光源、分光系统和检测系统。

优点:可同时测定多种元素、分析速度快、选择性好。

缺点:精密度较差、检测限较高。

(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。

原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。

仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。

应用广泛,可用于定量分析、定性分析以及化合物结构研究。

(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。

原理是:分子的振动和转动能级跃迁产生红外吸收。

仪器包括红外光源、样品室、单色器、检测器和记录仪。

常用于有机化合物的结构鉴定。

二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。

包括直接电位法和电位滴定法。

仪器分析及其方法

仪器分析及其方法

仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。

它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。

仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。

下面我们详细介绍几种常见的仪器分析方法。

一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。

常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。

二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。

常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。

三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。

常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。

四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。

常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。

五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。

常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。

六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。

常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。

七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。

常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。

这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。

仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。

仪器分析法的名词解释

仪器分析法的名词解释

仪器分析法的名词解释近年来,随着科学技术的快速发展,仪器分析法在各个领域的重要性逐渐凸显。

仪器分析法是一种运用专用仪器设备对物质进行分析的方法。

下面将对仪器分析法中的几个重要名词进行解释,以帮助读者更好地了解这一领域。

一、质谱分析质谱分析是一种常见的仪器分析法,通过测量物质分子或原子的质量和相对丰度,从而对其结构和组成进行分析。

利用质谱仪器,可以对固体、液体和气体样品进行分析,并获得准确的分子质量和元素组成信息。

质谱分析在各个领域都有广泛的应用,例如医药研发、环境监测和食品安全等方面。

二、光谱学光谱学是仪器分析法中的一个重要分支,研究物质与光的相互作用。

通过测量物质对不同波长的光的吸收、发射或散射行为,可以获得有关物质分子结构和组成的信息。

主要的光谱学方法包括紫外可见光谱、红外光谱和拉曼光谱等。

光谱学在化学、物理、天文学等领域都有广泛的应用。

三、色谱法色谱法是一种将混合物中的组分根据其在固定相和流动相之间的相互作用差异进行分离的方法。

主要有气相色谱、液相色谱和薄层色谱等不同类型。

色谱法广泛应用于化学、生物化学、环境科学和食品科学等领域,用于分离和鉴定各种物质。

四、电化学分析电化学分析是利用电化学方法对物质进行分析的一种技术。

主要包括电位滴定法、电位分析法和电化学传感器等。

通过测量样品与电极之间的电流和电势差,可以获得关于物质的浓度、电荷和反应动力学等信息。

电化学分析具有快速、灵敏和选择性高的特点,广泛应用于环境监测、药物分析和生命科学研究等方面。

五、原子吸收光谱法原子吸收光谱法是一种通过测量样品中金属元素原子对特定波长光的吸收来进行分析的方法。

原子吸收光谱法广泛应用于环境、食品和制药行业等,用于快速、准确地测定金属元素的含量。

该方法具有高灵敏度和高选择性,并且不需要样品的前处理。

总结起来,仪器分析法是一种运用专用仪器设备对物质进行分析的方法。

质谱分析、光谱学、色谱法、电化学分析和原子吸收光谱法等是仪器分析法中的重要名词。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

仪器分析

仪器分析

仪器分析仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。

仪器分析与化学分析是分析化学的两个分析方法。

仪器分析的分析对象一般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度高;而化学分析一般是半微量(0.01-0.1g)、常量(>0.1g)组分的分析,准确度高。

仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等。

一、基本特点1、灵敏度高:大多数仪器分析法适用于微量、痕量分析。

例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10^-14g。

2、取样量少:化学分析法需用10^-1~10^-4g;仪器分析试样常在10^-2~10^-8g。

3、在低浓度下的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~10%。

4、快速:例如,发射光谱分析法在1min内可同时测定水中48个元素。

5、可进行无损分析:有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。

有的方法还能进行表面或微区分析,或试样可回收。

6、能进行多信息或特殊功能的分析:有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。

放射性分析法还可作痕量杂质分析。

7、专一性强:例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指定离子的浓度等。

8、便于遥测、遥控、自动化:可作即时、在线分析控制生产过程、环境自动监测与控制。

9、操作较简便:省去了繁多化学操作过程。

随自动化、程序化程度的提高操作将更趋于简化。

10、仪器设备较复杂,价格较昂贵。

二、分析方法1、色谱法色谱法也称层析法,基本上是分离方法。

1906年俄国М.С.茨维特将绿叶提取汁加在碳酸钙沉淀柱顶部,继用纯溶剂淋洗,从而分离了叶绿素。

名词解释-仪器分析

名词解释-仪器分析

1.仪器分析:以测量物质的物理性质和物理化学性质为基础来确定物质的化学组成、含量以及化学结构的一类分析方法,由于这类分析方法需要比较复杂且特殊的仪器设备,故称之为仪器分析。

2.化学分析:利用化学反应及其计量关系进行分析的一类分析方法。

3.标准曲线:被测物质的浓度或含量与仪器响应信号的关系曲线。

4.检出限:某一方法在给定的置信水平上可以检出被测物质的最低量(最小浓度或最小质量)5.内标法:将一定量的纯物质作为内标物加入到准确称量的试样中,根据试样和内标物的质量以及它们的色谱峰面积求出被测组分的含量。

6.发色团:含π键的不饱和基团,能吸收紫外可见光,产生n→π*、π→π*跃迁的基团。

7.助色团:含杂原子的饱和基团,本身在紫外和可见光区无吸收,但能使生色团吸收峰红移,吸收强度增大的基团称为助色团。

8.红移:向长波方向的移动叫做红移。

9.蓝移:向短波方向的移动叫做蓝移。

10.增色效应:使吸收强度增大的效应称为增色效应。

11.减色效应:使吸收强度减弱的效应称为减色效应。

12.色谱法:一种重要的分离方法,混合物在流动相的携带下通过色谱柱与固定相发生作用按一定顺序分离出几种组分的方法。

13.气相色谱法:以气体为流动相的色谱分析法14.液相色谱法:以液体为流动相的色谱分析法15.梯度洗脱:在一个色谱分析周期内,不断改变流动相配比、极性、PH、离子强度,以达到用最短的时间获得最佳的分离效果。

16.凝胶色谱:利用某些凝胶(固定相)对分子大小,形状不同的组分所产生的阻滞作用不同而进行分离。

17.标准偏差:峰高0.607倍处的色谱峰宽度的一半。

18.半峰宽Y1/2:峰高1/2处的色谱峰宽度。

19.分配平衡:在一定温度和压力下,组分在固定相和流动相之间所达到的平衡叫做分配平衡。

20.程序升温:在一个分析周期内,柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的。

21.共振线:原子收到外界能量激发时,其外层电子从基态跃迁到激发态所产生的吸收线称为共振吸收线。

现代仪器分析-仪器分析

现代仪器分析-仪器分析

THANKS FOR WATCHING
感谢您的观看
智能的分析。
02
仪器分析的分类
光学分析法
原子吸收光谱法
利用原子对特定光的吸收进行定量分析的方 法。
紫外-可见光谱法
利用物质对紫外和可见光的吸收特性进行分 析的方法。
原子发射光谱法
通过测量原子或离子在电场或磁场中发出的 光来进行分析的方法。
红外光谱法
利用物质对红外光的吸收特性进行分析的方 法。
电化学分析法
能源与资源利用
对工业生产中的能源和资源利用进行监测和优化,提高能源利用 效率和资源利用率,降低生产成本。
04
仪器分析的未来发展
高通量和高灵敏度仪器分析技术
高通量仪器分析技术
通过并行处理和自动化技术,提高分析速度和效率,适用于大规模样本检测和 筛选。
高灵敏度仪器分析技术
利用高灵敏度检测器,降低检测限,提高对微量和痕量成分的检测能力。
薄层色谱法
将固定相涂布在薄板上,通过 色谱分离技术进行分析的方法 。
凝胶色谱法
利用凝胶作为固定相的色谱分 析方法。
质谱分析法
01
02
03
有机质谱法
利用电离源将有机分子电 离成离子,然后通过质谱 仪测量离子的质量-电荷比 来进行分析的方法。
同位素质谱法
利用同位素作为标记物, 通过测量标记物的丰度来 进行分析的方法。
仪器分析的重要性
为科学研究提供准确数据
仪器分析为科学研究提供了精确的实 验数据,帮助科学家深入了解物质性 质和变化规律。
保障人类健康与安全
促进工业生产与发展
仪器分析在工业生产中发挥着关键作 用,提高了产品质量和生产效率。
仪器分析在食品、药品、环境等领域 的应用,保障了人类健康与安全。

仪器分析及其方法

仪器分析及其方法

仪器分析及其方法仪器分析是指通过运用特定的仪器设备对待分析物进行分析或检测的一种方法。

随着科学技术的不断进步和发展,仪器分析的方法也得到了极大的完善和提高,涉及的技术和领域也越来越广泛。

一、常见仪器分析的方法1.光谱分析法:光谱分析法是应用物质对光或其他电磁波的吸收、发射、散射等特性进行物质分析和定性分析的一种方法。

例如,紫外可见光谱法、红外光谱法等。

2.电化学分析法:电化学分析法是通过测量或控制化学反应过程中发生的电流、电势和电荷量等参数,对待测物质进行分析和检测的一种方法。

例如,电导法、电解析法、电位滴定法等。

3.色谱分析法:色谱分析法是建立在物质成分在液相或气相中的分布系数不同而进行分离和测定的方法。

例如,气相色谱法、高效液相色谱法等。

4.质谱分析法:质谱分析法是利用质谱仪对物质的分子结构和成分进行分离、检测和鉴定的一种方法。

例如,质谱法、质谱联用法等。

5.核磁共振分析法:核磁共振分析法是通过对待测物质的核自旋粒子在磁场中的共振现象进行分析和鉴定的一种方法。

例如,核磁共振波谱法、核磁共振成像法等。

6.电子显微镜分析法:电子显微镜分析法是通过利用电子束对物质进行扫描或成像,再通过对物质电子散射、穿透等特性的分析来进行分析和检测的一种方法。

例如,透射电子显微镜法、扫描电子显微镜法等。

7.质谱分析法:质谱分析法是通过测定待测物质分子的质量和相对丰度来进行分析和鉴定的一种方法。

例如,质谱法、质谱联用法等。

二、仪器分析的应用领域1.环境领域:仪器分析在环境监测方面起着重要作用,可以用于空气、水、土壤等环境样品中有害物质的检测和分析。

2.生物医学领域:仪器分析在生物医学研究和医疗诊断中也得到广泛应用,例如生物芯片技术、核磁共振成像等。

3.食品安全领域:仪器分析可以用来检测食品中的残留农药、重金属等有害物质,并确保食品的安全。

4.材料科学领域:仪器分析在材料科学研究和制备中起着重要作用,可以用于材料成分分析和结构表征等。

仪器分析(完整版)

仪器分析(完整版)

仪器分析(完整版)绪论⼀、什么是仪器分析?仪器分析有哪些特点?(简答,必考题)仪器分析是分析化学的⼀个重要部分,是以物质的物理或物理化学性质作为基础的⼀类分析⽅法,它的显著特征是以仪器作为分析测量的主要⼿段。

1、灵敏度⾼,检出限量可降低。

如样品⽤量由化学分析的mL、mg级降低到仪器分析的g、L级,甚⾄更低。

适合于微量、痕量和超痕量成分的测定。

2、选择性好。

很多的仪器分析⽅法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产⽣⼲扰。

3、操作简便,分析速度快,容易实现⾃动化。

4、相对误差较⼤。

化学分析⼀般可⽤于常量和⾼含量成分分析,准确度较⾼,误差⼩于千分之⼏。

多数仪器分析相对误差较⼤,⼀般为5%,不适⽤于常量和⾼含量成分分析。

5、需要价格⽐较昂贵的专⽤仪器。

⼆、仪器分析的分类光化学分析法,电化学分析法,⾊谱分析法和其他仪器分析⽅法。

三、仪器分析法的概念仪器分析法是以物质的物理或物理化学性质为基础,探求这些性质在分析过程中所产⽣的分析信号与物质的内在关系,进⽽对待测物进⾏定性、定量及结构分析及动态分析的⼀类测定⽅法。

四、仪器分析法的主要性能指标精密度,准确度,灵敏度,标准曲线的线性范围,检出限(浓度—相对检出限;质量—绝对检出限)五、选择分析⽅法的⼏种考虑仪器分析⽅法众多,对⼀个所要进⾏分析的对象,选择何种分析⽅法可从以下⼏个⽅⾯考虑:1.您所分析的物质是元素?化合物?有机物?化合物结构剖析?2.您对分析结果的准确度要求如何?3.您的样品量是多少?4.您样品中待测物浓度⼤⼩范围是多少?5.可能对待测物产⽣⼲扰的组份是什么?6.样品基体的物理或化学性质如何?7.您有多少样品,要测定多少⽬标物?光谱分析法导论⼀、什么是光谱分析法以测量光与物质相互作⽤,引起原⼦、分⼦内部量⼦化能级之间的跃迁产⽣的发射、吸收、散射等波长与强度的变化关系为基础的光学分析法,称为光谱分析法——通过各种光谱分析仪器来完成分析测定——光谱分析仪器基本组成部分:信号发⽣系统,⾊散系统,检测系统,信号处理系统等。

仪器分析_精品文档

仪器分析_精品文档

仪器分析仪器分析简介仪器分析是化学分析中一种常用的分析方法,利用各种仪器设备对样品进行测试和分析,以获得样品的组成、结构、性质等信息。

仪器分析可以广泛应用于科学研究、工业生产和环境监测等领域,为相关研究和工作提供可靠的数据和结果。

仪器分析的主要原理是根据样品与仪器产生的相互作用,通过测量这种相互作用所引起的信号变化,进而得到样品的相关信息。

不同的仪器分析方法有不同的原理和应用范围,下面将介绍几种常见的仪器分析方法。

1. 质谱分析质谱分析是一种通过测量气体或溶液中样品分子的质荷比(mass-to-charge ratio, m/z)来确定其化学组成的方法。

质谱仪能够将样品分子分离,并测量其分子质荷比,进而获得样品分子的质量信息。

质谱分析广泛应用于有机物和无机物的鉴定、定量分析以及生物分子的研究等领域。

2. 红外光谱分析红外光谱分析利用样品对红外光的吸收特性来推断样品分子的结构和功能群。

红外光谱仪通过测量样品对一系列红外光的吸收和散射,得到红外光谱图。

通过对谱图的解析和比对,可以确定样品中存在的化学键和官能团,从而推测样品的化学结构。

3. 紫外可见光谱分析紫外可见光谱分析是一种利用样品对紫外光和可见光的吸收特性来判断样品组成和浓度等信息的方法。

紫外可见光谱仪通过测量样品对不同波长光的吸收程度,绘制出吸收光谱图。

通过对光谱图的解析,可以获得样品的吸收峰位和强度,从而推断样品的组成和浓度。

4. 核磁共振分析核磁共振分析基于原子核固有的旋磁现象,通过应用外加磁场和无线电波,使原子核发生共振吸收发射,从而获得关于样品分子结构和动力学性质的信息。

核磁共振仪器可以测量样品的核磁共振谱图,通过对谱图的解析,可以确定分子结构、检测分子环境的变化等。

5. 荧光光谱分析荧光光谱分析是一种基于物质荧光特性进行检测和分析的方法。

荧光光谱仪通过激发样品分子,测量其荧光发射光谱,从而获得样品的荧光特性。

荧光光谱可以用来确定样品的结构和浓度,也可用于检测样品中特定物质的存在和数量。

仪器分析 (3)

仪器分析 (3)

仪器分析引言仪器分析是现代科学研究和实验室分析中的关键部分。

它利用各种仪器设备来进行样品的快速、准确的分析,从而获得更多的数据和信息。

本文将介绍仪器分析的基本概念、常用仪器以及其应用案例。

仪器分析的基本概念仪器分析是分析化学领域的一种方法,它利用仪器设备来测量和分析样品的组成、结构和性质。

与传统的化学分析方法相比,仪器分析具有以下优势:•快速性:仪器分析可以在较短的时间内完成分析,大大提高了实验效率。

•准确性:仪器分析使用精密的仪器设备进行测量,可以获得更准确的数据。

•多样性:仪器分析可以应用于不同类型的样品,包括溶液、气体、固体等。

•灵敏性:仪器分析可以检测非常小的成分或浓度,提高了分析的灵敏度。

•自动化:许多仪器分析方法已实现自动化操作,减少了人工操作的误差。

常用的仪器设备以下是常用的仪器设备及其功能的简要介绍:光谱仪光谱仪是一种测量样品光谱的仪器。

它可以通过测量样品对不同波长光的吸收、发射或散射来获取有关样品的信息。

常见的光谱仪包括紫外可见光谱仪、红外光谱仪和核磁共振光谱仪。

色谱仪色谱仪是一种用于分离和测量混合物成分的仪器。

它利用样品成分在固定相和流动相之间分配不同的速率来分离混合物。

常见的色谱仪包括气相色谱仪和液相色谱仪。

质谱仪质谱仪是一种用于分析样品中化学物质的质量和结构的仪器。

它通过将样品分子或原子离子化,并通过质量分析器测量它们的质量光谱来获得样品的质谱图。

质谱仪通常与色谱仪或气相色谱仪结合使用,以获得更准确的分析结果。

电子显微镜电子显微镜是一种使用电子束来放大和观察样品的仪器。

它可以提供比光学显微镜更高的放大倍数和更好的分辨率,从而使样品的微观结构更清晰可见。

电子显微镜分为透射电子显微镜和扫描电子显微镜两种类型。

核磁共振仪核磁共振仪是一种利用核磁共振原理来分析样品中原子核的仪器。

它通过在外加磁场和射频脉冲作用下测量样品原子核的共振信号,从而获得样品的核磁共振谱。

核磁共振仪主要用于分析有机物和无机物的结构。

仪器分析知识点总结各章

仪器分析知识点总结各章

仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。

1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。

1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。

常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。

第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。

2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。

原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。

2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。

2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。

第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。

3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。

3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。

3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。

仪器分析

仪器分析

仪器分析梯度洗提:在一个分析周期内,按一定程序不断改变流动相的组成或浓度配比,成为梯度洗提。

是改进液相色谱分离的重要手段。

荧光猝灭:荧光物质与溶剂分子或其他溶质分子相互作用,引起荧光强度下降或消失的现象。

极化率:是指分子在电场(光波的电磁场)的作用下,分子中电子云变形的难易程度。

化学位移:由于氢核在化合物中所处的环境不同,所受到的屏蔽环境也不同,由于屏蔽作用所引起的共振时磁场强度的移动现象称为化学位移。

填空题:1、电感耦合高频等离子体一般有高频发生器、等离子体炬管和雾化器组成。

发射光谱分析根据接收方式不同,可以分为看谱法、摄谱法和光电法三种方式。

2、发射光谱定性分析通常用比较法进行,标准光谱是铁光谱。

3、在原子吸收分析中,几种重要的变宽效应为自然宽度、多普勒变宽和压力变宽。

4、在吸收分析中,应用最广泛的光源是空心阴极灯,最重要的工作参数是工作电流。

5、原子吸收中,原子化系统的作用是将试样中待测元素转变成原子蒸汽,方法有火焰原子化法和无火焰原子化法。

火焰原子法装置包括雾化器和燃烧器两部分,应用最广泛的火焰是空气-乙炔火焰。

石墨炉原子化测定过程分为干燥、灰化、原子化和净化四步。

无火焰原子化法最大的优点是注入式样几乎可以完全原子化。

6、紫外及可见光分光光度计测量的波长范围为20-1000nm 。

分子能量包括电子能、振动能和转动能。

有机化合物可能产生的跃迁有7、外吸收峰位置和强度取决于分子中个基因的振动形式和所处的化学环境。

8、在红外定性分析中常用的标准图谱名称为萨特勒红外谱图集。

论述题:1、范第姆特方程:H=A+B/u+Cu中的各项意义是什么?答:A:涡流扩散项。

A=2λdp,填充物的平均值径dp的大小,填充的不均匀性λ。

使用适当的细粒度和颗粒度均匀的担体,尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。

B/u:分子扩散项。

B=2rDg,Dg与组分及载气的性质有关,相对分子质量大的组分Dg小,B项降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感耦合等离子体原子发射光谱法(ICP-AES) 电感耦合等离子体原子荧光光谱法(ICP-AFS) 电感耦合等离子体原子吸收光谱法(ICP-AAS) 电感耦合等离子体质谱法(ICP-MS)
1 电感耦合等离子体光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
等离子体——泛指电离的气体。由电
1 电感耦合等离子体光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
1976年,Montaser和Fassel报道采用ICP作为AFS原 子化器的工作,提出了一种构成定型的包括AES、 AAS和AFS的仪器系统; 1979年,Windsor等和Sommer等报道了GC-ICPAES联用技术,Fraley等和Gast等报道了HPLCICP-AES联用技术,为ICP-AES的应用开辟了新的 前景,可以用于元素的形态分析; 1979-1980年,Houk 和Fassel等首先报道了ICP放电 作为质谱法(MS)离子源的研究工作,现已成为最有 效的元素成分分析方法。大约在1982年,英国的 VG同位素公司生产了第一台ICP- MS商品仪器;
现代仪器分析(研) (Contemporary Instrumental Analysis)
电 感 耦 合 等 离 子 体 光 谱 法
汤志勇
Tel. 62312026 Email: zytang@
中国地质大学 材料科学与化学工程学院 2009年9月
现代仪器分析
课程名称:
现代仪器分析
1 电感耦合等离子体光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法 1980年,Montaser等和Barnes等证明在常规的ArICP操作条件下可以得到稳定的非Ar-ICP放电, 为这种光源的研究开辟了新途径; 1982年,Abdallah和Mermet报道了采用He-ICP作 为发射光谱激发源的研究。设计了一种具有空气 冷却外套的适于低功率、低气流工作的常压HeICP炬管。这种光源对非金属元素(如卤素等)的测 定,具有较高的检出能力。 1974年,我国开始研究和应用ICP-AES,铁岭电 子设备厂等先后研制并生产了ICP发生器。李炳林 等、朱锦方等和黄本立等较早进行ICP-AES方法 应用的研究。
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
著名光谱化学家Boumans: “ICP光源使古老的光谱分析 获得了新生”。
1.1.1 ICP的形成
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
电感耦合等离子体 (ICP)光源的组成: •ICP 高频发生器 • 炬管 •供气系统 • 样品引入系统
1.1 电感耦合等离子体原子发射光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
1.1.1 ICP的形成 1.1.2 ICP的放电特性及激发-电离机理 1.1.3 进样技术 1.1.4 干扰效应 1.1.5 操作条件的选择 1.1.6 应用
1.1 电感耦合等离子体原子发射光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
1 电感耦合等离子体光谱法
电 1970年以后,Boumans和de Boer(荷兰)和 感 Abdallah及Robin等(法国)亦分别研制了各自的 耦 ICP装置系统。加上经过改进的Greenfield(英国) 合 和Fassel(美国)的装置,构成了70年代流行的四种 等 ICP仪器系统,这些研究为ICP-AES仪器的商品 离 子 化奠定了基础。而Fassel型装置成为目前ICP体 AES仪器的主要设计类型; 原 子 1975年,美国ARL(Applied Research Laboratories)公 司生产了第一台商品ICP-AES多色仪,嗣后各种 发 射 类型的ICP-AES商品仪器相继出现; 光 谱 1978-1979年间,Floyd和Fassel等报道了一种ICPAES程序扫描单色仪装置及主要分析性能; 法
考试方式:
闭卷考试(读书报告)
现代仪器分析
电 感 耦 合 等 离 子 体 光 谱 法
主要内容:
1 电感耦合等离子体光谱分析; 2 X射线荧光光谱分析; 3 激光光谱分析; 4 流动注射分析; 5 色谱联用技术。
1 电感耦合等离子体光谱法
电 电感耦合等离子体原子发射光谱法(ICP-AES) 1.1 感 ( Inductive Coupled Plasma -Atomic Emission Spectrometry) 耦 合 电感耦合等离子体原子荧光光谱法(ICP-AFS) 1.2 等 ( Inductive Coupled Plasma -Atomic Fluorescence Spectrometry) 离 子 电感耦合等离子体原子吸收光谱法(ICP-AAS) 1.3 体 ( Inductive Coupled Plasma -Atomic Absorption Spectrometry) 光 谱 电感耦合等离子体质谱法(ICP-MS) 1.4 法
图1-8 典型的ICP光源
1.1.1 ICP的形成
电 感 (4) 样品引入系统 耦 合 等 离 子 体 原 子 发 射 光 图1-9 气动雾化样品引入系统 谱 法
高频线圈 炬管 冷却气 辅助气 载气Ar + 样品 载气(Ar)
废液
样品溶液
图1-1 ICP光源示意图
1.1.1 ICP的形成
电 感 耦 (1) 高频发生器 合 等 高频发生器(射频发生器) 离 子 体 功率放 振荡器 激励器 匹配箱 原 大器 子 射频功率发生器 发 射 图1-2 高频功率发生器方框图 光 谱 法
(Inductive Coupled Plasma -Mass Spectrometry)
1 电感耦合等离子体光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
电感耦合等离子体光谱法(ICPS),是以 电感耦合等离子炬(ICP)为激发源、原子化器 或离子源的一类新型光谱分析方法,包括:
.1.1 ICP的形成
电 (3) 供气系统 感 耦 等离子气(冷却气)——维持等 合 离子体放电和冷却炬管,对分析 等 性能影响小,一般用量为10—25 离 L/min。 子 体 辅助等离子气(等离子气)—— 原 点燃等离子体作用,对环行通道 子 有影响,点燃后一般不用。一般 发 用量为0—1.5 L/min。 射 载气——起雾化和传输试样的作 光 谱 用。影响分析性能的重要因素。 法 一般用量为0.3—1.5 L/min。
1 电感耦合等离子体光谱法
电 按等离子体所处的状态分为: 感 耦 (1)平衡等离子体:气体压力较高,电子温度与气 合 等 体温度大致相等的等离子体。如常压下的电弧放 离 电等离子体和高频感应等离子体。 子 体 (2)非平衡等离子体:低气压下或常压下,电子温 原 度远远大于气体温度的等离子体。如低气压下辉 子 发 光放电和高频感应辉光放电,大气压下介质阻挡 射 放电等产生的冷等离子体。 光 谱 法
子、离子、原子和分子所组成,其中电子 数目和离子数目基本相等,整体呈现中性。 在光谱分析中常说的等离子体定义为 电离度大于0.1%的电离气体。
1 电感耦合等离子体光谱法
按等离子体焰温度分为: 电 感 (1)高温等离子体: 耦 温度相当于108~109 K完全电离的等离子体, 合 等 如太阳、受控热核聚变等离子体等。 离 子 (2)低温等离子体: 体 热等离子体:稠密高压(1大气压以上),电离度 原 大于0.1%,温度为103~105K的等离子体,如电弧 子 发 、高频和化学火焰等离子体等; 射 冷等离子体:电子温度高(103~104K)、气体温 光 谱 度低,如低压辉光放电等离子体、电晕放电等离 法 子体、介质阻挡放电等离子体等。
学时:40
电 感 主要参考书籍: 耦 等离子体发射光谱分析,辛仁轩编著,化学工业出版 1 合 社,2005 等 电感耦合等离子体质谱技术与应用, 刘虎生等编著,化 2 离 学工业出版社, 2005 子 3 体 X射线荧光光谱分析,吉昂等编著,科学出版社,2003 4 光 激光光谱分析法,朱贵云等著,科学出版社,1982 5 谱 流动注射分析法, 方肇伦等编著,科学出版社,1999 法 色谱联用技术,汪正范等编著,化学工业出版社,2001 6
负载 线圈
1.1.1 ICP的形成
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
(1)自激式高频振荡器
由电源、电子三极管和LC振荡回路组成并 联式LC振荡器
L1 G E
C1
L3 C3 R
C2
L2
图1-3 高频振荡器电路原理简图
1.1.1 ICP的形成
电 (2)它激式高频振荡器 感 它激式振荡器又称石英晶体控制振荡 耦 合 器。是利用石英晶体的压电效应构成的一 等 离 个正弦波振荡器。其特点是具有极高的频 子 体 率稳定性。 原 子 发 射 光 谱 图1-4 石英晶体控制振荡器原理方框图 法
1 电感耦合等离子体光谱法
电 感 耦 合 等 离 子 体 原 子 发 射 光 谱 法
在光谱分析中,通常所说的等离子体 光源是特指20世纪60年代以后产生的,如 电感耦合高频等离子炬(ICP)外,直流等 离子焰(DCP)、电容耦合微波等离子炬 (CMP)和微波诱导等离子炬(MIP)等新型 光源。
1 电感耦合等离子体光谱法 ICP的发展简况: 电 感 1884年,Hittorf观察到,当高频电流通过感应线 耦 圈时,装在该线圈所环绕的真空管内的残留气体 合 会产生辉光; 等 离 1942年,Babat采用大功率电子管振荡器,实现 子 了石英管中在不同压强和非流动气流下的高频感 体 应放电,为此类放电走向实用阶段奠定了基础; 原 子 1961年,Reed设计了一种从石英管的切向通入冷 发 却气的较为合理的高频放电装置,采用Ar气为冷 射 却气,并用碳棒或钨棒来引燃。后又提出一种三 光 层同心石英管结构的炬管,并预示可作为发射光 谱 谱分析光源的可能性; 法
相关文档
最新文档