初中函数图像及性质
基本初等函数图像及性质大全
(2)反函数的求法
①确定反函数的定义域,即原函数的值域;
②从原函数式 中反解出 ;
③将 改写成 ,并注明反函数的定义域.
二、幂函数
(1)幂函数的定义
一般地,函数 叫做幂函数,其中 为自变量, 是常数.
(2)幂函数的图象
过定点:所有的幂函数在 都有定义,而且图象都通过点 .
三、指数函数
(1)根式的概念:如果 ,且 ,那么 叫做 的 次方根.
(2)分数指数幂的概念
①正数的正分数指数幂的意义是: 且 .0的正分数指数幂等于0.
奇函数
偶函数
周期性
是周期函数,2 为最小正周期
是周期函数,2 为最小正周期
对称性
对称中心 ,
对称中心 ,
2.正切与余切函数的图像与性质
函数
图像
定域义
值域
R
R
单调性
奇偶性
奇函数
奇函数
周期性
是周期函数, 为最小正周期
是周期函数, 为最小正周期
对称性
对称中心
对称中心
七、反三角函数的图像与性质
1.反正弦与反余函数的图像与性质
③数乘: ④
⑤
⑥换底公式:
(5)对数函数
函数
名称
对数函数
定义
函数 且 叫做对数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
五大类函数图像及性质总结
五大类函数图像及性质总结一次函数的图像是一条直线,写作形式为y=ax+b(a≠0),它的性质有以下几点:(1)任意两点确定一条直线,当给定任意两个点(x1,y1),(x2,y2),则直线的斜率为:【m= (y1-y2)/(x1-x2)】(2)当x=0时,y=b,可以得出结论,一次函数图像通过原点。
(3)此外,一次函数图像也具有一定的对称性,当x=x时,y=b,则y=-(x-x)+b,图像对称轴为y=x。
二、二次函数图像及性质二次函数的图像为抛物线,写作形式为y=ax+bx+c(a≠0),它的性质有以下几点:(1)当x=0,y=c,可以得出结论,二次函数图像通过原点。
(2)当x=x,y=0时,判断抛物线是向上还是向下凹,只需判断系数a的正负性即可:若a>0,则抛物线向上凹;若a<0,则抛物线向下凹。
(3)此外,当y=0时,可得出二次函数的两个根:【x = [-b± (b-4ac)]/(2a)】。
三、单调函数图像及性质单调函数的图像为一次或多次函数的图像,它的性质有以下几点:(1)单调函数图像在任意一点上发生的变化方向是确定的,不管是向上还是向下,它只能沿着一个方向变化;(2)单调函数图像满足单调性;(3)单调函数图像是连续变化图像,就是说图像在每到一个点处,图像均无折现现象。
四、指数函数图像及性质指数函数的图像为一条曲线,写作形式为y=ax(a≠0),它的性质有以下几点:(1)当x=0,y=a,可以得出结论,指数函数图像通过原点。
(2)指数函数图像具有一定的对称性,当x=x时,y=a,则y=a/x,图像对称轴为y=x。
(3)此外,指数函数与有理函数具有相同的极限性质,当x趋于正无穷时,y趋于正无穷;当x趋于负无穷时,y趋于零。
五、对数函数图像及性质对数函数的图像为一条曲线,写作形式为y=loga(x)(a>0,a≠1),它的性质有以下几点:(1)当x=1,y=loga(1),可以得出结论,对数函数图像通过原点。
常用函数性质及图像
一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时, 直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
九种基本初等函数图像及性质
九种基本初等函数图像及性质基本初等函数包括一次函数、平方函数、立方函数、根号函数、指数函数、对数函数、正弦函数、余弦函数和正切函数等9种函数。
下面简单介绍它们的图像及性质。
一次函数的图像是一条直线,表达函数的形式为:y=ax+b(a≠0),其中a表示斜率,b表示函数的截距,函数的性质是其增减性由斜率a决定。
平方函数的图像为一条凹凸不平的抛物线,表达函数的形式为:y=ax2+bx+c,其中a、b、c为实数,a≠0,此函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
立方函数的图像是一条弯曲的曲线,表达函数的形式为:y=ax3+bx2+cx+d,其中a、b、c、d为实数,a≠0,函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
根号函数的图像是一条弯曲的曲线,表达函数的形式为:y=a√x+b,其中a、b为实数,a>0,此函数的性质是常数变动,函数的解析式在a变动时它的单调性也由正负变化。
指数函数的图像是一条右倾的曲线,表达函数的形式为:y=axb,其中a、b为实数,a>0、b≠0,函数的性质是其单调性由a、b的正负决定,是增函数当a>0且b>0时,是减函数当a>0且b<0时。
对数函数的图像是一个右倾的曲线,表达函数的形式为:y=alogx + b,其中a、b为实数,a>0,此函数的性质是变数变动,函数的解析式在x变动时它的单调性也由正负变化。
正弦函数的图像是一个周期性的曲线,表达函数的形式为:y=Asin(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质是其单调性由A的正负决定,是增函数当A>0时,是减函数当A<0时。
余弦函数的图像同正弦函数,表达函数的形式为:y=Acos(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质同正弦函数一样。
正切函数的图像为一个弯曲的曲线,表达函数的形式为:y=tanx,其中x代表,函数的性质是函数的单调性变化于π/2,函数的解析式在x变动到π。
常用函数图像
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
初中知识点归纳——函数图像篇
初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。
通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。
本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。
一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。
1. 线性函数图像线性函数的特点是图像为一条直线。
直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。
2. 二次函数图像二次函数的图像通常为抛物线形状。
抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。
二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。
3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。
指数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。
4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。
对数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。
二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。
(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。
2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。
(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。
初中常用函数及其性质
一.正比例函数的性质1.定义域:R(实数集)2.值域:R(实数集)3.奇偶性:奇函数4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)5.周期性:不是周期函数。
6.对称轴:直线,无对称轴。
、二.一次函数图像和性质一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二 、三、四象限 上面性质反之也成立 1.b 的作用在坐标平面上画直线y=kx+b (k≠0),截距b 相同的直线经过同一点(0,b). 2.k 的作用k 值不同,则直线相对于x 轴正方向的倾斜程度不同. (1)k>0时,K 值越大,倾斜角越大 (2)k<0时,K 值越大,倾斜角越大说明 (1) 倾斜角是指直线与x 轴正方向的夹角;(2)常数k 称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论. 3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx 的图像平移得到.当b>0时,向上平移b 个单位;当b<0时,向下平移|b|个单位. 4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行. 如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 . 1.一次函数与一元一次方程的关系一次函数 y=kx+b 的图像与x 轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数 y=kx+b 的图像与x 轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数 y=kx+b 的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式kx+b>0(或kx+b<0).在一次函数 y=kx+b 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.三.二次函数图像及其性质1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
(完整版)基本初等函数图像及性质大全(初中高中)
一、一次函数与二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2b x a=-时,2max 4()4ac b f x a -=.二、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义: ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化: log (0,1,0)xa x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log ba ab =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 (5)对数函数五、反函数(1)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(2)反函数的求法①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(3)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.六、三角函数的图像和性质(一)正弦与余函数的图像与性质 函数 x y sin =x y cos =图像定域义 RR值域 []1,1-[]1,1-最值2,1 22,1 2x k y k Zx k y k Zππππ=+=∈=-+=-∈最大最小时,时,2, 1 2,1x k y k Zx k y k Z πππ==∈=+=-∈最大最小时,时, 单调性[2,2]223[2,2]22k k k k ππππππππ-++++在每个上递增在每个上递减[2,2][2,2] k k k k ππππππ-++在每个上递增在每个上递减奇偶性 奇函数偶函数周期性 是周期函数,2π为最小正周期 是周期函数,2π为最小正周期 对称性对称中心(,0)k π,:,()2x k k Z ππ=+∈对称轴 对称中心(,0)2k ππ+,:,()x k k Z π=∈对称轴2. 正切与余切函数的图像与性质函数 x y tan = x y cot =图像定域义 {|,}2x x R x k k Z ππ∈≠+∈且 {|,}x x R x k k Z ππ∈≠+∈且值域 RR单调性(,)22Zk k k ππππ-++∈在每个上递增(,) Zk k k πππ+∈在每个上递减奇偶性 奇函数奇函数周期性 是周期函数,π为最小正周期 是周期函数,π为最小正周期 对称性对称中心(,0)2k π 对称中心(,0)2k π七、反三角函数的图像与性质1. 反正弦与反余函数的图像与性质函数反正弦函数arcsin y x =是sin ,22y x x ππ⎡⎤=∈-⎢⎥⎣⎦,的反函数反余弦函数arccos y x =是[]cos 0,y x x π=∈,的反函数图像定域义 []1,1-[]1,1-值域 ,22ππ⎡⎤-⎢⎥⎣⎦[]0,π 单调性 [1,1]-+在上递增[1,1]-+在上递减奇偶性 奇函数 非奇非偶 周期性 无 无对称性对称中心(0,0)对称中心(0,)2π2. 反正切与反余切函数的图像与性质 函数反正切函数arctan y x = 是tan (,)22y x x ππ=∈-,的反函数反余切函数arccot y x = 是()cot 0,y x x π=∈,的反函数图像定域义 (,,)-∞+∞(,,)-∞+∞值域 ,22ππ⎛⎫- ⎪⎝⎭ ()0,π单调性 (,,)-∞+∞在上递增(,,)-∞+∞在上递减奇偶性 奇函数 非奇非偶 周期性 无无对称性 对称中心(0,0)对称中心(0,π/2)。
基本初等函数图像及性质大全(初中-高中)
一、一次函数与二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2b x a=-时,2max 4()4ac b f x a -=.二、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义: ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化: log (0,1,0)xa x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log ba ab =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b =≠∈⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数五、反函数(1)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(2)反函数的求法①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(3)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.六、三角函数的图像和性质(一)正弦与余函数的图像与性质 函数 x y sin =x y cos =图像定域义 RR值域 []1,1-[]1,1-最值2,1 22,1 2x k y k Zx k y k Zππππ=+=∈=-+=-∈最大最小时,时,2, 1 2,1x k y k Zx k y k Z πππ==∈=+=-∈最大最小时,时,单调性[2,2]223[2,2]22Zk k k k k ππππππππ-++++∈在每个上递增在每个上递减[2,2][2,2] Zk k k k k ππππππ-++∈在每个上递增在每个上递减奇偶性 奇函数偶函数周期性 是周期函数,2π为最小正周期 是周期函数,2π为最小正周期 对称性对称中心(,0)k π,:,()2x k k Z ππ=+∈对称轴 对称中心(,0)2k ππ+,:,()x k k Z π=∈对称轴2. 正切与余切函数的图像与性质函数 x y tan = x y cot =图像定域义 {|,}2x x R x k k Z ππ∈≠+∈且 {|,}x x R x k k Z ππ∈≠+∈且值域 RR单调性(,)22Zk k k ππππ-++∈在每个上递增(,) Zk k k πππ+∈在每个上递减奇偶性 奇函数奇函数周期性 是周期函数,π为最小正周期 是周期函数,π为最小正周期 对称性对称中心(,0)2k π 对称中心(,0)2k π七、反三角函数的图像与性质1. 反正弦与反余函数的图像与性质函数反正弦函数arcsin y x =是sin ,22y x x ππ⎡⎤=∈-⎢⎥⎣⎦,的反函数反余弦函数arccos y x =是[]cos 0,y x x π=∈,的反函数图像定域义 []1,1-[]1,1-值域 ,22ππ⎡⎤-⎢⎥⎣⎦[]0,π 单调性 [1,1]-+在上递增[1,1]-+在上递减奇偶性 奇函数 非奇非偶 周期性 无 无对称性对称中心(0,0)对称中心(0,)2π2. 反正切与反余切函数的图像与性质 函数反正切函数arctan y x = 是tan (,)22y x x ππ=∈-,的反函数反余切函数arccot y x = 是()cot 0,y x x π=∈,的反函数图像定域义 (,,)-∞+∞(,,)-∞+∞值域,22ππ⎛⎫- ⎪⎝⎭ ()0,π。
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
(完整版)初中函数知识点总结
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
10、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
取值范围:① k ≠ 0; ②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数 ; ③函数 y 的取值范围也是任意非零实数。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数的性质:
注:对于y=kx+b 而言,图象共有以下四种情况:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0
4、直线y=kx+b(k≠0)与坐标轴的交点.
(1)直线y=kx与x轴、y轴的交点都是(0,0);
(2)直线y=kx+b与x轴交点坐标为 与 y轴交点坐标为(0,b).
5、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
初中四种函数的性质
1、正比例函数Y=KX(K不等于0)K>0,图像经一、三象限,Y随X的增大而增大。
K<0,图像经二、四象限,Y随X的增大而减小。
(图象是经过圆点的一条直线)2、一次函数Y=aX+b(a不等于0)a>0,b>0,图像经一、二、三象限,Y随X的增大而增大。
a>0,b<0,图像经一、三、四象限,Y随X的增大而增大。
a<0,b>0,图像经一、二、四象限,Y随X的增大而减小。
a<0,b<0,图像经二、三、四象限,Y随X的增大而减小。
(图象为一条直线)注:当b=0,一次函数就便成了等比例函数3、y=ax²+bx+c(a,b,c为常数,a≠0)1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b²)/4a]。
当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b²-4ac>0时,抛物线与x轴有2个交点。
Δ=b²-4ac=0时,抛物线与x轴有1个交点。
Δ=b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。
初中高中数学七大函数的性质 图像
奇偶性:奇函数
周期性:最小正周期为π
对称轴:无
中心对称点:与x轴的交点中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
值域:[0,正无穷)
奇偶性:无(即非奇非偶)
周期性:无
图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转
90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次
函数图象)
5.指数函数
在平面直角坐标系上的图象(太难描述了,说一下性质吧……)
恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。
定义域:R
值域:[-1,1]
奇偶性:偶函数
周期性:最小正周期为2π
对称轴:直线x=kπ (k∈Z)
中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)
⑶正切函数:y=tg x
图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。
初中函数知识点总结
初中函数知识点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0,0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n),横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为|y|,点P (x,y )到y 轴的距离为|x|。
点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x +,212y y +) 10、点的平移特征:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
基本初等函数图像及性质大全(初中-高中)
(3)二次函数图象的性质
图像
定义域
对称轴
顶点坐标
值域
单调区间
递减
递增
递增
递减
①.二次函数 的图象是一条抛物线,对称轴方程为 顶点坐标是
②当 时,抛物线开口向上,函数在 上递减,在 上递增,当 时, ;当 时,抛物线开口向下,函数在 上递增,在 上递减,当 时, .
二、幂函数
(1)幂函数的定义
一般地,函数 叫做幂函数,其中 为自变量, 是常数.
(2)幂函数的图象
过定点:所有的幂函数在 都有定义,并且图象都通过点 .
1、一次函数与二次函数(一)一次Fra bibliotek数一次
函数
,
符号
图象
性质
随 的增大而增大
随 的增大而减小
(二)二次函数
(1)二次函数解析式的三种形式
①一般式: ②顶点式:
③两根式:
(2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式.
②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.
初中数学函数大全
初中数学函数大全(分类函数I、定义与定义式:自变量x变量y关系:y=kx+b(kb数k≠0)则称yx函数特别b=0yx比例函数II、函数性质:y变化值与应x变化值比例比值k即△y/△x=kIII、函数图象及性质:1. 作与图形:通3步骤(1)列表(般找4-6点);(2)描点;(3)连线作函数图象(用平滑直线连接)2. 性质:函数图象任意点P(xy)都满足等式:y=kx+b3. kb与函数图象所象限k>0直线必通、三象限y随x增增;k<0直线必通二、四象限y随x增减b>0直线必通、二象限;b<0直线必通三、四象限特别b=0直线通原点O(00)表示比例函数图象k>0直线通、三象限;k<0直线通二、四象限IV、确定函数表达式:已知点A(x1y1);B(x2y2)请确定点A、B函数表达式(1)设函数表达式(叫解析式)y=kx+b(2)函数任意点P(xy)都满足等式y=kx+b所列2程:y1=kx1+b①y2=kx2+b②(3)解二元程kb值(4)函数表达式V、y=kx+b,两坐标系必定经(0,b)(-b/k,0)两点VI、函数应用1.间t定距离s速度v函数s=vt2.水池抽水速度f定水池水量g抽水间t函数设水池原水量Sg=S-ft反比例函数形y=k/x(k数且k≠0) 函数叫做反比例函数自变量x取值范围等于0切实数反比例函数图像双曲线图面给k别负(2-2)函数图像二函数般自变量x变量y间存关系:y=ax^2+bx+c (a≠0)(abc数a≠0且a决定函数口向a>0口向向a<0口向向IaI决定口,IaI越口越,Ia I越口越)则称yx二函数二函数表达式右边通二三项式x自变量yx函数二函数三种表达式般式:y=ax^2+bx+c(abc数a≠0)顶点式:y=a(x-h)^2+k [抛物线顶点P(hk)] 于二函数y=ax^2+bx+c 其顶点坐标(-b/2a,(4ac-b^2)/(4a))交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴交点A(x₁0) B(x₂0)抛物线]其x12= (-b±√(b^2-4ac))/(2a)注:3种形式互相转化关系:______h=-b/(2a) k=(4ac-b^2)/(4a) x₁,x₂=(-b±√b^2-4ac)/2a二函数图像平面直角坐标系作二函数y=x^2图像二函数看二函数图像条抛物线二函数标准画步骤(平面直角坐标系)(1)列表(2)描点(3)连线抛物线性质1.抛物线轴称图形称轴直线x = -b/2a称轴与抛物线唯交点抛物线顶点P特别b=0抛物线称轴y轴(即直线x=0)2.抛物线顶点P坐标P ( -b/2a (4ac-b^2)/4a )-b/2a=0Py轴;Δ= b^2-4ac=0Px轴3.二项系数a决定抛物线口向a>0抛物线向口;a<0抛物线向口|a|越则抛物线口越4.项系数b二项系数a共同决定称轴位置a与b同号(即ab>0)称轴y轴左;a与b异号(即ab<0)称轴y轴右5.数项c决定抛物线与y轴交点抛物线与y轴交于(0c)6.抛物线与x轴交点数Δ= b^2-4ac>0抛物线与x轴2交点Δ= b^2-4ac=0抛物线与x轴1交点_______Δ= b^2-4ac<0抛物线与x轴没交点X取值虚数(x= -b±√b^2-4ac 值相反数乘虚数i整式除2a)a>0函数x= -b/2a处取值f(-b/2a)=4ac-b^2/4a;{x|x<-b/2a}减函数{x|x>-b/2a}增函数;抛物线口向;函数值域{x|x≥4ac-b^2/4a}相反变b=0抛物线称轴y轴函数偶函数解析式变形y=ax^2+c(a≠0)二函数与元二程特别二函数(称函数)y=ax^2+bx+cy=0二函数关于x元二程(称程)即ax^2+bx+c=0函数图像与x轴交点即程实数根函数与x轴交点横坐标即程根1.二函数y=ax^2y=a(x-h)^2y=a(x-h)^2 +ky=ax^2+bx+c(各式a≠0)图象形状相同位置同顶点坐标及称轴表:解析式y=ax^2y=a(x-h)^2y=a(x-h)^2+ky=ax^2+bx+c顶点坐标(00)(h0)(hk)(-b/2a(4ac-b^2)/4a)称轴x=0x=hx=hx=-b/2ah>0y=a(x-h)^2图象由抛物线y=ax^2向右平行移h单位h<0则向左平行移|h|单位.h>0,k>0抛物线y=ax^2向右平行移h单位再向移k单位y=a(x-h)^2 +k图象;h>0,k<0抛物线y=ax^2向右平行移h单位再向移|k|单位y=a(x-h)^2+k图象; h<0,k>0抛物线向左平行移|h|单位再向移k单位y=a(x-h)^2+k图象;h<0,k<0抛物线向左平行移|h|单位再向移|k|单位y=a(x-h)^2+k图象;研究抛物线y=ax^2+bx+c(a≠0)图象通配般式化y=a(x-h)^2+k形式确定其顶点坐标、称轴抛物线体位置清楚.给画图象提供便.2.抛物线y=ax^2+bx+c(a≠0)图象:a>0口向a<0口向称轴直线x=-b/2a顶点坐标(-b/2a[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0)若a>0x ≤-b/2ay随x增减;x ≥-b/2ay随x增增.若a<0x ≤-b/2ay随x增增;x ≥-b/2ay随x增减.4.抛物线y=ax^2+bx+c图象与坐标轴交点:(1)图象与y轴定相交交点坐标(0c);(2)△=b^2-4ac>0图象与x轴交于两点A(x₁0)B(x₂0)其x1,x2元二程ax^2+bx+ c=0(a≠0)两根.两点间距离AB=|x₂-x₁| 另外抛物线任何称点距离由|2×(-b/2a) -A |(A其点)△=0.图象与x轴交点;△<0.图象与x轴没交点.a>0图象落x轴x任何实数都y>0;a<0图象落x轴x 任何实数都y<0.5.抛物线y=ax^2+bx+c值:a>0(a<0)则x= -b/2ay()值=(4ac-b^2)/4a.顶点横坐标取值自变量值顶点纵坐标值取值.6.用待定系数求二函数解析式(1)题给条件已知图象经三已知点或已知x、y三应值设解析式般形式:y=ax^2+bx+c(a≠0).(2)题给条件已知图象顶点坐标或称轴设解析式顶点式:y=a(x-h)^2+k(a≠0).(3)题给条件已知图象与x轴两交点坐标设解析式两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二函数知识容易与其知识综合应用形较复杂综合题目二函数知识主综合性题目考热点考题往往题形式现.。
基本初等函数图像及性质大全(修改)
一次函数()0 k kx b k=+≠,符号k<图象性质随的增大而增大随的增大而减小二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3图像定义域对称轴顶点坐标值域单调区间递减递增递增递减①.二次函数的图象是一条抛物线,对称轴方程为顶点坐标②当时,抛物线开口向上,函数在上递减,在上递增,当;当时,抛物线开口向下,函数在上递增,在上递减,当时,.幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象过定点:所有的幂函数在都有定义,并且图象都通过点.k bk>b>0b<0b=0b>0b<b=O xy yxO O xy yxO O xy yxOy x y x2()(0)f x ax bx c a=++≠2()()(0)f x a x h k a=-+≠12()()()(0)f x a x x x x a=--≠x()f x()()20f x ax bx c a=++≠0a>0a<(),-∞+∞2bxa=-24,24b ac ba a⎛⎫--⎪⎝⎭24,4ac ba⎛⎫-+∞⎪⎝⎭24,4ac ba⎛⎫--∞⎪⎝⎭,2ba⎛⎫-∞-⎪⎝⎭,2ba⎛⎫-+∞⎪⎝⎭,2ba⎛⎫-∞-⎪⎝⎭,2ba⎛⎫-+∞⎪⎝⎭2()(0)f x ax bx c a=++≠,2bxa=-24(,)24b ac ba a--0a>(,]2ba-∞-[,)2ba-+∞2bxa=-2min4()4ac bf xa-= 0a<(,]2ba-∞-[,)2ba-+∞2bxa=-2max4()4ac bf xa-=y xα=xα(0,)+∞(1,1)xa y =xy (0,1)O1y =(1)根式的概念:如果,且,那么叫做的次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.(3)运算性质① ②③函数名称 指数函数定义函数且叫做指数函数图象定义域值域过定点 图象过定点,即当时,.奇偶性 非奇非偶单调性在上是增函数在上是减函数函数值的 变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低.对数函数(1)对数的定义: ①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. ②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式: ,,.(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…). (4)对数的运算性质 如果,那么①加法: ②减法: ③数乘: ④⑤⑥换底公式:,,,1nx a a R x R n =∈∈>n N +∈x a n (0,,,m n m naa a m n N +=>∈1)n >11()()(0,,,m m m nn n a a m n N a a-+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈()(0,,)r s rs a a a r s R =>∈()(0,0,)r r rab a b a b r R =>>∈(0xy a a =>1)a ≠1a >01a <<R (0,)+∞(0,1)0x =1y =R R 1(0)1(0)1(0)x x x a x a x a x >>==<<1(0)1(0)1(0)x x x a x a x a x <>==><a a a (0,1)x a N a a =>≠且x a N log ax N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log ba ab =lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a aM M N N-=log log ()na a n M M n R =∈log a N a N =log log (0,)b na a nM M b n R b =≠∈log log (0,1)log b a b N N b b a =>≠且xa y =xy(0,1)O 1y =函数名称 对数函数定义函数且叫做对数函数图象定义域值域过定点 图象过定点,即当时,.奇偶性 非奇非偶单调性在 定义域 上是增函数在 定义域 上是减函数函数值的 变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高.(1)反函数的求法 ①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(2)反函数的性质 ①原函数与反函数的图象关于直线对称. ②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.正弦与余函数的图像与性质 函数 x y sin = x y cos =图像定域义 RR值域最值单调性奇偶性 奇函数偶函数周期性 是周期函数,2π为最小正周期 是周期函数,2π为最小正周期 对称性对称中心,对称中心,log (0a y x a =>1)a ≠1a >01a <<(0,)+∞R (1,0)1x =0y =log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a a a ()y f x =1()x f y -=1()x fy -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =[]1,1-[]1,1-2,1 22,1 2x k y k Zx k y k Zππππ=+=∈=-+=-∈最大最小时,时,2, 1 2,1x k y k Zx k y k Z πππ==∈=+=-∈最大最小时,时,[2,2]223[2,2]22Zk k k k k ππππππππ-++++∈在每个上递增在每个上递减[2,2][2,2] Zk k k k k ππππππ-++∈在每个上递增在每个上递减(,0)k π:,()2x k k Z ππ=+∈对称轴(,0)2k ππ+:,()x k k Z π=∈对称轴xyO(1,0)1x =log a y x =xyO(1,0)1x =log a y x=2. 正切函数的图像与性质函数 x y tan =图像定域义值域R单调性奇偶性 奇函数周期性 是周期函数,π为最小正周期 对称性对称中心{|,}2x x R x k k Z ππ∈≠+∈且(,)22Zk k k ππππ-++∈在每个上递增(,0)2k π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义
一、自变量与应变量
在数学中,通常我们用y x 来表示的式子描述函数解析式。
那么y 随着x 变化而变化,则我们把x 叫做自变量,y 叫做应变量,即y 是x 函数。
一次函数的图像及性质
一、一次例函数定义
形如()0≠+=k b kx y 这样的函数叫一次函数。
二、正比例函数
当一次函数()()叫正比例函数。
时,中000≠==≠+=k kx y b k b kx y 三、正比函数性质
1、正比例函数图像为恒过坐标原点()0,0和点()b ,0的直线。
且与y 轴的截距是b ,与y 轴的交点坐标为()b ,0。
2、当0>k 时,正比例kx y =的函数图像过一、三象限,
的增大而增大。
随x y
3、当0<k 时,正比例kx y =的函数图像过二、四象限,
的增大而减小。
随x y
四、一次函数图像及性质
1、的图像时,一次函数,当b kx y b k +=>>00
过一、二、三象限。
2、的图像时,一次函数,当b kx y b k +=<>00 过一、三、四象限。
3、的图像时,一次函数,当b kx y b k +=><00 过一、二、四象限。
4、的图像时,一次函数,当b kx y b k +=<<00 过二、三、四象限。
五、一次函数图像与坐标轴围成的三角形面积公式
设一次函数()0≠+=k b kx y 与坐标轴所围成的三角形为为多少?则AOB AOB ∆∆S
六、
式
设两个一次函数111b x
k y +=和222b x
k y +=的交点 为点()00,y x ,如图可知 (1)当o x x >时,21y y >; (2)当o x x =时,21y y =; (3)当o x x <时,21y y <。
反比例函数图像及性质
一、反比例函数定义 形如()0≠=
k x
k
y 这样的函数叫反比例函数。
k 叫比例系数()为常数k 。
二、反比例函数的图像 反比例函数图像为双曲线。
三、反比例函数的性质
2、当0>k 时,反比例函数x k
y =的图像分布在一、三象限。
3、当0<k 时,反比例函数x k
y =的图像分布在二、四象限。
四、反比例函数图像上的点。
点()00,y x p 在反比例函数()0≠=
k x
k
y 的图像上k y x =⋅⇔00 五、反比例函数图像上图形面积与比例系数k 的关系
k
b b k b y x A B 22121S 2
AOB =
⋅-=⋅=∆1
2
2b x k +1k S k
y OAB =
=∆中如上图所示、在k
S k
y OABC ==四边形中如上图所示、在2
二次函数图像及性质
一、二次函数定义
形如()02≠++=a c bx ax y 这样的函数 叫做二次函数。
二、二次函数的图像
二次函数的图像是抛物线。
如右图所示 三、二次函数的性质
1、二次函数()02≠++=a c bx ax y 的图像恒过点()c ,0,且与y 轴的截距为c ;
2、当0>a 时,二次函数()02≠++=a c bx ax y 的图像抛物线开口向上,且有最小值;
3、当0<a 时,二次函数()02≠++=a c bx ax y 的图像抛物线开口向上,且有最
大值;
4、二次函数()02
≠++=a c bx ax y 的对称轴为直线a
b
x 2-=最值为a b ac y 442-=
四、二次函数的形式
1、
三点式:已知二次函数图像上三点,求函数解析式如下
k
S x
k
y ABC ==∆中如上图所示、在3
OCD
OAB S S x
k
y ∆∆=
=中如上图所示、在
4
已知点()11,y x A 、()22,y x B 、()33,y x C 在一个二次函数图像上,则求该二次函数解析式。
解:设这个二次函数解析式为c bx ax y ++=2,
把题中三点分别代入解析式得
然后把c b a 、、的值分别带入假设的解析式中,此题得解。
2、两点式:已知二次函数图像与x 轴的两个交点, 求函数解析式如下
已知二次函数图像与x 轴的交点分别为点()0,1x A 与点()0,2x B ,求函数解析式如下
解:设这个二次函数解析式为()()21x x x x a y --=,然后利用多项式乘法展开后合并同类项,降幂排列的()21212x ax x x x a ax y ++-=,通常考出两点式的题型,
a 的值会很容易求出。
3、顶点式:已知二次函数的对称轴与最值求二次函数解析式如下 已知二次函数的对称轴为直线h x =, 最值(最大值或者最小值)为k 。
则它 的解析式为()k h x a y +-=2
,这种题
型中a 的也很容易求出。
4、顶点式的变形考法,也就是通常常考内容,利润问题和最值问题。
解决这类问题时,一般分为3个步骤: (1) 列出二次函数解析式
(2) 把这个二次函数解析式配方成顶点式的形式 (3) 根据顶点式直接可以写出当h x =时,
⎪⎩⎪⎨⎧=++=++=++3323
222
2112
1y
c bx
ax y c bx ax y c bx ax ⎪⎩
⎪⎨⎧==
=
c b a 解得(A )
2)
33,y x )
○1当0>a 时,k y =min ;○2当0<a 时,k y =max ;
求两个函数图像的交点
求两个函数图像交点的题型,通常都是把这两个函数解析式联立成方程组,然后解次方程组,求得的方程组的对应x 的值与相应y 的值,正好就构成两个函数图像的其中一个交点的坐标。
归纳为:方程组的解就是图像的交点,图像的交点就是方程组的解。
如有侵权请联系告知删除,感谢你们的配合!。