第F章 图像的特征统计与检测
图像分类知识点总结
图像分类知识点总结一、基本概念1.1 图像分类的定义图像分类是指根据图像的视觉特征将其划分到不同的类别中的任务。
图像分类可以看作是一个监督学习问题,即根据已知的图像样本及其类别标签,建立一个分类器来对新的图像进行分类。
1.2 图像分类的难点图像分类的难点在于图像具有高度的复杂性和多样性。
一张图像可能包含不同大小、形状、颜色和纹理的物体,而且光照、遮挡、角度等因素也会对图像的特征造成影响。
因此,要实现准确的图像分类,需要考虑到这些因素的影响。
1.3 图像分类的评价指标常用的图像分类评价指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1值等。
其中,准确率指分类器对所有样本进行分类的正确率,精确率指分类器在预测为正类的样本中真正为正类的比例,召回率指分类器在所有正类样本中预测正确的比例,F1值是精确率和召回率的调和平均。
二、常用方法2.1 传统方法传统的图像分类方法主要基于手工设计的特征提取和传统的机器学习算法。
特征提取阶段通常使用SIFT、HOG、LBP等局部特征描述子,然后通过词袋模型(BoW)进行编码,并使用支持向量机(SVM)、K近邻(KNN)等分类器进行分类。
2.2 深度学习方法近年来,深度学习方法在图像分类任务中取得了巨大的成功。
深度学习模型通常包括卷积神经网络(CNN)、循环神经网络(RNN)和注意力机制等。
其中,CNN是最常用的深度学习模型,其具有对图像特征进行端对端学习的能力,可有效地提取图像特征。
2.3 迁移学习迁移学习是将在一个任务中学到的知识或模型应用到另一个相关的任务中的机器学习方法。
在图像分类任务中,迁移学习可以通过在已有的大规模图像数据集上预训练一个深度学习模型,然后将该模型的部分或全部参数迁移到新的分类任务中进行微调,以节约训练时间和数据集规模。
2.4 多模态图像分类多模态图像分类是指同时使用图像、文本、语音等多种模态的信息进行分类的任务。
特征检测和特征描述符综述_概述及解释说明
特征检测和特征描述符综述概述及解释说明1. 引言1.1 概述特征检测和特征描述符是计算机视觉领域中非常重要的技术。
它们在图像识别、物体跟踪、三维重建等应用中起着关键性的作用。
特征检测是指从图像或视频中找到显著的局部结构,如角点、边缘等。
而特征描述符则是将这些特征点转化为数值描述,以便于后续的匹配和识别。
1.2 文章结构本文将对特征检测和特征描述符进行全面综述,主要包括以下几个方面内容:引言、特征检测、特征描述符以及它们之间的关系。
具体来说,我们将首先介绍引言部分,然后详细讨论特征检测和特征描述符的定义、作用以及常见方法。
接着,我们会探讨它们在计算机视觉领域中的应用,并深入研究它们之间的相互依赖关系。
最后,我们将总结文章内容,并展望未来发展趋势。
1.3 目的本文旨在全面了解和掌握特征检测和特征描述符这两个重要技术的概念、原理和应用。
通过对现有算法和方法的综述,我们希望读者能够深入理解特征检测和特征描述符之间的关系,并能够根据具体应用选择合适的方法。
同时,我们也希望通过分析现有技术问题和未来发展方向,为进一步研究提供参考和启示。
2. 特征检测:特征检测是计算机视觉领域的一个重要研究方向,它主要通过分析图像或视频中的局部区域来找到具有显著性或独特性的图像特征。
这些特征通常是物体边缘、角点、斑点等在不同图像之间有稳定性和可区分性的区域。
2.1 特征检测的定义与作用:特征检测旨在识别出具有唯一性和可描述性的局部结构,并对其进行定量描述。
其定义包括两个关键概念:唯一性和可描述性。
唯一性是指每个特征点都应该具有其他任何点所没有的某种属性,使其能够在各个图像帧或场景中被准确地匹配。
可描述性则要求我们能对每个特征进行准确而有效地量化描述,以便于后续的处理和识别任务。
特征检测在计算机视觉中起着至关重要的作用。
首先,它可以用于实现目标识别、跟踪和姿态估计等高级视觉任务。
其次,对于基于内容的图像搜索、相册管理和三维重建等应用,特征检测也是不可或缺的。
图像识别中的特征提取及分类算法研究
图像识别中的特征提取及分类算法研究图像识别是计算机视觉领域的重要研究方向之一,广泛应用于人脸识别、物体检测、人工智能等领域。
而在图像识别中,特征提取和分类算法是关键步骤,对于提升图像识别的准确性和效率起着至关重要的作用。
本文将深入研究图像识别中的特征提取及分类算法,并进行详细阐述。
一、特征提取图像识别中的特征提取是将图像中的有用信息抽取出来,为后续的分类任务提供有效的特征表示。
常用的图像特征提取方法有颜色特征、纹理特征和形状特征等。
1. 颜色特征颜色特征是指利用图像中的颜色信息来进行特征表示的方法。
它可以通过统计图像中各个像素的颜色分布情况,或者利用颜色直方图、颜色矩等统计特征来进行描述。
在实际应用中,颜色特征常用于物体识别、图像分类等任务中。
2. 纹理特征纹理特征是指利用图像中的纹理信息来进行特征表示的方法。
纹理可以通过图像局部像素之间的灰度变化来描述,比如利用灰度共生矩阵、小波变换、Gabor滤波器等方法来提取纹理特征。
纹理特征对于纹理类物体的识别和分类具有较好的性能。
3. 形状特征形状特征是指利用图像中物体的外形和轮廓信息来进行特征表示的方法。
它可以通过计算物体的边缘信息、轮廓曲线、面积等参数来进行描述。
形状特征广泛应用于物体检测、目标跟踪等领域。
二、分类算法分类算法是通过对提取到的图像特征进行分析和学习,将图像分为不同的类别。
常用的分类算法包括传统的机器学习算法和深度学习算法。
1. 传统机器学习算法传统机器学习算法是指利用统计学方法和数学模型来进行图像分类的算法。
常见的传统机器学习算法有支持向量机(SVM)、K最近邻(KNN)、决策树等。
这些算法通过对训练样本的特征进行分析和学习,构建分类模型,从而对测试样本进行分类预测。
2. 深度学习算法深度学习算法是近年来发展起来的一种学习方法,它通过构建深层神经网络模型来进行图像分类。
深度学习算法在图像识别任务中取得了显著的突破。
常用的深度学习算法有卷积神经网络(CNN)、循环神经网络(RNN)等。
大数据分析中的图像处理与特征提取方法
大数据分析中的图像处理与特征提取方法在大数据分析领域,图像处理与特征提取方法是非常重要的工具和技术。
随着互联网和智能设备的迅速发展,数据量的爆炸增长给传统的数据处理方式带来了巨大的挑战。
而图像处理和特征提取方法则可以帮助我们从大量的图像数据中提取有价值的信息和模式。
本文将介绍一些在大数据分析中常用的图像处理和特征提取方法。
首先,图像处理方法是对图像进行预处理和改变的过程。
大数据中的图像处理方法可以分为两大类:基础图像处理和深度学习方法。
基础图像处理方法包括图像去噪、图像增强、图像分割和图像配准等。
图像去噪是一种减小或消除图像中噪声的方法,可以提高图像的质量和清晰度。
图像增强则是通过调整图像的亮度、对比度和色彩饱和度等参数,提高图像的视觉效果。
图像分割是将图像分成多个区域或对象的过程,可以用于图像目标检测和图像分析。
图像配准是将多幅图像进行对齐和融合的过程,可以用于图像拼接和图像融合等应用。
深度学习方法是一种基于神经网络的图像处理方法,其主要思想是通过多层神经网络对图像进行特征提取和分类。
深度学习方法在大数据分析中广泛应用于图像识别、目标检测、图像生成和图像分割等任务。
深度学习方法具有较强的自适应性和泛化能力,可以处理复杂的图像数据,并取得了在许多任务上的优秀成果。
特征提取方法是从图像中提取有意义和有区分度的特征信息。
在大数据分析中,特征提取是一个关键步骤,它可以帮助我们理解和描述图像数据的特征和模式。
常用的特征提取方法包括传统的特征提取方法和深度学习方法。
传统的特征提取方法包括颜色特征、纹理特征和形状特征等。
颜色特征是图像中像素的颜色分布和色彩空间的统计特征,可以用于图像分类和图像检索等任务。
纹理特征是描述图像纹理和表面结构的统计特征,可以用于图像分割和纹理识别等任务。
形状特征是描述图像中物体形状的几何和拓扑特征,可以用于物体检测和形状匹配等任务。
这些传统的特征提取方法在大数据分析中仍然具有重要的作用。
多尺度理论及图像特征课件
要点二
详细描述
多尺度分析能够提取图像在不同尺度上的特征,这对于一些需要同时识别图像全局和局部特征的任务非常有利。例如,在人脸识别、物体识别等领域,多尺度理论的应用已经取得了显著成果。通过综合利用不同尺度上的特征信息,可以有效地提高图像识别的准确率和鲁棒性,对于实际应用具有重要的意义。
05
案例分析
多尺度理论及图像特征课件
CATALOGUE
目录
多尺度理论概述多尺度理论的基本原理图像特征提取方法多尺度理论在图像处理中的应用案例分析
01
多尺度理论概述
总结词
多尺度理论是一种处理和分析数据的理论框架,它强调在不同尺度上观察和分析数据的重要性。
详细描述
多尺度理论认为,同一数据在不同尺度上具有不同的特征和规律,因此需要从多个尺度上对数据进行观察和分析,以便更全面地理解数据的本质和规律。
02
多尺度理论的基本原理
多尺度变换原理是利用不同尺度的信号表示方法,对原始信号进行多尺度分析,以提取不同尺度下的特征。
总结词
多尺度变换原理的核心思想是将信号在不同尺度上进行分解,通过在不同尺度上对信号进行变换,可以得到信号在不同尺度上的特征表示。这种多尺度特征表示可以更好地描述信号的复杂性和细节信息,从而更好地理解和分析信号。
小波变换是一种信号处理方法,通过将信号分解成不同频率的成分,提取出信号的特征信息。
傅里叶变换是一种信号处理方法,通过将信号从时域转换到频域,提取出信号的特征信息。
04
多尺度理论在图像处理中的应用
利用多尺度理论对图像进行去噪处理,能够有效地去除噪声,提高图像质量。
多尺度理论通过将图像在不同尺度上进行分解,提取不同尺度上的特征,再根据这些特征进行去噪。这种方法能够更好地保留图像的细节和边缘信息,避免传统去噪方法可能导致的图像模糊问题。
计算机视觉中的图像分割与目标检测
计算机视觉中的图像分割与目标检测随着计算机技术的发展和进步,计算机视觉的应用逐渐成为现实。
在计算机视觉领域中,图像分割和目标检测是两个重要的任务。
本文将就图像分割和目标检测的概念、算法原理以及应用领域进行详细介绍。
一、图像分割图像分割是将一幅图像分割成若干个区域或者像素的过程。
其目的是将图像分为具有独立语义的子图像,从而更好地实现对图像内容的理解和分析。
图像分割在计算机视觉中被广泛应用,如医学图像分析、图像识别、图像压缩等。
图像分割算法有很多种,常见的包括阈值分割、边缘检测、区域生长等。
阈值分割是最简单的图像分割方法,其基本思想是根据像素的灰度值与设定的阈值进行比较,将像素分为不同的区域。
边缘检测是通过提取图像中的边缘信息来实现分割的方法。
区域生长算法则是以种子点为起点,通过生长的方式将与种子点相连的像素归为同一区域。
二、目标检测目标检测是计算机视觉中的另一个重要任务,其目的是在图像中找出感兴趣的目标并进行位置的确定。
目标检测在很多应用领域都有广泛的应用,如智能交通监控、人脸识别、无人驾驶等。
目标检测的算法也有多种,常见的有基于特征的方法和基于深度学习的方法。
基于特征的方法主要是通过提取图像中的特征信息,并采用分类器来进行目标的检测。
其中,常用的特征包括Haar特征、HOG 特征等。
基于深度学习的方法则是利用神经网络对图像进行端到端的处理,通过卷积神经网络(CNN)或者循环神经网络(RNN)实现目标的检测。
三、图像分割与目标检测的应用图像分割和目标检测在众多领域中都有广泛应用。
以医学图像分析为例,图像分割能够帮助医生更好地分割出肿瘤等病灶区域,从而为疾病的诊断提供更准确的依据。
而目标检测则能够帮助医生快速定位并识别出疾病部位,为手术治疗提供指导。
在智能交通监控领域,图像分割可以将车辆与背景进行分离,为车辆的跟踪和计数提供基础。
目标检测则能够实现对交通标志、车辆等感兴趣目标的实时检测和识别,从而帮助交通管理部门进行交通流量统计和道路安全监控。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc
实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
图像处理中的图像特征提取方法与技巧
图像处理中的图像特征提取方法与技巧图像处理是一门研究数字图像的领域,其目标是通过一系列的处理步骤来改善图像的质量或提取出其中的有用信息。
其中,图像特征提取是图像处理中的重要环节之一。
本文将介绍一些常用的图像特征提取方法和技巧。
1. 灰度特征提取灰度特征提取是图像处理中最基本的特征提取方法之一。
通过将彩色图像转换为灰度图像,可以提取出图像的亮度信息。
常用的灰度特征包括图像的平均灰度值、灰度直方图、对比度等。
这些特征可以反映出图像的整体明暗程度和灰度分布情况,对于一些亮度信息相关的任务,如人脸识别、目标检测等,具有重要意义。
2. 形态学特征提取形态学特征提取通过对图像进行形态学运算,如腐蚀、膨胀、开闭运算等,来提取出图像的形态信息。
比如,利用腐蚀和膨胀运算可以提取出图像的边缘信息,通过开闭运算可以获取到图像的拐点信息和孤立点信息。
形态学特征提取在图像的边缘检测、形状分析等领域中得到广泛应用。
3. 纹理特征提取纹理特征提取是指从图像中提取出具有纹理信息的特征。
图像的纹理是指图像中像素之间的空间关系,比如纹理的平滑度、粗糙度、方向等。
常见的纹理特征提取方法包括灰度共生矩阵(GLCM)、灰度差值矩阵(GLDM)等。
这些方法通过统计邻近像素之间的灰度差异来描述图像的纹理特征,对于物体识别、纹理分类等任务非常有用。
4. 频域特征提取频域特征提取是指通过对图像进行傅里叶变换或小波变换,从频域角度分析图像的特征。
对于傅里叶变换,可以得到图像的频谱图,从中提取出一些频域特征,如频谱能量、频谱密度等。
而小波变换则可以提取出图像的频率和幅度信息。
频域特征提取在图像压缩、图像识别等领域具有广泛应用。
5. 尺度空间特征提取尺度空间特征提取是指通过在不同的尺度下分析图像的特征,提取出图像的空间尺度信息。
常用的尺度空间特征提取方法包括拉普拉斯金字塔、高斯金字塔等。
这些方法可以从图像的多个尺度下提取出不同的特征,对于物体的尺度不变性分析、尺度空间关系分析等任务非常有用。
图像处理中的特征提取与分类方法
图像处理中的特征提取与分类方法图像处理技术是指利用计算机和数字图像处理技术来处理不同类型的图像,从而得到有效的信息。
图像处理被广泛应用于医学诊断、数字水印、娱乐、安防领域等方面。
其中一个重要的步骤就是图像的特征提取与分类,下面我将详细介绍这个过程中所用到的方法。
一、特征提取特征提取是图像处理中最关键的步骤之一。
图像中的特征是指具有区别度的、代表性的、不同的属性,不同的特征可以用于不同的分类任务。
在图像处理中,特征可以分为两种类型:结构特征和统计特征。
1. 结构特征结构特征是基于像素本身的一些属性来描述图像的特征,包括如下几种:(1)边缘特征:边缘是图像上两种不同灰度的区域之间的分界线。
边缘特征可以通过边缘检测算法来提取。
(2)角点特征:角点是图像上局部区域的转折点,可以用于跟踪和目标检测。
(3)纹理特征:纹理是图像上一种空间上或颜色上呈现规律的、重复的模式,可以用于纹理识别。
(4)形状特征:形状可以描述物体的几何形状,如圆、椭圆、矩形等。
2. 统计特征统计特征是通过对图像各个像素灰度值的统计分布来描述图像的特征,包括如下几种:(1)直方图:直方图描述了图像每个像素的灰度值出现的次数。
(2)均值和方差:均值表示图像区域内像素灰度值的平均值,方差表示图像区域内像素灰度值的变异程度。
(3)能量和熵:能量表示图像区域内像素良好分布的程度,熵表示图像区域内像素的信息量。
二、分类方法特征提取后,需要将其用于图像分类。
在图像分类上,根据不同任务,可以采用不同的分类方法。
1. 传统分类方法传统分类方法是指基于数学模型来描述图像特征和分类关系的分类方法,主要包括如下几种:(1)KNN算法:KNN算法是指K-近邻算法,是一种基于样本的分类方法。
对于一个测试样本,找出与它最相似的K个训练样本,用它们的分类标签中出现最多的作为预测结果。
(2)SVM算法:SVM算法是指支持向量机算法,是一种二分类模型,可以采用核函数进行非线性分类。
图像处理中的特征提取与分类算法
图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。
在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。
本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。
一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。
颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。
常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。
直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。
颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。
颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。
1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。
纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。
常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。
灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。
小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。
局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。
1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。
形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。
常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。
轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。
人工智能图像识别技术指南
人工智能图像识别技术指南第1章引言 (3)1.1 图像识别技术概述 (3)1.2 人工智能与图像识别的关系 (3)1.3 图像识别技术的应用领域 (3)第2章图像处理基础 (4)2.1 数字图像处理概述 (4)2.2 图像变换 (4)2.3 图像滤波与增强 (4)2.4 边缘检测与分割 (4)第3章特征提取与表示 (4)3.1 特征提取方法 (4)3.2 特征表示与度量 (4)3.3 常用特征提取算法 (4)3.4 特征选择与优化 (4)第4章深度学习基础 (4)4.1 神经网络简介 (4)4.2 卷积神经网络(CNN) (4)4.3 深度学习训练技巧 (4)4.4 深度学习框架介绍 (4)第5章目标检测技术 (4)5.1 目标检测概述 (4)5.2 基于候选框的目标检测方法 (4)5.3 基于深度学习的目标检测算法 (4)5.4 目标检测数据集与评估指标 (4)第6章图像分类技术 (4)6.1 图像分类概述 (4)6.2 传统图像分类算法 (4)6.3 深度学习图像分类算法 (4)6.4 数据不平衡与过拟合问题 (4)第7章场景识别与分割 (4)7.1 场景识别概述 (4)7.2 基于特征的场景识别方法 (4)7.3 深度学习场景识别算法 (4)7.4 图像分割技术 (5)第8章人体姿态估计 (5)8.1 人体姿态估计概述 (5)8.2 基于传统方法的姿态估计 (5)8.3 基于深度学习的姿态估计 (5)8.4 人体姿态估计的应用场景 (5)第9章人脸识别技术 (5)9.1 人脸识别概述 (5)9.3 深度学习人脸识别算法 (5)9.4 人脸识别中的挑战与解决方案 (5)第10章视频分析与行为识别 (5)10.1 视频分析概述 (5)10.2 目标跟踪技术 (5)10.3 行为识别方法 (5)10.4 深度学习在视频分析中的应用 (5)第11章医学图像识别 (5)11.1 医学图像概述 (5)11.2 医学图像预处理与增强 (5)11.3 医学图像分割与标注 (5)11.4 深度学习在医学图像诊断中的应用 (5)第12章图像识别技术的挑战与展望 (5)12.1 数据安全与隐私保护 (5)12.2 算法可解释性与可靠性 (5)12.3 通用性与自适应学习 (5)12.4 未来发展趋势与展望 (5)第1章引言 (5)1.1 图像识别技术概述 (5)1.2 人工智能与图像识别的关系 (6)1.3 图像识别技术的应用领域 (6)第2章图像处理基础 (6)2.1 数字图像处理概述 (7)2.2 图像变换 (7)2.3 图像滤波与增强 (7)2.4 边缘检测与分割 (7)第3章特征提取与表示 (7)3.1 特征提取方法 (7)3.2 特征表示与度量 (8)3.3 常用特征提取算法 (8)3.4 特征选择与优化 (9)第4章深度学习基础 (9)4.1 神经网络简介 (9)4.2 卷积神经网络(CNN) (9)4.3 深度学习训练技巧 (10)4.4 深度学习框架介绍 (10)第5章目标检测技术 (11)5.1 目标检测概述 (11)5.2 基于候选框的目标检测方法 (11)5.3 基于深度学习的目标检测算法 (11)5.4 目标检测数据集与评估指标 (11)第6章图像分类技术 (12)6.1 图像分类概述 (12)6.3 深度学习图像分类算法 (12)6.4 数据不平衡与过拟合问题 (12)第7章场景识别与分割 (13)7.1 场景识别概述 (13)7.2 基于特征的场景识别方法 (13)7.3 深度学习场景识别算法 (13)7.4 图像分割技术 (14)第8章人体姿态估计 (14)8.1 人体姿态估计概述 (14)8.2 基于传统方法的姿态估计 (14)8.3 基于深度学习的姿态估计 (14)8.4 人体姿态估计的应用场景 (15)第9章人脸识别技术 (15)9.1 人脸识别概述 (15)9.2 基于特征的人脸识别方法 (15)9.3 深度学习人脸识别算法 (16)9.4 人脸识别中的挑战与解决方案 (16)第10章视频分析与行为识别 (17)10.1 视频分析概述 (17)10.2 目标跟踪技术 (17)10.3 行为识别方法 (17)10.4 深度学习在视频分析中的应用 (17)第11章医学图像识别 (17)11.1 医学图像概述 (18)11.2 医学图像预处理与增强 (18)11.3 医学图像分割与标注 (18)11.4 深度学习在医学图像诊断中的应用 (18)第12章图像识别技术的挑战与展望 (19)12.1 数据安全与隐私保护 (19)12.2 算法可解释性与可靠性 (19)12.3 通用性与自适应学习 (19)12.4 未来发展趋势与展望 (20)好的,以下是一份关于人工智能图像识别技术指南的目录:第1章引言1.1 图像识别技术概述1.2 人工智能与图像识别的关系1.3 图像识别技术的应用领域第2章图像处理基础2.1 数字图像处理概述2.2 图像变换2.3 图像滤波与增强2.4 边缘检测与分割第3章特征提取与表示3.1 特征提取方法3.2 特征表示与度量3.3 常用特征提取算法3.4 特征选择与优化第4章深度学习基础4.1 神经网络简介4.2 卷积神经网络(CNN)4.3 深度学习训练技巧4.4 深度学习框架介绍第5章目标检测技术5.1 目标检测概述5.2 基于候选框的目标检测方法5.3 基于深度学习的目标检测算法5.4 目标检测数据集与评估指标第6章图像分类技术6.1 图像分类概述6.2 传统图像分类算法6.3 深度学习图像分类算法6.4 数据不平衡与过拟合问题第7章场景识别与分割7.1 场景识别概述7.2 基于特征的场景识别方法7.3 深度学习场景识别算法7.4 图像分割技术第8章人体姿态估计8.1 人体姿态估计概述8.2 基于传统方法的姿态估计8.3 基于深度学习的姿态估计8.4 人体姿态估计的应用场景第9章人脸识别技术9.1 人脸识别概述9.2 基于特征的人脸识别方法9.3 深度学习人脸识别算法9.4 人脸识别中的挑战与解决方案第10章视频分析与行为识别10.1 视频分析概述10.2 目标跟踪技术10.3 行为识别方法10.4 深度学习在视频分析中的应用第11章医学图像识别11.1 医学图像概述11.2 医学图像预处理与增强11.3 医学图像分割与标注11.4 深度学习在医学图像诊断中的应用第12章图像识别技术的挑战与展望12.1 数据安全与隐私保护12.2 算法可解释性与可靠性12.3 通用性与自适应学习12.4 未来发展趋势与展望第1章引言1.1 图像识别技术概述图像识别技术作为人工智能领域的一个重要分支,主要研究如何让计算机实现对图像的自动识别和处理。
图像处理中的图像增强与特征提取算法
图像处理中的图像增强与特征提取算法图像处理是数字图像处理的一个重要分支,广泛应用于医学图像、工业检测、视频分析、图像识别等领域。
其中,图像增强和特征提取是两个基本且关键的步骤。
本文将重点介绍图像增强与特征提取算法,并探讨它们在图像处理中的应用。
首先,图像增强是指通过改善图像的视觉效果和质量来提高图像的可视化和识别性能。
图像增强方法可以分为空域增强和频域增强两大类。
空域增强方法直接对原始图像进行像素级别的操作,常见的包括直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过对图像的像素值进行重新分布,来增强图像的对比度和明暗度。
灰度拉伸通过将图像的像素值映射到更大的范围,使得图像的亮度范围更广,从而增强图像的细节。
滤波方法则通过选择合适的滤波器对图像进行平滑或锐化,以去除噪音或增强边缘特征。
频域增强方法则是将图像从空间域转换到频率域进行处理,常用的方法有傅里叶变换和小波变换。
傅里叶变换将图像转化为频谱图像,可以通过滤波频谱图像来进行去噪或增强。
小波变换则可以将图像分解为不同尺度的频域系数,从而对不同频率部分进行独立处理。
图像增强算法的选择主要根据具体应用和需求来进行,不同的算法适用于不同类型的图像和不同的需求。
图像特征提取是指从图像中提取出能够表征图像内容的特征,以用于图像分类、目标检测等任务。
常见的特征提取方法包括颜色特征、纹理特征和形状特征等。
颜色特征是指从图像中提取出描述颜色信息的特征,常用的方法有颜色直方图和颜色矩。
颜色直方图统计了图像中每个颜色在图像中的分布情况,可以用于颜色分类和图像检索等任务。
颜色矩则是用于描述颜色分布的累积特征,可以描述颜色的亮度、对比度和饱和度等。
纹理特征是指从图像中提取出描述纹理信息的特征,常用的方法有灰度共生矩阵和小波纹理。
灰度共生矩阵统计了图像的灰度级别之间的相对位置关系,可以用于纹理分类和图像分割等任务。
小波纹理则是通过对图像进行小波分解和纹理特征的提取,可以获得图像的多尺度纹理特征。
医学图像处理中的边缘检测与特征提取算法
医学图像处理中的边缘检测与特征提取算法边缘检测和特征提取是医学图像处理中至关重要的任务,它们对于医学图像的分析和诊断有着重要的作用。
边缘检测的目标是在图像中找到物体的边界,而特征提取旨在从图像中提取出具有诊断信息的特征。
本文将探讨医学图像处理中常用的边缘检测算法和特征提取算法,并介绍它们在医学图像分析中的应用。
边缘检测是医学图像处理中的基本任务之一。
边缘是图像中亮度或颜色变化较大的区域,通过检测边缘可以帮助医生准确地定位和测量图像中的结构。
经典的边缘检测算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种简单且高效的边缘检测算法。
它通过计算图像的梯度来找到边缘。
Sobel算子的优点是计算速度快,适用于实时应用,但它对噪声敏感,并且在边界模糊或弯曲的区域效果不好。
Prewitt算子和Sobel算子类似,也是通过计算图像的梯度来检测边缘。
与Sobel算子相比,Prewitt算子更加简单,但也更加粗糙。
Prewitt算子对噪声的鲁棒性较好,但在边界模糊或弯曲的区域效果也不理想。
Canny算子是边缘检测中最常用的算法之一。
它通过多阶段的过程来检测边缘,具有很好的抑制噪声、定位精度高、对边界模糊的抗干扰能力等优点。
Canny算子的主要步骤包括高斯滤波、计算图像梯度、非极大值抑制和双阈值处理。
在医学图像处理中,边缘检测常被用于图像分割、辅助诊断等任务。
例如,通过对肿瘤边缘进行检测和分割,可以帮助医生判断肿瘤的类型和大小,从而做出更精确的诊断。
此外,边缘检测还可以用于心脏图像分析、眼底图像分析等领域。
特征提取是医学图像处理中另一个重要的任务。
特征是指在图像中具有区分度的可测量属性,例如纹理、形状、颜色等。
通过提取图像中的特征,可以帮助医生定量评估病变的性质和程度,提高诊断的准确性和可靠性。
医学图像处理中常用的特征提取算法包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和人工神经网络(ANN)。
图像处理中的特征提取与图像识别算法
图像处理中的特征提取与图像识别算法图像处理是一门涉及数字信号处理、计算机视觉和模式识别的多学科交叉学科。
特征提取(feature extraction)和图像识别算法(image recognition algorithms)是图像处理中两个重要的研究领域。
本文将介绍特征提取的概念、方法和常用算法,并探讨图像识别算法的原理和应用。
一、特征提取特征提取是图像处理中的一项重要任务,其目的是从原始图像中提取出有代表性、具有辨识度和可用性的特征,以实现对图像的分析、识别和理解。
常见的特征提取方法有以下几种:1. 基于形状和空间的特征提取:形状特征是基于图像中的几何形状、轮廓和边界提取的,常用的方法有Hough变换、边缘检测和轮廓分析等。
空间特征则是通过对图像的空间位置和分布进行分析,常见的方法有纹理分析、颜色直方图和尺度不变特征变换(SIFT)等。
2. 基于频域的特征提取:频域特征是通过对图像进行傅里叶变换或小波变换等频域分析方法得到的,可以用于图像的频率特征、能量特征和相位特征提取等。
常见的方法有离散傅里叶变换(DFT)、快速傅里叶变换(FFT)和小波变换等。
3. 基于统计的特征提取:统计特征是通过对图像中像素值的统计分析得到的,可以用于图像的平均值、方差、熵等特征提取。
常见的方法有灰度共生矩阵(GLCM)、灰度差异度(Contrast)和相关性(Correlation)等。
二、图像识别算法图像识别算法是通过特征提取和模式匹配等技术,将图像与已有的模型进行比对和匹配,从而实现对图像内容的自动识别和分类。
以下是几种常见的图像识别算法:1. 模板匹配算法:模板匹配是一种基本的图像识别算法,通过将已知的模板与待匹配图像进行比对,找出最相似或最相关的部分。
常用的方法有均方差匹配和相关性匹配等。
2. 主成分分析(PCA)算法:PCA是一种常用的降维算法,它通过线性变换将高维数据转换为低维的特征空间,从而实现对数据进行压缩和降维。
f检验表完整版
f检验表完整版一、F检验的概述1.F检验的定义F检验,又称F分布检验,是一种用于比较两个样本均值是否显著不同的统计方法。
它是由英国统计学家威廉·戈塞特(William Gosset)在20世纪初发现的,主要用于方差分析、独立性检验和拟合优度检验等。
2.F检验的应用场景F检验广泛应用于以下场景:(1)方差分析:在实验设计中,比较多个实验组与对照组的均值差异是否显著。
(2)独立性检验:检验两个分类变量之间是否存在显著关联。
(3)拟合优度检验:评估线性回归模型的拟合效果,检验观测值与预测值之间的差异是否显著。
二、F检验的计算过程1.总体方差的计算总体方差(σ)表示所有观测值与总体均值之间的差异平方和的平均值。
计算公式为:σ= Σ(xi - μ)/ n其中,xi为每个观测值,μ为总体均值,n为样本数量。
2.样本方差的计算样本方差(S)表示样本中每个观测值与样本均值之间的差异平方和的平均值。
计算公式为:S = Σ(xi - x)/ (n - 1)其中,xi为每个观测值,x为样本均值,n为样本数量。
3.F值的计算F值是用来比较总体方差与样本方差的比值。
计算公式为:F = (Σ(xi - μ)/ σ) / (Σ(xi - x)/ S)4.F检验的判断标准当F值大于临界值时,认为两个样本的均值存在显著差异。
临界值的确定取决于显著性水平和自由度。
自由度等于样本数量减去1。
三、F检验的优缺点1.优点(1)F检验具有较强的推断能力,可以较为准确地判断均值差异。
(2)适用范围广泛,可以应用于多种统计分析场景。
2.缺点(1)对样本数量有一定要求,当样本数量较小(如n < 30)时,F检验的准确性降低。
(2)对总体分布有一定要求,当总体分布与假设不符时,F检验的结果可能出现偏差。
四、F检验在实际应用中的案例分析1.案例介绍某研究者想要探究不同教学方法对学生数学成绩的影响,随机抽取了两个班级进行实验。
实验结束后,分别计算出两个班级的数学成绩均值,分别为70和80。
数字图像处理(MATLAB版)(第2版)
目录分析
1.1数字图像处理的 发展
1.2数字图像的相关 概念
1.3数字图像处理的 内容
1.4数字图像处理的 方法
1
1.5图像数字 化技术
2
1.6图像的统 计特征
3
1.7数字图像 的应用
4
1.8 MATLAB 领略
5 1.9 MATLAB
图像处理应用 实例
小结
习题
1
2.1图像类型 的转换
2
2.2线性系统
数字图像处理(MATLAB版)(第2版)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
几何变换
技术
图像
基础
图像
特征
数字图像处理
版
数字图像
内容 小结
数字图像
第版
习题
边界
第章
图像增强
滤波
运算
内容摘要
本书主要内容包括:全书共10章,分别介绍了数字图像的相关论述、数字图像的处理基础、图像编码、图像 复原、图像几何变换、图像频域变换、图像几何变换、小波变换、图像增强、图像分割与边缘检测及图像特征描 述等内容。
10.8形态学重建 10.9特征度量
小结 10.10查表操作
习题
作者介绍
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,暂无该书作者的介绍。
读书笔记
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的心得。
精彩摘录
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的精彩内容摘录。
图像特征的选择与提取
设P(j,i)为图像的第j个像素的第i个颜色分量值,一阶 矩为:
i
1 N
N
Pji
j 1
即表示待测区域的颜色均值 。
第11页/共31页
二阶矩(Variance)
i
(1 N
N
(Pij i )2 )1/ 2
j 1
表示待测区域的颜色方差,即不均匀性。
第12页/共31页
三阶矩(Skewness)
si
第23页/共31页
• 设f(i,j)是(i,j)处的像素值,(i,j)位置处的边缘强度通常用差分值或其函数来表示。简单的差分算法有: • x方向差分值:△xf(i,j)= f(i,j)- f(i,j-1) • y方向差分值:△yf(i,j)= f(i,j)- f(i-1,j) • 边缘强度 = |△xf(i,j)| + | △yf(i,j)| 或 • = △x2f(i,j) + △y2f(i,j),
图像特征
常见的目标特征分为灰度(颜色)、纹理和几何形状特征等。其中,灰度和纹理属于内部特征,几何 形状属于外部特征。
第4页/共31页
纹理特征 第5页/共31页
几何特征,判断凹凸
第6页/共31页
• 选取的特征应具有如下特点: • ❖ 可区别性 • ❖ 可靠性 • ❖ 独立性好 • ❖ 数量少 • ❖ 对尺寸、变换、旋转等变换尽可能不敏感
第21页/共31页
点特征提取
• 点特征主要指图像中的明显点,如房屋角点、圆点等.用于点特征提取得算子称为有利算子或兴趣算子
第22页/共31页
二值图像的边缘特征提取
• 二值图像边缘特征提取的过程实际上是寻找像素灰度值急剧变 化的位置的过程,并在这些位置上将像素值置为“1”,其余位 置上的像素值置为“0”,从而求出目标的边界线。二值图像的 边特征提取是用数学算子实现的,如Sobel、Prewitt、 Kirsch、拉普拉斯等多种算子。这些算子都是以一个3×3的模 板与图像中3×3的区域相乘,得到的结果作为图像中这个区域 中心位置的边缘强度。在计算出图像中每一个像素的边缘强度 后,将边缘强度大于一定值的点提取出来,并赋以像素值“1”, 其余赋以像素值“0”。
数字图像处理-位图基础知识
第一章位图的基础知识现代计算机和其他电子设备进行和完成的一系列工作为图像采集、获取、编码、存储、和传输,图像的合成和产生、图像的显示、绘制、和输出,图像变换、增强、恢复和重建,特征的提取和测量,目标的检测、表达和描述,序列图像的校正,图像数据库的建立、索引、查询和抽取,图像的分类、表示和识别,3D景物的重建复原,图像模型的建立,图像知识的利用和匹配,图像场景的解释和理解,以及基于它们的推理、判断、决策和行为规划。
图像增强图像增强是用以改善供人观看的图像的主观质量,而不一定追究图像降质的原因。
图像复原找出图像降质的原因,并尽可能消除它,使图像恢复本来面目。
常用的恢复有纠正几何失真、从已知图像信号和噪声信号的统计入手,用Wiener滤波等方法来改善信噪比。
图像变换图像处理的方法可以分为两大类空域法和频域法。
常用的图像变换有傅里叶变换、DCT变换、小波变换等。
图像编码根据香农的率失真真理,在传输和存储时,都可对数字图像进行一定方式编码,删除其中冗余信息,实现不失真压缩,或在容许失真限度内的进行有失真压缩,以换取更大的压缩率。
图像配准可以近似的看成匹配的过程,简单地说就是根据图像的某系区域或者特征,在另一幅图中找到对应的区域或者特征。
图像配准在图像识别、图像拼接、三维图像的重建等方面有着重要的应用。
图像分析和特征提取图像分析的内容分为特征提取、符号描述、目标检测、今晚匹配和识别等几个部分。
图像特征和指图像场中可用作标志的属性,其中有些是视觉直接感受到自然特征,如区域的亮度、彩色、纹理、或轮廓等有些事需要通过变换或测量才可得到的人为特征,如各种变换频谱、直方图、矩等。
图像特征提取就是从图像中提取出某些可能涉及到高层语义信息的图像特征。
目标和运动检测自动目标检测和交互目标检测。
图像分割人能方便地佛纳甘一副图像中找出感性趣的物体和区域,而要让计算机做到这一点需要他客观的测度,使之能按照灰度、颜色或几何特征性质等把一些物体或区域加以分离。
图像的特征提取
图像的特征提取⽹上发现⼀篇不错的⽂章,是关于图像特征提取的,给⾃⼰做的项⽬有点类似,发出来供⼤家参考。
特征提取是计算机视觉和图像处理中的⼀个概念。
它指的是使⽤计算机提取图像信息,决定每个图像的点是否属于⼀个图像特征。
特征提取的结果是把图像上的点分为不同的⼦集,这些⼦集往往属于孤⽴的点、连续的曲线或者连续的区域。
特征的定义⾄今为⽌特征没有万能和精确的定义。
特征的精确定义往往由问题或者应⽤类型决定。
特征是⼀个数字图像中“有趣”的部分,它是许多计算机图像分析的起点。
因此⼀个算法是否成功往往由它使⽤和定义的特征决定。
因此特征提取最重要的⼀个特性是“可重复性”:同⼀场景的不同图像所提取的特征应该是相同的。
特征提取是图象处理中的⼀个初级运算,也就是说它是对⼀个图像进⾏的第⼀个运算处理。
它检查每个像素来确定该像素是否代表⼀个特征。
假如它是⼀个更⼤的算法的⼀部分,那么这个算法⼀般只检查图像的特征区域。
作为特征提取的⼀个前提运算,输⼊图像⼀般通过⾼斯模糊核在尺度空间中被平滑。
此后通过局部导数运算来计算图像的⼀个或多个特征。
有时,假如特征提取需要许多的计算时间,⽽可以使⽤的时间有限制,⼀个⾼层次算法可以⽤来控制特征提取阶层,这样仅图像的部分被⽤来寻找特征。
由于许多计算机图像算法使⽤特征提取作为其初级计算步骤,因此有⼤量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也⾮常不同。
边缘边缘是组成两个图像区域之间边界(或边缘)的像素。
⼀般⼀个边缘的形状可以是任意的,还可能包括交叉点。
在实践中边缘⼀般被定义为图像中拥有⼤的梯度的点组成的⼦集。
⼀些常⽤的算法还会把梯度⾼的点联系起来来构成⼀个更完善的边缘的描写。
这些算法也可能对边缘提出⼀些限制。
局部地看边缘是⼀维结构。
⾓⾓是图像中点似的特征,在局部它有两维结构。
早期的算法⾸先进⾏边缘检测,然后分析边缘的⾛向来寻找边缘突然转向(⾓)。
后来发展的算法不再需要边缘检测这个步骤,⽽是可以直接在图像梯度中寻找⾼度曲率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 一些细节
dims:指定需要统计的特征数目。在上例中,因为只统计灰度值, 所以 dims = 1。 sizes:指定每个特征空间子区域的数目。在上例中,sizes = {8}, 即 sizes[0] = 8。 ranges (均匀直方图) : 指定每个特征空间的取值范围, 即 ranges[i] 表示第 i 维的下界和上界。此时,第 i 维的整个区域均匀分割成 sizes[i]个子区域。 例如, 若 sizes = {8, 4}, 且 ranges={{0, 256}, {10, 70}},则 ranges[0]表示范围[0, 256),且均匀分割成 8 个子区域, ranges[1]表示范围[10, 70),且均匀分割成 4 个子区域。 ranges(非均匀直方图) :各特征空间取值范围的分割。例如,若 sizes = {4, 3}, 且 ranges = {{0, 56, 129, 233, 256}, {10, 20, 50, 70}}, 则 ranges[0]表示子区域[0, 56)、[56, 129)、[129, 223)和[233, 256), ranges[1]表示子区域[10, 20)、[20, 50)和[50, 70)。 在 OpenCV 中,ranges 统称为直方块范围数组。
11
CvArr *bins = hist->bins; // 直方图数据 int w = 512, h = 256, maxy = h - 1; // 结果图像大小, 最大y坐标 // 使直方图高度和结果图像高度一致 cvNormalize(bins, bins, 0, maxy, CV_MINMAX, NULL); // 绘制直方图(线段) CvMat *dst = cvCreateMat(h, w, CV_8U); // 结果图像是黑白的 cvSet(dst, cvScalarAll(255), 0); // 结果图像使用白色背景 int dx = w / size; // 子区域宽度 for(int i = 0; i < size; ++i) { int x = i * dx + dx / 2, y = cvGetReal1D(bins, i); CvPoint pt1 = {x, maxy}, pt2 = {x, maxy - y}; // 下、上端点 // 线段:黑色,线宽=1,8邻接线,不移位 cvLine(dst, pt1, pt2, cvScalarAll(0), 1, 8, 0); }
15
15.1.5
直方图均衡化
1. 直方图均衡化的目的 直方图均衡化也是一种对于灰度的变换,但它与前述章节介 绍的线性变换有所不同。线性变换是把像素的灰度分布扩展到较 大灰度域去的一种灰度变换,而直方图均衡化则一方面要求尽量 扩展灰度的分布域;另一方面更重要的是,要努力使每一个灰度 级上的频度尽可能一致。 这种力求使灰度分布域上的频度趋近一致化的努力是有道理 的。因为频度趋于一致的图像使人感觉色调沉稳、安定,在许多 情况下这意味着图像质量“ 好”。当然,在某些情况下,如为了追 求艺术上的新与奇而故意打破这种一致性,有时也能产生出好的 图像来。
2. cvCreateHist 函数原型:
CvHistogram *cvCreateHist(int dims, int *sizes, int type, float **ranges, int uniform);
功能:创建一个指定尺寸的直方图,返回新直方图的地址。 参数: dims:直方图的维数,即待统计特征的数目。 sizes:直方图各维的大小。 type:直方图的表示格式,可选 CV_HIST_ARRAY (密集数组)或 CV_HIST_SPARSE(稀疏数组) 。 ranges:直方图中各维的取值范围(均匀直方图)或 各维取值范围的分割(非均匀直方图) 。 uniform:均匀标识。
6 4 2 0 0 2 4 6
图 15-1 图像数据
图 15-2 灰度直方图
因为根据图像数据,灰度值为 0, 1, 2, 3, 4, 5, 6, 7 的像素的频 度分别是 1, 2, 6, 2, 3, 1, 0, 1,因此在灰度刻度的 0~7 处分别作一 条以该灰度值对应的频度值为长度的直线即可完成该图像的灰度 直方图。
1 2 1 2 3 4 2 4 2 0 3 4 7 2 5 2 1 4 1 4 5 5 4 5 4 0 5 5 7 4 7 6
7
15.1.3
OpenCV 中的相关类型和函数
1. CvHistogram
typedef struct { int type; // 直方图的表示格式 CvArr *bins; // 实际存储直方图数据的数组 float thresh[CV_MAX_DIM][2]; // 均匀直方图的各维取值范围 float **thresh2; // 非均匀直方图的各维子区域(分割) CvMatND mat; // 内部使用的直方图数组矩阵头 } CvHistogram;
32 75 40 75 96 128 80 135 64 15 100 150 224 64 160 64
图 15-3 一个数字矩阵及其直方图
灰度值的范围包含 256 个值,可以将这个范围分割成若干子 区域, 如 8 个均匀子区域, 即 [0,256) [0, 32) [32, 64) ... [224, 256) 。 将灰度值范围分割成若干子区域以后,统计灰度值属于每一 个子区域的像素数目。 采用这一方法来统计上面的数字矩阵,可以得到如图 15-3 右 侧所示的直方图 ( x 轴表示子区域,y 轴表示属于各个子区域的像 素个数) 。
湖南科技大学课程教案
(章节、专题首页)
授课教师: 课程名称 章节、专题 教学目标及 基本要求 王志喜 职称: 副教授 单位: 计算机学院
计算机图形图像处理技术 图像解析 掌握最常用的图像特征统计工具和二值化、边缘检测、 轮廓检测等常用的图像分割方法。 1、图像的灰度直方图 教学重点 2、图像的二值化 1、图像的灰度直方图 教 学 难 点 2、图像的二值化 3、轮廓检测
3
15.1.1
直方图的表示
通常,灰度直方图的横轴表示灰度值,纵轴用来表示频度。 频度是具有某一灰度值(或灰度值属于某一子区域)的像素在图 像中出现的次数。例如,有一幅 4 4 的 8 灰度级图像,图像数据 及其灰度直方图分别如图 15-1 和图 15-2 所示。
1 2 1 2 3 4 2 4 2 0 3 4 7 2 5 2
4
15.1.2
OpenCV 中的直方图操作
在 OpenCV 中,直方图是对数据集合的统计,并将统计结果 分布于一系列预定义的子区域中。 这里的数据不仅仅是灰度值,也可以是其它能有效描述图像 的特征(如梯度,方向等) ,还可以是多个特征空间中的数据(例 如,多通道图像) 。
5
1. 统计方法 举例说明。 假设有一个矩阵包含一张图像的灰度值 (如图 15-3 左侧所示) 。
16
2. 直方图均衡化的处理 直方ห้องสมุดไป่ตู้均衡化的处理是按照下列方法完成的。 计算源图像的总像素数G 。 计算源图像的直方图 H 。 计算直方图积分: H '(i) H(j) 。
j 0 i
直方图积分规范化:将直方图积分从区间 [0,G] 变换到整 数区间 [0,255] (计算公式为 y 255x /G , 使用舍入取整) 。
9
3. cvCalcHist 函数原型:
void cvCalcHist(IplImage **image, CvHistogram *hist, int accumulate, CvArr *mask);
功能:计算图像的直方图。 参数: image : 输 入图 像数组( 也可以使 用 CvMat** 和 CvArr**,不过可能有编译警告) 。 hist:直方图指针。 accumulate:累计标识。如果设置,则直方图在开始 时不清零,从而可以为多个图像计算一个单独的直 方图,或者在线更新直方图。 mask:确定输入图像的哪些像素被计数。 说明:该函数计算单通道或多通道图像的直方图。
13
2. 使用示例 程序运行结果如图 15-4 所示。
图 15-4 灰度图像的直方图
14
// hist.c #include<opencv/cv.h> #include<opencv/highgui.h> #include "cvv.h" // cvvRelease int main() { CvMat *X = cvLoadImageM("lena.jpg", 0); // 载入灰度图像 if(X == 0) return -1; // 载入图像失败 cvShowImage("Image", X); // 显示原图像 cvvDrawHist1D(X, 128); while(cvWaitKey(0) != 27) {} // 等待按Esc键 cvvRelease(&X); // 释放图像 cvDestroyAllWindows(); // 释放窗口 }
采用 H ' 作为查询表对进行图像变换( di H '(si) ) 。 注意,直方图均衡化后灰度等级数很可能会减少。
17
例如, 对于图 15-1 所示的图像数据, 实际操作如图 15-5 所示 (注意, 这里只有 8 个灰度级, 所以直方图积分使用公式 y 7x /16 进行规范化) 。容易看出,直方图均衡化后灰度等级由 7 个变成了 5 个。
1
1、图像的灰度直方图(0.75 课时) 2、图像的二值化(0.75 课时) 教学内容与 3、边缘检测(0.75 课时) 时间分配 4、轮廓检测(0.75 课时) 共计 3 课时。 习 题
2
第 15 章 图像解析 15.1 图像的灰度直方图