图像特征提取总结

合集下载

图像特征提取方法详解(Ⅲ)

图像特征提取方法详解(Ⅲ)

图像特征提取方法详解图像特征提取是计算机视觉和图像处理领域中的一个重要任务,它是对图像中的信息进行分析和提取,以便进行后续的图像识别、分类和分析。

在图像处理和计算机视觉应用中,图像特征提取是至关重要的一步,因为它直接影响了后续处理的结果。

一、图像特征的概念图像特征是指图像中能够表征其内容和结构的可测量属性。

常见的图像特征包括颜色、纹理、形状、边缘等。

这些特征可以帮助我们理解图像的含义,区分不同的物体、场景和结构。

二、图像特征提取的方法1. 颜色特征提取颜色是图像中最直观和重要的特征之一。

常用的颜色特征提取方法包括直方图统计、颜色矩和颜色空间转换。

直方图统计是通过统计图像中每种颜色出现的频率来提取颜色特征,它可以帮助我们了解图像中的主要颜色分布。

颜色矩是一种用于描述颜色分布和颜色相关性的方法,它可以帮助我们定量地比较不同图像之间的颜色特征。

颜色空间转换则是将图像的RGB颜色空间转换为其他颜色空间(如HSV、Lab等),以便更好地提取颜色特征。

2. 纹理特征提取纹理是图像中的重要特征之一,它可以帮助我们理解图像中的细节和结构。

常见的纹理特征提取方法包括灰度共生矩阵、小波变换和局部二值模式。

灰度共生矩阵是一种用于描述图像纹理结构的统计方法,它可以帮助我们了解图像中不同区域的纹理分布。

小波变换是一种多尺度分析方法,它可以帮助我们提取图像中不同尺度和方向的纹理特征。

局部二值模式是一种用于描述图像局部纹理特征的方法,它可以帮助我们快速提取图像中的纹理信息。

3. 形状特征提取形状是图像中的重要特征之一,它可以帮助我们理解图像中的对象和结构。

常见的形状特征提取方法包括边缘检测、轮廓提取和形状描述子。

边缘检测是一种用于提取图像中边缘信息的方法,它可以帮助我们理解图像中的对象轮廓和结构。

轮廓提取是一种用于提取图像中对象轮廓信息的方法,它可以帮助我们理解图像中的对象形状和结构。

形状描述子是一种用于描述图像对象形状特征的方法,它可以帮助我们快速提取图像中的形状信息。

4-图像特征提取

4-图像特征提取
变量X,若其服从一个数学期望为 、
标准方差为 2 的高斯分布,那么就可以记为
X ~ N(, 2)
其概率密度函数为
f (x)
1
e
(
x) 2 2
2
2
高斯分布的期望值 决定了其住置,其标准差 决定了分布的幅度
在得到直方图高斯分布模型之后,可以进行指定模式信 息的检测,如肤色检测。 有了高斯分布模型f(x),那么指定模式信息的检测可以转
形状的描述也是困难的问题,常用的方法有傅立叶描述子,矩不 变量,各种简单的形状因子(如面积、圆度、偏心度、主轴方向) 等。 除了这些全局特征以外,有时也用一些局部特征(如
等),以解决遮挡问题。
经典的Hough变换主要涉及图像中的直线检测, 但是后来Hough变换 得到了扩展,被用于任意形状位置的检测,其中最常用的是圆形或 椭圆。 ■ Hough变换最简单的示例就是用于直线检测的线性变换。
关于直方图处理,主要涉及直方图均衡化,直方图高斯模型;
对于形状特征提取,给出了两种具体的计算方法,包括Hough变 换和傅里叶描述子,其中傅里叶描述子与傅里叶变换是紧密相连 的。
对于纹理特征提取,介绍了两种纹理分析方法,分别为统计分析
方法和频谱分析方法。
进一步讨论了三种用于纹理分析的频域变换,包括傅里叶变换, Gabor变换。
对于彩色信息处理,主要讲述几种常见的色彩空间;
对于灰度信息处理,主要讲述直方图技术。
根据人眼结构,所有颜色都可看作是3个基本颜色—红(Red) , 绿(Green)和蓝(Blue)—的不同组合。
在RGB颜色空间的原点上,任一基色均没有亮度,即原点为黑色。 三基色都达到最高亮度时表现为白色。亮度较低等量的三种基色产生
240度

遥感图像的特征提取与空间分析方法

遥感图像的特征提取与空间分析方法

遥感图像的特征提取与空间分析方法遥感图像是一种通过卫星、飞机等远距离方式获取地球表面信息的技术。

随着遥感技术的不断进步和应用领域的拓展,遥感图像的特征提取和空间分析方法也成为研究的热点之一。

本文将探讨遥感图像特征提取与空间分析方法的相关内容,包括常用的特征提取方法、特征的分类和应用以及空间分析方法的原理和应用。

一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是最基础的一种方法,它通过分析每个像素点的亮度、颜色等属性来提取图像特征。

常见的方法有灰度共生矩阵、颜色直方图和纹理特征等。

其中,灰度共生矩阵通过计算像素之间的灰度分布概率来描述图像的纹理特征,颜色直方图通过统计图像中像素的颜色分布情况来提取图像的颜色特征。

2. 基于区域的特征提取方法基于区域的特征提取方法是将图像分割成若干个区域,然后提取每个区域的特征。

常用的方法有边缘检测、聚类分析和形态学处理等。

边缘检测可以提取图像中的边界信息,聚类分析可以将相似的像素点分到同一个区域中,形态学处理可以提取图像中的纹理和形状信息。

二、特征的分类和应用根据特征的性质和应用场景的不同,特征可以分为几何特征、频谱特征和纹理特征等。

几何特征包括面积、周长、形状等,频谱特征包括反射率、辐射度等,纹理特征包括纹理均匀度、纹理方向等。

这些特征在不同领域的应用也有所不同。

1. 土地利用与覆盖变化研究土地利用与覆盖变化研究是遥感图像应用的一个重要领域,它可以通过提取图像的频谱特征和纹理特征来监测和分析土地的利用情况和覆盖变化。

例如,利用遥感图像的反射率特征可以判断农田的健康状况,利用纹理特征可以分析城市建设的扩张情况。

2. 灾害监测与评估灾害监测与评估是遥感图像应用的另一个重要领域,它可以通过提取图像的几何特征和纹理特征来识别和分析灾害的类型和程度。

例如,在地震灾害监测中,可以利用遥感图像的几何特征和纹理特征来评估建筑物的倒塌程度和人员伤亡情况。

三、空间分析方法空间分析方法是对遥感图像进行空间变化和空间关系分析的一种方法。

图像处理中的图像特征提取方法与技巧

图像处理中的图像特征提取方法与技巧

图像处理中的图像特征提取方法与技巧图像处理是一门研究数字图像的领域,其目标是通过一系列的处理步骤来改善图像的质量或提取出其中的有用信息。

其中,图像特征提取是图像处理中的重要环节之一。

本文将介绍一些常用的图像特征提取方法和技巧。

1. 灰度特征提取灰度特征提取是图像处理中最基本的特征提取方法之一。

通过将彩色图像转换为灰度图像,可以提取出图像的亮度信息。

常用的灰度特征包括图像的平均灰度值、灰度直方图、对比度等。

这些特征可以反映出图像的整体明暗程度和灰度分布情况,对于一些亮度信息相关的任务,如人脸识别、目标检测等,具有重要意义。

2. 形态学特征提取形态学特征提取通过对图像进行形态学运算,如腐蚀、膨胀、开闭运算等,来提取出图像的形态信息。

比如,利用腐蚀和膨胀运算可以提取出图像的边缘信息,通过开闭运算可以获取到图像的拐点信息和孤立点信息。

形态学特征提取在图像的边缘检测、形状分析等领域中得到广泛应用。

3. 纹理特征提取纹理特征提取是指从图像中提取出具有纹理信息的特征。

图像的纹理是指图像中像素之间的空间关系,比如纹理的平滑度、粗糙度、方向等。

常见的纹理特征提取方法包括灰度共生矩阵(GLCM)、灰度差值矩阵(GLDM)等。

这些方法通过统计邻近像素之间的灰度差异来描述图像的纹理特征,对于物体识别、纹理分类等任务非常有用。

4. 频域特征提取频域特征提取是指通过对图像进行傅里叶变换或小波变换,从频域角度分析图像的特征。

对于傅里叶变换,可以得到图像的频谱图,从中提取出一些频域特征,如频谱能量、频谱密度等。

而小波变换则可以提取出图像的频率和幅度信息。

频域特征提取在图像压缩、图像识别等领域具有广泛应用。

5. 尺度空间特征提取尺度空间特征提取是指通过在不同的尺度下分析图像的特征,提取出图像的空间尺度信息。

常用的尺度空间特征提取方法包括拉普拉斯金字塔、高斯金字塔等。

这些方法可以从图像的多个尺度下提取出不同的特征,对于物体的尺度不变性分析、尺度空间关系分析等任务非常有用。

SIFT算法提取特征总结

SIFT算法提取特征总结

SIFT算法提取特征总结SIFT(Scale-Invariant Feature Transform)算法是一种用于图像特征提取的算法,它能够从图像中提取出具有尺度不变性的关键点,并计算出这些关键点的描述子,从而实现图像的匹配、识别等任务。

下面将对SIFT算法进行总结。

一、SIFT算法的基本思想1.构建高斯金字塔:通过不同尺度的高斯滤波器对原始图像进行平滑,得到一系列不同尺度的图像。

2.构建高斯差分金字塔:对高斯金字塔进行相邻层之间的差分,得到一系列不同尺度的差分图像。

3.寻找关键点:在每个尺度的差分图像中,通过比较一个像素与其周围的26个像素,判断是否为极值点,这些极值点即为关键点。

4.精确定位关键点位置:通过插值计算关键点的亚像素位置。

5.确定关键点的尺度和方向:根据关键点的尺度和梯度方向,构建关键点的方向直方图,找到主方向。

6.计算关键点的描述子:根据关键点周围的图像局部梯度,构建特征向量,得到关键点的描述子。

二、SIFT算法的特点1.尺度不变性:SIFT算法通过高斯金字塔和高斯差分金字塔的构建,使得算法对图像的尺度变化具有不变性,能够在不同尺度上检测到相同的关键点。

2.旋转不变性:SIFT算法通过确定关键点的主方向,将关键点的描述子旋转到相同的方向,使得算法对图像的旋转变化具有不变性。

3.具有唯一性:SIFT算法通过极值点检测和亚像素插值,能够找到图像中稳定的关键点,并且能够通过描述子计算,使得关键点具有唯一性。

4.强鲁棒性:SIFT算法通过对图像局部梯度的计算,能够对光照、噪声等变化具有鲁棒性,使得算法具有较好的稳定性。

三、SIFT算法的应用1.图像匹配:通过提取图像的关键点和描述子,将两幅图像进行特征点的匹配,从而实现图像的对齐、拼接等任务。

2.物体识别:通过提取物体图像的SIFT特征,并建立特征数据库,可以对未知图像进行特征的匹配和识别,实现物体的检测和识别。

3.目标跟踪:将目标物体的SIFT特征提取出来,并通过匹配目标特征和图像中的特征点,可以进行目标的跟踪和定位。

图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。

在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。

本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。

一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。

颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。

常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。

直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。

颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。

颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。

1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。

纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。

常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。

灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。

小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。

局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。

1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。

形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。

常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。

轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。

图像特征及图像特征提取

图像特征及图像特征提取

图像特征及图像特征提取图像特征是图像中的显著和重要的信息,用于描述和区分不同的图像。

图像特征提取是从图像中提取这些特征的过程。

图像特征可以分为两类:全局特征和局部特征。

全局特征是整个图像的统计性质,例如颜色直方图、颜色矩和纹理特征等。

局部特征则是在图像的局部区域中提取的特征,例如SIFT(尺度不变特征变换)、HOG(方向梯度直方图)和SURF(加速稳健特征)等。

图像特征提取的过程可以分为以下几步:1.预处理:对图像进行去噪、图像增强、颜色空间转换等处理,以提高图像的质量和可分辨性。

2.特征选择:根据具体应用需求和图像特征的表达能力,选择适合的特征。

例如,对于目标识别任务,可以选择具有良好局部不变性和可区分性的局部特征。

3.特征提取:根据选择的特征,从图像中提取特征。

对于全局特征,可以使用颜色直方图、颜色矩、纹理特征等方法;对于局部特征,可以使用SIFT、HOG、SURF等方法。

4.特征表示:将提取的特征表示为向量或矩阵形式,以便后续的分类、检索或识别任务。

5.特征匹配:对于图像检索、图像匹配等任务,需要将查询图像的特征与数据库中的图像特征进行比较和匹配,找到最相似的图像。

图像特征提取的方法和算法有很多,以下是一些常用的方法:1.颜色特征:颜色是图像的重要特征之一、颜色直方图描述了图像中每个颜色的分布情况,颜色矩描述了图像中颜色的平均值和方差等统计性质。

2.纹理特征:纹理是图像中的重要结构信息。

常用的纹理特征提取方法有灰度共生矩阵、方向梯度直方图、小波变换等。

3.形状特征:形状是物体的基本属性之一、形状特征提取方法有边缘检测、形状描述子等。

4.尺度不变特征变换(SIFT):SIFT是一种局部特征提取方法,具有尺度不变性和旋转不变性,适用于图像匹配和目标识别任务。

5.方向梯度直方图(HOG):HOG是一种局部特征提取方法,通过计算图像中每个像素的梯度方向和强度,获得图像的局部特征。

6.加速稳健特征(SURF):SURF是一种局部特征提取方法,具有尺度不变性和旋转不变性,适用于图像匹配和目标识别任务。

图像特征提取技术综述

图像特征提取技术综述

图像特征提取技术综述图像特征提取技术综述摘要:图像特征提取是计算机视觉领域中的一个重要研究方向。

它的目标是从图像中提取出具有代表性的信息,用于图像分类、目标识别、目标跟踪等应用。

本综述将对常用的图像特征提取技术进行概述,并分析其优劣和适用场景。

一、颜色特征提取技术颜色是图像的重要属性之一,具有信息丰富且易于理解的特点。

常用的颜色特征提取方法有:颜色直方图、颜色矩和颜色共生矩阵。

颜色直方图表示图像中各个颜色的分布情况,可以用来描述图像的整体颜色分布特征。

颜色矩是对颜色分布进行统计的特征,能够表征图像的颜色平均值、离散度等信息。

颜色共生矩阵则可以提取纹理信息,通过统计图像中相邻像素间的灰度值搭配出现频率来描述图像的纹理特征。

二、形状特征提取技术形状是物体的重要特征之一,对于图像分类和目标识别等任务有着重要的作用。

常用的形状特征提取方法有:边缘检测和轮廓提取、形状上下文和尺度不变特征变换(SIFT)。

边缘检测和轮廓提取是将图像中的边缘和轮廓提取出来,可以用来描述物体的形状特征。

形状上下文是描述物体形状的一种方法,它将物体的形状分解为多个小区域,通过计算各个区域之间的相对位置关系来表示形状。

SIFT是一种可旋转、尺度不变的局部特征描述子,通过检测图像中的局部极值点并计算其方向直方图来描述图像的形状特征。

三、纹理特征提取技术纹理是图像中一些重要的结构特征,对于图像分析和识别具有重要的作用。

常用的纹理特征提取方法有:灰度共生矩阵、Gabor滤波器和小波变换。

灰度共生矩阵是一种用来描述纹理特征的统计方法,通过计算图像中相邻像素间灰度搭配出现频率来描述纹理的复杂程度。

Gabor滤波器是一种基于小波变换的滤波器,通过对不同尺度和方向的Gabor滤波器的响应进行统计来描述纹理特征。

小波变换是将图像分解为不同尺度和方向的频域信息,通过计算不同尺度和方向下的能量和相位特征来描述纹理特征。

四、深度学习在图像特征提取中的应用深度学习是近年来兴起的一种机器学习方法,它通过构建多层神经网络来学习图像的特征表示。

医学影像数据的特征提取与分类方法研究

医学影像数据的特征提取与分类方法研究

医学影像数据的特征提取与分类方法研究一、引言医学影像学是一门研究人体内部结构与功能的学科,它通过采集和分析影像数据来帮助医生进行疾病的诊断与治疗。

随着医学影像技术的迅速发展,大量的医学影像数据产生并不断积累,如何从这些庞大的数据中准确、快速地提取特征,并进行有效的分类成为当前医学影像学领域的研究热点之一。

本文将对医学影像数据的特征提取与分类方法进行系统的研究和探讨。

二、医学影像数据的特征提取方法1. 传统的特征提取方法传统的医学影像数据特征提取方法主要包括基于统计学的方法、形态学方法和滤波方法。

基于统计学的方法通过对像素值的统计分析,提取影像的均值、方差、能量等特征。

形态学方法则通过形态学运算,提取影像的边缘、角点等形态学特征。

滤波方法是通过应用不同的滤波器,对影像进行平滑或增强,从而提取影像的纹理、边缘等特征。

2. 基于机器学习的特征提取方法基于机器学习的特征提取方法通过构建合适的特征提取模型,自动地从医学影像数据中学习和提取特征。

常用的机器学习方法包括主成分分析(PCA)、线性判别分析(LDA)、支持向量机(SVM)等。

这些方法通过降维、分类等技术手段,可以将高维的医学影像特征转换为低维的表示,提高特征的区分度和分类性能。

三、医学影像数据的分类方法1. 监督学习方法监督学习方法是基于已知类别标签的训练数据,通过构建分类器模型来对新样本进行分类。

常用的监督学习方法包括K最近邻算法(KNN)、决策树、朴素贝叶斯、支持向量机等。

其中K最近邻算法是一种简单且直观的分类方法,通过计算未知样本与已知样本之间的距离,选择距离最近的K个样本进行投票,得到样本的分类结果。

2. 无监督学习方法无监督学习方法是在没有类别标签的情况下,对医学影像数据进行聚类和分组。

常用的无监督学习方法包括聚类算法、主成分分析、因子分析等。

聚类算法根据样本之间的相似度将样本划分为不同的类别,常用的聚类算法有K均值算法、层次聚类算法等。

特征提取方法

特征提取方法

特征提取方法特征提取是图像处理、模式识别、计算机视觉等领域中的重要问题,它是指从原始数据中提取出具有代表性、区分性的特征,用以描述目标对象的属性和特性。

特征提取方法的选择直接影响到后续的数据分析和模式识别效果,因此在实际应用中具有重要意义。

一、传统特征提取方法。

1. 边缘检测。

边缘是图像中灰度变化明显的地方,边缘检测是图像处理中常用的特征提取方法之一。

经典的边缘检测算子包括Sobel、Prewitt、Roberts等,它们通过计算图像灰度的一阶导数来检测图像中的边缘。

2. 角点检测。

角点是图像中具有显著角度变化的点,角点检测是另一种常用的特征提取方法。

Harris角点检测算法是其中的经典代表,它通过计算图像局部区域的灰度变化来检测角点。

3. 尺度不变特征变换(SIFT)。

SIFT是一种基于局部特征的描述符,它具有尺度不变性和旋转不变性等优点,被广泛应用于图像配准、目标识别等领域。

二、深度学习特征提取方法。

1. 卷积神经网络(CNN)。

CNN是一种专门用于处理具有类似网格结构的数据的深度学习模型,它通过卷积层和池化层来提取图像的特征,并在此基础上实现图像分类、目标检测等任务。

2. 循环神经网络(RNN)。

RNN是一种适用于序列数据的深度学习模型,它可以用于提取文本、语音等序列数据的特征,广泛应用于自然语言处理、语音识别等领域。

3. 自编码器(Autoencoder)。

自编码器是一种无监督学习的深度学习模型,它可以通过学习数据的压缩表示来实现特征提取,被广泛应用于图像去噪、特征重建等任务。

三、特征提取方法的选择。

在实际应用中,特征提取方法的选择需要根据具体的问题和数据特点来进行。

传统的特征提取方法在一些简单场景下仍然具有优势,而深度学习方法则在复杂场景和大规模数据下表现更为出色。

因此,我们需要根据实际情况灵活选择特征提取方法,以达到最佳的数据分析和模式识别效果。

总结。

特征提取是图像处理、模式识别等领域中的重要问题,传统的特征提取方法包括边缘检测、角点检测、SIFT等,而深度学习方法则包括CNN、RNN、自编码器等。

图像特征提取

图像特征提取

图像特征提取方法特征提取是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征,其结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。

常用的图像特征有颜色特征、纹理特征、形状特征和空间关系特征。

图1.图像特征分类及其方法一、颜色特征颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。

一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。

由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。

(1)颜来表示。

、二阶矩(Variance)一阶矩:二阶矩:三阶矩:(2)颜即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。

累加直方图:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。

这些零值的出现会对相似性度量的计算带来影响,从而使得相似性度量并不能正确反映图像之间的颜色差别。

所以,在全局直方图的基础上,使用累加颜色直方图。

在累加直方图中,相邻颜色在频数上是相关的。

虽然累加直方图的存储量和计算量有很小的增加,但是累加直方图消除了一般直方图中常见的零值,也克服了一般直方图量化过细过粗检索效果都会下降的缺陷。

主色调直方图:因一幅图像中,往往少数几种颜色就涵盖了图像的大多数像素,而且不同颜色在图像中的出现概率是不同的,可以通过统计图像中各种颜色出现的概率,选出最频繁出现的几种做为主色。

使用主色并不会降低颜色匹配的效果,因为颜色直方图中出现频率很低的哪些颜色往往不是图像的主要内容,从某种程度上讲,是对图像内容表示的一种噪声。

(3)颜色集颜色集是对颜色直方图的一种近似,首先将RGB颜色空间转换成视觉均衡的颜色空间(HSV),并将颜色空间量化成若干个bin,然后运用颜色自动分割技术将图像分为若干个区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达成一个二进制的颜色索引表。

图像特征提取三大法宝

图像特征提取三大法宝

图像特征提取三大法宝(一)HOG特征1、HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。

它通过计算和统计图像局部区域的梯度方向直方图来构成特征。

Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。

需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。

(1)主要思想:在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。

(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。

(2)具体的实现方法是:首先将图像分成小的连通区域,我们把它叫细胞单元。

然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。

最后把这些直方图组合起来就可以构成特征描述器。

(3)提高性能:把这些局部直方图在图像的更大的范围内(我们把它叫区间或block)进行对比度归一化(contrast-normalized),所采用的方法是:先计算各直方图在这个区间(block)中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。

通过这个归一化后,能对光照变化和阴影获得更好的效果。

(4)优点:与其他的特征描述方法相比,HOG有很多优点。

首先,由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性,这两种形变只会出现在更大的空间领域上。

其次,在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响检测效果。

因此HOG特征是特别适合于做图像中的人体检测的。

2、HOG特征提取算法的实现过程:大概过程:HOG特征提取方法就是将一个image(你要检测的目标或者扫描窗口):1)灰度化(将图像看做一个x,y,z(灰度)的三维图像);2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;3)计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。

图像特征提取与分析

图像特征提取与分析

计算点(i,j)和(h,k)间距离常采用的几种方法:
%两点间的直线距离
(1) 欧氏距离: (2) 4-邻域距离,也称为街区距离: (3)8-邻域距离,也称为棋盘距离:
街区距离和棋盘距离都是欧式距离的一种近似。
下图中表示了以中心像素为原点的各像素的距离。从离开一个像素的等距离线可以看出,在欧氏距离中大致呈圆形,在棋盘距离中呈方形,在街区距离中呈倾斜45度的正方形。街区距离是图像中两点间最短的4-连通的长度,而棋盘距离则是两点间最短的8-连通的长度。
八链码原理图 八链码例子 其中偶数码为水平或垂直方向的链码,码长为1;奇数码为对角线方向的链码,码长为 。八链码例子图为一条封闭曲线,若以s为起始点,按逆时针的方向编码,所构成的链码为556570700122333,若按顺时针方向编码,则得到链码与逆时针方向的编码不同。 边界链码具有行进的方向性,在具体使用时必须加以注意。
用于描述曲线的方向链码法是由Freeman提出的,该方法采用曲线起始点的坐标和斜率(方向)来表示曲线。对于离散的数字图像而言,区域的边界轮廓可理解为相邻边界像素之间的单元连线逐段相连而成。对于图像某像素的8-邻域,把该像素和其8-邻域的各像素连线方向按八链码原理图所示进行编码,用0,1,2,3,4, 5,6,7表示8个方向,这种代码称为方向码。
距离
距离在实际图像处理过程中往往是作为一个特征量出现,因此对其精度的要求并不是很高。所以对于给定图像中三点A,B,C,当函数D(A,B)满足下式的条件时,把D(A,B)叫做A和B的距离,也称为距离函数。
第一个式子表示距离具有非负性,并且当A和B重合时,等号成立;
第二个式子表示距离具有对称性
第三个式子表示距离的三角不等式。
6.1 基本概念

图像识别中的特征提取方法综述(四)

图像识别中的特征提取方法综述(四)

图像识别中的特征提取方法综述引言:随着计算机技术的日益发展,图像识别在各个领域得到了广泛的应用。

而特征提取作为图像识别的重要环节,对于算法的性能和准确率有着决定性的影响。

本文将综述目前主流的特征提取方法,包括传统方法和深度学习方法,并对其优缺点进行分析,旨在为图像识别研究者提供参考和借鉴。

一、传统特征提取方法1.颜色特征:颜色特征是最早被应用于图像识别的特征之一,其通过提取像素的色彩信息来描述图像的特征。

常用的方法有颜色直方图和颜色矩。

颜色直方图用来描述图像中每个颜色的像素数量,而颜色矩则通过计算一定区域内像素的颜色均值和方差来描述图像。

这两种方法通常结合使用,能够有效地描述图像的颜色特征。

2.纹理特征:纹理特征描述图像中的纹理信息,是一种常用的图像特征提取方法。

其中最著名的方法是局部二值模式(LBP)和灰度共生矩阵(GLCM)。

LBP方法通过对图像中每个像素点的灰度值与其周围像素的灰度值比较,生成一个二进制数来描述图像的纹理特征。

而GLCM方法则通过计算邻近像素对灰度级出现的频率和关系来描述图像的纹理特征。

3.形状特征:形状特征主要描述图像的轮廓和几何结构,是一种常用且有效的图像特征提取方法。

其中最常用的方法是利用图像边缘提取算子(如Sobel、Canny等)来获取图像的边缘信息,并通过计算边缘的形状和拓扑结构来描述图像的形状特征。

4.局部特征:局部特征主要关注图像中的一些局部区域,能够更精细地描述图像的特征。

常用的局部特征提取方法有尺度不变特征变换(SIFT)、加速稳健特征(SURF)和方向梯度直方图(HOG)。

这些方法通常通过提取图像的局部区域,并对该区域内的像素进行特征提取和描述,来获取图像的局部特征。

二、深度学习特征提取方法随着深度学习的兴起,基于深度学习的特征提取方法在图像识别中表现出了强大的能力和准确性。

常用的深度学习特征提取方法主要包括卷积神经网络(CNN)和循环神经网络(RNN)。

图像识别中的特征提取方法综述

图像识别中的特征提取方法综述

图像识别中的特征提取方法综述图像识别是计算机视觉领域中的重要研究方向,它涉及许多应用领域,如人脸识别、目标检测和场景理解等。

在图像识别中,特征提取是至关重要的步骤之一,它通过从图像中提取出具有代表性的特征来帮助计算机理解图像。

本文将综述图像识别中常用的特征提取方法,并对它们的原理和应用进行介绍。

一、基于点特征的提取方法1. SIFT(尺度不变特征变换):SIFT是一种局部特征描述算法,它通过检测图像中的关键点,并计算这些关键点周围区域的局部特征向量。

SIFT具有尺度不变性和旋转不变性,适用于各种尺度和旋转变换的图像匹配任务。

2. SURF(加速稳健特征):SURF是一种基于SIFT的改进算法,它借鉴了SIFT的思想并进行了优化,提高了特征提取的速度和鲁棒性。

SURF通过计算图像中的快速Hessian矩阵来检测关键点,并通过计算Haar小波响应来描述关键点的局部特征。

二、基于区域特征的提取方法1. HOG(方向梯度直方图):HOG是一种用于目标检测的特征描述算法,它通过计算图像中的梯度直方图来描述图像的局部特征。

HOG通过将图像划分为小的区域块,并计算每个块内像素的梯度方向直方图来表示图像的特征。

2. LBP(局部二值模式):LBP是一种用于纹理识别的特征描述算法,它通过将图像中的像素值与其邻域像素值进行比较,并构造局部二值模式来表示图像的纹理特征。

LBP具有旋转不变性和光照不变性,适用于纹理分类和人脸识别等任务。

三、基于深度学习的特征提取方法1. CNN(卷积神经网络):CNN是一种基于深度学习的特征提取方法,它模拟了生物视觉系统中的神经元连接模式,能够自动学习图像中的特征表示。

CNN通过堆叠多个卷积层、池化层和全连接层来提取图像的特征,并用于图像分类、目标检测和物体分割等任务。

2. GAN(生成对抗网络):GAN是一种基于生成模型的特征提取方法,它由生成器和判别器组成,通过对抗训练的方式来学习图像的特征表示。

图像处理的工作总结报告

图像处理的工作总结报告

图像处理的工作总结报告一、引言图像处理是一门应用广泛的技术,通过对图像的采集、处理、分析和展示,可以有效地提取图像中的有用信息,对实际问题进行识别、分析和解决。

在过去的一段时间里,我们团队积极开展了多项图像处理工作,以满足公司的需求。

本报告将对我们团队所做的工作进行总结和评估,并提出相应的改进和思考。

二、工作内容1. 图像采集与预处理在图像处理的初期阶段,我们团队通过各类设备和传感器对图像进行了大量的采集工作。

在此过程中,我们重视对图像质量的控制,遵循了一系列的采集准则,并利用图像处理算法对采集到的图像进行了预处理。

这些预处理包括图像去噪、均衡化、滤波等,在一定程度上提高了图像的质量,为后续的处理工作打下了基础。

2. 图像特征提取与分析在图像处理的核心环节中,我们团队开展了大量的图像特征提取与分析工作。

通过使用不同的特征提取算法,我们成功地从图像中提取出了鲜花和果蔬的特征,包括颜色、纹理、形状等。

这些特征有效地表征了图像中的信息,为后续的分类、识别等工作提供了重要的依据。

3. 图像分类与识别基于图像的特征和模式,我们实施了一系列的图像分类和识别工作。

通过使用机器学习的方法,我们建立了一套鉴别模型,能够有效地识别和分类不同的图像。

在不同实验中,我们对模型进行了调优和验证,取得了相当令人满意的结果。

我们的模型在图像分类和识别的性能上较之前有了明显的提升。

4. 图像增强和修复通过应用一系列的图像处理技术,我们团队还对图像进行了增强和修复。

我们通过调整图像的对比度、亮度和色彩等参数,使图像更加鲜明和富有视觉冲击力。

同时,我们还根据图像中存在的噪点和瑕疵,通过图像修复算法对图像进行恢复和修补。

这些工作大大提高了图像的质量和可视效果,使我们的应用更具吸引力。

5. 图像展示与应用最后,我们团队还将图像处理的结果进行了展示和应用。

通过设计和开发相应的应用程序和平台,我们能够向用户提供图像处理的相关服务和功能。

用户可以通过我们的应用程序对图像进行处理,以满足不同需求。

如何进行遥感图像的特征提取与分类

如何进行遥感图像的特征提取与分类

如何进行遥感图像的特征提取与分类遥感图像是通过航空或卫星等远距离感知装置获取的地表信息图像。

利用遥感技术可以获取大范围的地理信息,广泛应用于农业、城市规划、环境监测等领域。

而遥感图像的特征提取与分类则是处理遥感图像的重要环节,它能够帮助我们更好地理解和利用遥感图像。

一、遥感图像的特征提取特征提取是将原始遥感图像转化为能够描述地物类别的数学特征的过程。

在遥感图像中,不同地物或者地物类别往往具有不同的光谱、纹理、形状等特征。

因此,通过提取这些特征,我们可以对地物进行分类与分析。

1.光谱特征提取光谱特征是指反映地物物理性质的光谱波段数据。

通过选择不同的波段组合,我们可以提取出反映植被、水体、建筑物等地物特性的光谱特征。

常用的方法有主成分分析(PCA)、最大似然分类(MLC)等。

2.纹理特征提取纹理特征描述了图像中像素间的空间关系。

在遥感图像中,纹理特征可以用于区分不同地物的纹理复杂程度。

例如,植被具有较为均匀的纹理,而建筑物则较为具有几何纹理。

常用的纹理特征提取方法有灰度共生矩阵法(GLCM)、局部二值模式法(LBP)等。

3.形状特征提取形状特征是指地物在图像中的几何形状信息。

通过提取地物的形状特征,可以识别出地物的边界和形状。

例如,对于建筑物来说,我们可以通过提取其形状特征来判断其是直角形、圆形还是其他形状。

常用的形状特征提取方法有边缘检测算子、Hough变换等。

二、遥感图像的分类分类是将遥感图像中的像素划分到不同地物类别中的过程。

通过分类,我们可以获取遥感图像中不同地物的分布情况,进而进行地物的监测与分析。

1.监督分类监督分类是指使用人工定义的训练样本对遥感图像进行分类。

首先,我们需要准备一些具有代表性的训练样本,这些样本包含不同地物类别的图像区域。

然后,通过计算遥感图像与这些训练样本之间的差异,可以得到分类决策函数,进而对整幅遥感图像进行分类。

2.非监督分类非监督分类是指根据遥感图像中像素值的统计特征,自动将其划分到不同的类别中。

图像的特征提取

图像的特征提取

图像的特征提取⽹上发现⼀篇不错的⽂章,是关于图像特征提取的,给⾃⼰做的项⽬有点类似,发出来供⼤家参考。

特征提取是计算机视觉和图像处理中的⼀个概念。

它指的是使⽤计算机提取图像信息,决定每个图像的点是否属于⼀个图像特征。

特征提取的结果是把图像上的点分为不同的⼦集,这些⼦集往往属于孤⽴的点、连续的曲线或者连续的区域。

特征的定义⾄今为⽌特征没有万能和精确的定义。

特征的精确定义往往由问题或者应⽤类型决定。

特征是⼀个数字图像中“有趣”的部分,它是许多计算机图像分析的起点。

因此⼀个算法是否成功往往由它使⽤和定义的特征决定。

因此特征提取最重要的⼀个特性是“可重复性”:同⼀场景的不同图像所提取的特征应该是相同的。

特征提取是图象处理中的⼀个初级运算,也就是说它是对⼀个图像进⾏的第⼀个运算处理。

它检查每个像素来确定该像素是否代表⼀个特征。

假如它是⼀个更⼤的算法的⼀部分,那么这个算法⼀般只检查图像的特征区域。

作为特征提取的⼀个前提运算,输⼊图像⼀般通过⾼斯模糊核在尺度空间中被平滑。

此后通过局部导数运算来计算图像的⼀个或多个特征。

有时,假如特征提取需要许多的计算时间,⽽可以使⽤的时间有限制,⼀个⾼层次算法可以⽤来控制特征提取阶层,这样仅图像的部分被⽤来寻找特征。

由于许多计算机图像算法使⽤特征提取作为其初级计算步骤,因此有⼤量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也⾮常不同。

边缘边缘是组成两个图像区域之间边界(或边缘)的像素。

⼀般⼀个边缘的形状可以是任意的,还可能包括交叉点。

在实践中边缘⼀般被定义为图像中拥有⼤的梯度的点组成的⼦集。

⼀些常⽤的算法还会把梯度⾼的点联系起来来构成⼀个更完善的边缘的描写。

这些算法也可能对边缘提出⼀些限制。

局部地看边缘是⼀维结构。

⾓⾓是图像中点似的特征,在局部它有两维结构。

早期的算法⾸先进⾏边缘检测,然后分析边缘的⾛向来寻找边缘突然转向(⾓)。

后来发展的算法不再需要边缘检测这个步骤,⽽是可以直接在图像梯度中寻找⾼度曲率。

图像处理中的特征提取与描述符

图像处理中的特征提取与描述符

图像处理是一种将数字图像转换为更具有可视化信息的过程,通过一系列的算法和技术,可以改善图像的质量、增强图像的特征,从而提高图像的可视化效果。

其中,特征提取与描述符是图像处理中一项重要的技术,它能够从图像中提取出具有代表性的特征,并将这些特征通过描述符进行描述和表达。

特征提取是图像处理中的一项关键技术,它是指从原始图像数据中提取出一些具有代表性的信息,以描述图像的不同属性。

常见的特征包括边缘、轮廓、颜色、纹理等。

特征提取的目的是将原始图像数据转换为一些可以直接利用和处理的特征,以便于后续的图像处理和分析。

特征提取的方法有很多种,其中一种常用的方法是基于局部特征的提取。

这种方法通过识别图像中的关键点,然后提取出这些关键点周围的局部特征,从而得到图像的全局特征。

特征描述符是对提取出的特征进行进一步的描述和表达的方法。

描述符通过对特征进行数学建模,将其转换为一组具有可度量性和可比较性的特征向量。

常用的描述符有SIFT(尺度不变特征变换)、SURF(速度快、性能好)、ORB(旋转不变特征)等。

这些描述符的目的是将图像的特征进行数学描述,以便于图像的匹配、检索、分类等应用。

通过描述符,我们可以利用计算机的优势,对大量的图像进行自动化的处理和分析,极大地提高了图像处理的效率和准确性。

特征提取与描述符在图像处理中有着广泛的应用。

首先,特征提取与描述符可以用于图像检索。

通过对图像的特征进行提取和描述,可以建立起图像之间的关联。

当我们输入一张图像时,系统可以通过比对图像的特征与已有的数据库中的特征,从而快速地找到相似的图像。

其次,特征提取与描述符还可以用于目标跟踪。

通过提取目标的特征,并运用描述符进行描述,可以实现对目标的实时、准确的跟踪和定位。

再者,特征提取与描述符也可以用于图像分类和识别。

通过对图像的特征进行提取和描述,可以建立起图像与类别之间的关系,从而实现对图像的自动分类和识别。

总之,特征提取与描述符是图像处理中一项重要的技术,它能够从图像中提取出具有代表性的特征,并通过描述符进行描述和表达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像常见特征提取方法简介
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。

一、颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。

一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。

由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。

另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。

颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。

(二)常用的特征提取与匹配方法
(1)颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。

其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。

最常用的颜色空间:RGB颜色空间、HSV颜色空间。

颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。

(2)颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。

颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。

然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。

在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3)颜色矩
这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。

此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。

(4)颜色聚合向量
其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。

(5)颜色相关图
二纹理特征
(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。

但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。

与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。

在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。

作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。

但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。

另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实
的纹理。

例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。

由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。

在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。

但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。

(二)常用的特征提取与匹配方法
纹理特征描述方法分类
(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。

统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数
(2)几何法
所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。

纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。

在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。

(3)模型法
模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。

典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和Gibbs 随机场模型法
(4)信号处理法
纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。

灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。

Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。

自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。

三形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。

另外,从2-D 图像中表现的3-D 物体实际上只是物体在空间某一平面的投影,从2-D 图像中反映出来的形状常不是3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。

(二)常用的特征提取与匹配方法
Ⅰ几种典型的形状特征描述方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。

图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。

几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。

其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。

Hough 变换是利用图像全局特性而将
边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。

(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。

由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。

(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。

在QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。

需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。

(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数。

(5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。

Ⅱ基于小波和相对矩的形状特征提取与匹配
该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的7个不变矩,再转化为10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。

四空间关系特征
(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。

通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。

前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。

显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。

空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。

另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。

为了检索,除使用空间关系特征外,还需要其它特征来配合。

(二)常用的特征提取与匹配方法
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。

相关文档
最新文档