TC1313-BD3EUN中文资料

合集下载

M-1313-用户手册-基于Modbus的16DI4AI模块V1.0

M-1313-用户手册-基于Modbus的16DI4AI模块V1.0

M-1313用户手册V1.0基于Modbus的16DI/4AI采集模块1 产品简介M-1313(基于Modbus的16DI/4AI采集模块)作为通用型数字量和模拟量采集模块广泛应用于冶金、化工、机械、消防、建筑、电力、交通等工业行业中,具有2组相互隔离的开关量输入通道,每组8 路,可接入16路开关量信号,同时可接入4路温度、湿度、液位、压力、流量、PH值等传感器输出的0~20mA 或4~20mA模拟量信号。

支持标准的Modbus RTU 协议,并具有通讯超时检测功能,可同其它遵循Modbus RTU 协议的设备联合使用。

1.1 系统概述M-1313模块主要由电源电路、隔离开关量输入电路、模拟量输入采样电路、隔离RS485收发电路及MCU等部分组成。

采用高速ARM处理器作为控制单元,拥有隔离的RS485通讯接口,具有ESD、过压、过流保护功能,避免了工业现场信号对模块通讯接口的影响,使通讯稳定可靠。

1.2 主要技术指标1)系统参数供电电压:5~40VDC,电源反接保护功率消耗:最大2.0W(24V供电)工作温度:-10℃~60℃存储温度:-40℃~85℃相对湿度:5%~95%不结露2)数字量输入参数输入路数:2组,每组8路输入类型:开关触点信号或电平信号隔离电压:2500VDC输入范围:高电平(数字1):5VDC~30VDC,6mA@24V,低电平(数字0):≤1VDC3)模拟量输入参数输入路数:4路单端输入正常输入范围:0~20mA,4~20mA最大输入范围:0~21mA隔离电压:2500VDC输入电阻:120ΩADC分辨率:12位采样精度:0.5%4)通讯接口通讯接口:RS485 接口,隔离1500VDC,±15kV ESD 保护、过流保护隔离电压:1500V通讯协议:Modbus RTU 协议波特率:1.2k,2.4k,4.8k,9.6k,19.2k,38.4k,57.6k,115.2k通讯数据格式:1个起始位,8个数据位,无、奇或偶校验,1个或2个停止位1.3 外形及尺寸外壳材料:ABS工程塑料尺寸大小:145mm(长) * 90mm(宽) * 40mm(高)安装方式:标准DIN35导轨安装和螺钉安装,安装尺寸如图所示:2 模块功能2.1 数字量输入现场数字量输入信号与M-1313模块内部电路之间采用光耦隔离,输入信号分成两组,M1与I0~I7为一组,M2与I8~I15为一组,两组输入之间相互隔离,其中M1、M2分别为各组数字量输入的公共端(必须接电源负极)。

UM1313中文资料

UM1313中文资料

SPECIFICATIONS
All specifications are typical at nominal line full load, and 25°C unless otherwise noted.
GENERAL SPECIFICATIONS
Efficiency ………………….…..……………………. See Table Isolation Voltage ……………………………..... 500 VDC min. Isolation Resistance .…………………….….... 108 ohms min. Switching Frequency .………………………………... 100KHz Case Grounding …………..…….. Capacity Coupled to Input Operating Temperature Range Ambient, None Derating …………………... -25°C to +71°C Cooling ……………….…..……………. Free Air Convection Storage Temperature Range .……………... -55°C to+105°C EMI/RFI ……………………….. Six-Sided Continuous Shield Dimensions ……………………….. 2.56 x 4.56 x 0.83 inches (65 x 115.8 x 21.1 mm) Case Material …………………... Black-Coated Copper With Non-Conductive Base Weight ..…..……………………………………………..... 260g

ADuM1310中文

ADuM1310中文

七、管脚封装图
※ 品选型表
通道 分布 3/0 3/0 2/1 2/1 传输速率 (Mbps) 1 10 1 10 最大传输 延时(ns) 100 50 100 50 最大脉宽 失真(ns) 40 5 40 5 工作温度范 围(℃) -40~105 -40~105 -40~105 -40~105
二、产品特性
� � � � � � � 三通道隔离 电平转换器 传输速率:1M/10Mbps 传输延迟:50ns 瞬态共模抑制能力:25KV/us 隔离电压:2500V 工作温度:-40℃~105℃ 工作电压:3V/5V
� �
SOIC-16 宽体无铅封装
低功耗
7 mA / 通道 @ 0 Mbps 5 V operation 1. 1.7 to 2 Mbps 4.0 mA /通道 @ 10 Mbps 3 V operation 1.0 mA /通道 @ 0 Mbps to 2 Mbps mA/ 2.1 mA /通道@ 10 Mbps
ADuM1 31x ADuM13
5、 直流校正功能
磁隔离器每一通道的两组线圈起到脉冲变压器的作用, 输入端逻辑电平的变化会引起一 个窄脉冲(1ns) ,经过脉冲变压器耦合到解码器,然后再经过一个施密特触发器的波形变换 输出标准的矩形波, 如果输入端逻辑电平超过 1µs 都没有任何变化, 则校正电路会产生一个 适当极性的校正脉冲,以确保变压器直流端输出信号的正确性,如果解码器一端超过 5µs 都没有收到任何校正脉冲,则会认为输入端已经掉电或不工作,由看门狗电定时器电路,将 输出端强行置为默认状态(参看真值表) 。这确保了磁耦可以传输直流信号。
ADuM1 31x ADuM13
当 VDD1=VDD2=3V,TA=25℃ 工作参数 工作电压 符号 VDD1 VDD2 静态工作电流 IDDI(Q) IDDO(Q) 0~2Mbps 时 1310 工作电流 0~2Mbps 时 1311 工作电流 输入电平 IDD1 IDD2 IDD1 IDD2 VIH VIL 输出电平 VOH VOL 最大输出电流 IO1(side1) IO2(side2) -18 -22 VDD1,2-0.1 3.0 0.0 0.1 18 22 1.6 0.4 Min 2.7 2.7 Typ 3.0 3.0 0.25 0.19 1.2 0.8 1.0 0.9 Max 3.6 3.6 0.38 0.33 1.6 1.0 1.6 1.4 单位 V V mA mA mA mA mA mA V V V V mA mA

科蒂斯1313手持编程器操作指南

科蒂斯1313手持编程器操作指南

科蒂斯1313手持编程器操作指南第一步:准备工作2.将科蒂斯1313手持编程器连接到计算机上,使用USB线缆连接器。

3.打开您的编程软件,确保它与科蒂斯1313手持编程器兼容。

第二步:选择目标芯片1.打开科蒂斯1313手持编程器的编程软件。

软件界面将显示出可用的目标芯片列表。

第三步:加载程序1.打开您的源代码文件或编译后的程序文件。

2. 在科蒂斯1313手持编程器的编程软件界面上,找到加载程序的选项。

这通常是一个“Load”或“Open”按钮。

3.点击该按钮并浏览您的计算机上的文件系统,选择您要加载的程序文件。

4.点击“确定”或“打开”按钮以加载程序。

第四步:编程芯片1.确保您的目标芯片已正确放置在科蒂斯1313手持编程器的编程座椅上。

座椅通常位于编程器的顶部。

2.点击科蒂斯1313手持编程器的编程软件界面上的“编程”按钮或类似按钮以开始编程芯片。

3.程序将被逐行传输到目标芯片中。

在传输过程中,请确保编程器和目标芯片之间的连接保持稳定。

第五步:验证程序1.在编程完成后,您可以选择验证程序的正确性。

这将确保程序正确地被加载到了目标芯片中。

2. 在科蒂斯1313手持编程器的编程软件界面上,找到验证程序的选项。

这通常是一个“Verify”或“Check”按钮。

3.点击该按钮以开始验证程序。

编程器将读取芯片中的数据,并与原始程序进行比对。

第六步:断开连接1.在完成编程和验证后,您可以安全地断开科蒂斯1313手持编程器与计算机的连接。

请在断开连接之前先关闭编程软件。

2.小心地从计算机和芯片上拔出科蒂斯1313手持编程器的USB连接器。

总结:。

S331C中文说明书

S331C中文说明书

Site MasterS113C,S114C,S331C,S332C,天线、电缆和频谱分析仪用户指南专门用于传输线和其它射频器件的手持式测试仪目录第一章—概述简介………………………………………………………………..1-1说明………………………………………………………………..1-1标准附件……………………………………………………………1-1选件…………………………………………………………………1-2可选附件……………………………………………………………1-2性能指标…………………………………………………………..1-3维护事项……………………………………………………………1-6校准…………………………………………………………………1-6自动校准InstaCal 模块…………… ………………………………1-7年检………………………………………………………………….1-7第二章—功能和操作简介…………………………………………………………….…….2-1测试连接器面板…………………………………………………….2-1前面板概述………………………………………………………….2-2功能区硬键……………………………………………………………2-3 键盘区硬键…………………………………………………………2-4软键…. ………………………………………………………………2-6功率监测菜单……………………………………………………….2-15符号………………………………………………………………….2-19自检………………………………………………………………….2-19错误代码…………………………………………………………….2-19 自检错误…………..…………………………………………….2-19范围错误……..………………………………………………….2-21自动校准InstaCal错误消息………….…………………………2-22 电池信息…………………………………………….………………2-24新电池充电…………………………………………………………2-24 在Site Master上给电池充电…………………………………….2-24用充电器给电池充电………………………………………………2-24电池充电指示……………………………………………………2-25电池寿命…………………………………………………………..2-25关于电池的重要信息……………………………………………..2-26第三章—操作入门简介…………………………………………………………3-1开机过程……………………………………………………3-1选择频率/距离………………………………………………3-2校准…………………………………………………………..3-2校准确认……………………………………………….3-3手动校准过程………………………………………….3-4自动校准InstaCal 模块确认…………………………3-5自动校准InstaCal模块校准过程……………………. 3-6有测试端口延长电缆的校准………………………3-6 设臵刻度…………………………………………………3-7 自动刻度……………………………………………….3-7幅度刻度………………………………………………3-7 保存和调用设臵………………………………………….3-7 保存设臵……………………………………………...3-7调用设臵……………………………………………..3-8 保存和调用显示…………………………………………3-8 保存显示…………………………………………….3-8调用显示……………………………………………3-8设臵距离和电缆类型……………………………..3-9 改变单位…………………………………………………..3-9改变显示语言……………………………………………..3-9打印………………………………………………………..3-10 打印屏幕……………………………………………..3-10打印机开关设臵……………………………………..3-11 使用软背包……………………………………………….3-12第四章—电缆测量和天线测量简介……………………………………………………….4-1传输线扫描的基本原理………………………………….4-1进行传输线扫描所需的信息…………………………….4-2典型传输线扫描的测试过程…………………………….4-3 系统回波损耗测量………………………………….4-3插入损耗测量………………………………………4-4故障点定位(DTF)传输线测试…………………4-8天线子系统回波损耗测试………………………..4-10第五章—频谱分析仪测量简介……………………………………………………….5-1占用带宽………………………………………………….5-1通道功率测量…………………………………………….5-2 Site Master的通道功率测量…………………………5-2 邻道功率测量…………………………………………….5-4带外杂波散射测量……………………………………….5-6带内/通道外测量…………………………………………5-7场强测量…………………………………………………5-8天线校准………………………………………………….5-9 第六章—功率测量简介………………………………………………………..6-1功率测量…………………………………………………..6-1 第七章—Site Master软件工具简介………………………………………………………… 7-1特点…………………………………………………………7-1系统需求……………………………………………………7-1安装…………………………………………………………7-2 通讯口设臵……………………………………………7-2接口电缆安装………………………………………….7-3 使用软件工具……………………………………………….7-3从Site Master下载图形曲线………………………………..7-3图形获取……………………………………………………..7-3图形属性…………………………………………………….7-4 曲线叠加或图形叠加…………………………………..7-4保存曲线………………………………………………7-5常规电缆列表…………………………………………7-6输入天线因子…………………………………………7-7上载天线因子………………………………………...7-8创建数据库…………………………………………..7-8打印格式……………………………………………..7-8附录 A—参考数据同轴电缆技术数据…………………………………………………A-1附录B—视窗简介…………………………………………………………………B-1 样例…………………………………………………………………B-1第一章概述简介本章对Site Master S113C、S114C、S331C和S332C型号及其性能指标、选用附件、日常维护和校准要求进行了说明。

EP1K30TC144-3N中文资料(Altera)中文数据手册「EasyDatasheet - 矽搜」

EP1K30TC144-3N中文资料(Altera)中文数据手册「EasyDatasheet - 矽搜」

重新配置ACEX 1K设备能力,货物可实现完整测试之前,让设计师专注于 模拟和设计验证. ACEX 1K器件可重构消除库存管理门阵列设计和 测试向量生成故障覆盖率.
表4 示出一些常见设计ACEX 1K器件性能. 所有性能结果与SynopsysDesignWare或获得 LPM功能.实行特殊设计方法不要求 该应用程序;设计人员只需推断或以实例化一个函数 Verilog HDL语言,VHDL,Altera硬件描述语言(AHDL),或原理图 设计文件.
用逻辑诸如计数器,加法器,状态机,和多路复用器.嵌入式和逻辑 阵列结合提供高性能和嵌入式门阵列高密度,使设计人员能够实现整个 系统在单个设备上.
Units
MSPS µs MHz MHz
13
Tools
ACEX 1K器件是在系统上电与存储在一个Altera串行配置设备或由系统
控制器提供数据进行配置.
Altera提供EPC16,EPC2,EPC1和EPC1441配置设备,
芯片中文手册,看全文,戳
2003年 5月 ,版本 . 3.4
ACEX 1K
可编程逻辑器件系列
®
数据表
特征...
■ 可编程逻辑器件(PLD),提供低成本
系统级可编程单芯片(SOPC)集成在一个单一
设备
– 为实现宏功能增强嵌入式阵列
如高效内存和专门逻辑功能
– 每个嵌入式阵列高达16位宽度双端口能力
– 多达六个全局时钟信号和四个全局清除信号
■ 强大I / O引脚
– 个人三态输出使能控制每个引脚
– 每个I / O引脚漏极开路选项
– 可编程输出摆率控制,以降低开关
noise
– 钳到V
CCIO 在销逐针基础用户可选

MD-013 GNSS(GPS、GLONASS、Galileo) disciplined oscil

MD-013 GNSS(GPS、GLONASS、Galileo) disciplined oscil

MD-013GNSS (GPS, GLONASS, Galileo) Disciplined Oscillator ModuleThe MD-013 is a Microchip standard platform module that provides 1 pps TTL,10 MHz sine wave and 10 MHz square wave outputs that aredisciplined to an embedded 72 channel GNSS Receiver. In addition, an external reference input can override the internal receiver as thereference. Internal to the module is a Microchip digitally corrected OCXO.• Embedded GNSS Receiver - GPS, GLONASS, Galileo • 1pps TTL output signal• 10MHz sinewave and square wave output • Other RF output frequencies available• Adaptive aging correction during holdover • Barometric pressure correction • Evaluation kit with software• Serial Communications Interface • NMEA 0183 V4.1• Basestation Communication • Digital Video Broadcast • E911 Location Systems• General Timing and Synchronization • Military Radio • Radar SystemsFeaturesBlock DiagramApplicationsQuartz Oscillator(OCXO)Processor/ControllerOutput Frequency GenerationAntenna Input1PPS OutputRF Output(10 MHz standard - other frequencies available)SerialFigure 1. Functional Block DiagramOutput Locked Module OKGNSS ReceiverHardwareResetManual Holdover External ReferenceInputSpecificationsGPS AntennaParameter Min Typical Max Units Condition Antenna Bias Voltage 4.0 4.8 5.1VDCAntenna Current620100mARF Output Waveform Characteristics (via MCX)Parameter Min Typical Max Units Condition Waveform SinewaveOutput Power+3.0+9.0+11.0dBm50 Ohm Harmonics-30dBc50 Ohm Spurious-70dBc50 OhmRF Output Waveform Characteristics (via pin 8)Waveform HCMOSHigh Level Output Voltage (VOH ) 4.0 5.0VDC<-0.5mA LoadLow Level Output Voltage (VOL )0.00.4VDC<0.5mA LoadRise/Fall Time35nSec15 pFDuty Cycle405060%15 pF1pps Output Characteristics (via MCX and pin 2)Parameter Min Typical Max Units ConditionWaveform TTLHigh-level output voltage (VOH) 3.0 5.0V DC50 OhmsLow-level output voltage (VOL)0.00.4V DC50 Ohms Pulse Width9.91010.1uSec default setting, user programmableExternal 1PPS Reference Input (Pin 1)Waveform TTLHigh-Level Output Voltage (VOH) 2.0 5.0V DC50 Ohms input impedanceLow-Level Output Voltage (VOL)0.00.4V DCPulse width10uSecNotes:• RF and 1pps input and output connectors are MCX type (SMA, SMB, MMCX connectors require additional part numbers).• Keyed connector is Samtec FTSH-108-01LDVK type.• Dimensions: mm• Module height in part number is the sum of oscillator height, board, and clearancePackage OutlineAlthough ESD protection circuitry has been designed into the MD-013 proper precautions should be taken when handling and mounting.Microchip employs a human body model (HBM) and a charged-device model (CDM) for ESD susceptibility testing and design protectionReliabilityMicrochip qualification includes aging various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The MD-013 family is capable of meeting the following qualification tests:J3J9Ordering Information InstructionsCustomization to unique customer requirements is available and is common for this level of integration. Common customizations include alternate output frequencies, temperature ranges, differing values and methods of hold over specification, and holdover optimization in the frequency domain. The table below lists exisiting combinations available as of the date of publication of this data sheet. Please contact the factory for additional options.Ordering InformationMD - 013 3 - B X E - 15E7 - 10M0000000Product FamilyMD: Precision ModulesPackage 65x115mm Height 3: 19.5 mmSupply Voltage B: +12VHold Over15E7: 1.5 µs hold over option 40E7: 4.0 µs hold over optionFrequencyRF Output Code X: standard outputs per specificationTemperature Range E: -40°C to +85°C1) Holdover and aging performance is after 7 days of power-on time. Temperature and aging rates are whendevice is not locked. Performance measured in still air.2) After customer applies correct offset using cable delay command while locked, after 24 hours of locked opera-tion3) ADEV at t =86400s while locked to GPS, after 24 hours of locked operation4) The status locked indicator is intended to indicate when the module is fully locked to a reference.5) The Hardware OK indicator is intended to indicate when the module is operating properly without any failures, including hardware, software or parameter out of range.6) Antenna over current flag will be set if maximum current is exceeded. Circuit has overcurrent protection.7) The Rx pin is the serial interface input and the Tx pin is the serial interface output. The serial interface shall operate at 115,200 baud with eight (8) data bits, one (1) stop bit and no parity.USA:100 Watts StreetMt Holly Springs, PA 17065Tel: 1.717.486.3411Fax: 1.717.486.5920Europe:Landstrasse74924 NeckarbischofsheimGermanyTel: +49 (0) 7268.801.0Fax: +49 (0) 7268.801.281Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICRO-CHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.。

TC1313-CK0EUN资料

TC1313-CK0EUN资料

TC1313Features•Dual-Output Regulator (500mA Buck Regulator and 300mA Low-Dropout Regulator (LDO))•Total Device Quiescent Current = 57µA (Typ.)•Independent Shutdown for Buck and LDO Outputs•Both Outputs Internally Compensated •Synchronous Buck Regulator:-Over 90% Typical Efficiency- 2.0MHz Fixed-Frequency PWM(Heavy Load)-Low Output Noise-Automatic PWM-to-PFM mode transition-Adjustable (0.8V to 4.5V) and StandardFixed-Output Voltages (0.8V, 1.2V, 1.5V,1.8V,2.5V,3.3V)•Low-Dropout Regulator:-Low-Dropout Voltage=137mV Typ. @200mA-Standard Fixed-Output Voltages(1.5V, 1.8V, 2.5V, 3.3V)•Small 10-pin 3X3 DFN or MSOP Package Options•Operating Junction Temperature Range:--40°C to +125°C•Undervoltage Lockout (UVLO)•Output Short Circuit Protection •Overtemperature ProtectionApplications•Cellular Phones•Portable Computers•USB-Powered Devices•Handheld Medical Instruments•Organizers and PDAs DescriptionThe TC1313 combines a 500mA synchronous buck regulator and 300mA Low-Dropout Regulator (LDO) to provide a highly integrated solution for devices that require multiple supply voltages. The unique combina-tion of an integrated buck switching regulator and low-dropout linear regulator provides the lowest system cost for dual-output voltage applications that require one lower processor core voltage and one higher bias voltage.The 500mA synchronous buck regulator switches at a fixed frequency of 2.0MHz when the load is heavy, providing a low-noise, small-size solution. When the load on the buck output is reduced to light levels, it changes operation to a Pulse Frequency Modulation (PFM) mode to minimize quiescent current draw from the battery. No intervention is necessary for smooth transition from one mode to another.The LDO provides a 300mA auxiliary output that requires a single 1µF ceramic output capacitor, minimizing board area and cost. The typical dropout voltage for the LDO output is 137mV for a 200mA load.The TC1313 is available in either the 10-pin DFN or MSOP package.Additional protection features include: UVLO, overtemperature and overcurrent protection on both outputs.For a complete listing of TC1313 standard parts, consult your Microchip representative.Package Type10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC10-Lead MSOP12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC500mA Synchronous Buck Regulator,+ 300mA LDO© 2005 Microchip Technology Inc.DS21974A-page 1TC1313DS21974A-page 2© 2005 Microchip Technology Inc.Functional Block DiagramSynchronous Buck RegulatorNDRVPDRVP GNDV IN1L XDriverP GNDControlV OUT1/V FB1V IN2SHDN1V REFLDOV OUT2A GNDA GNDP GNDUndervoltage LockoutUVLOUVLOSHDN2V REF(UVLO)© 2005 Microchip Technology Inc.DS21974A-page 3TC1313Typical Application Circuits10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GND L XV IN1SHDN1V OUT1NC4.7µFInput Voltage 4.7µH4.7µF2.1V @1µF3.3V @4.5V to5.5V Adjustable-Output Application121k Ω200k Ω 4.99k Ω33pF 12687910543SHDN2V IN2V OUT2A GNDP GND L X V IN1SHDN1V OUT1NC4.7µF4.7µH4.7µF1.5V @ 500mA1µF2.5V @ 300mA2.7V to 4.2VTC1313V OUT1V OUT2V IN V OUT1V OUT21.0µF*Optional Capacitor V IN2300mA500mANote: Connect DFN package exposed pad to A GND .10-Lead MSOPFixed-Output ApplicationTC1313NoteTC1313DS21974A-page 4© 2005 Microchip Technology Inc.1.0ELECTRICALCHARACTERISTICSAbsolute Maximum Ratings †V IN - A GND ......................................................................6.0V All Other I/O ..............................(A GND - 0.3V) to (V IN + 0.3V)L X to P GND ..............................................-0.3V to (V IN + 0.3V)P GND to A GND ...................................................-0.3V to +0.3V Output Short Circuit Current .................................Continuous Power Dissipation (Note 7)..........................Internally Limited Storage temperature.....................................-65°C to +150°C Ambient Temp. with Power Applied.................-40°C to +85°C Operating Junction Temperature...................-40°C to +125°C ESD protection on all pins (HBM)....................................... 3kV† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied.Exposure to maximum rating conditions for extended periods may affect device reliability.DC CHARACTERISTICSElectrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSymMinTypMaxUnitsConditionsInput/Output Characteristics Input VoltageV IN 2.7— 5.5V Note 1, Note 2, Note 8Maximum Output Current I OUT1_MAX 500——mA Note 1Maximum Output Current I OUT2_MAX 300——mA Note 1Shutdown CurrentCombined V IN1 and V IN2 Current I IN_SHDN—0.051µA SHDN1=SHDN2=GND Operating I QI Q—57100µA SHDN1=SHDN2=V IN2I OUT1=0mA,I OUT2=0mA Synchronous Buck I Q—38—µA SHDN1 = V IN , SHDN2 = GND LDO I Q —44—µA SHDN1 = GND, SHDN2 = V IN2Shutdown/UVLO/Thermal Shutdown Characteristics SHDN1,SHDN2,Logic Input Voltage Low V IL ——15%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Logic Input Voltage High V IH 45——%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Input Leakage Current I IN-1.0±0.011.0µAV IN1=V IN2=2.7V to 5.5V SHDNX =GND SHDNY =V IN Thermal ShutdownT SHD —165—°C Note 6, Note 7Thermal Shutdown Hysteresis T SHD-HYS —10—°C Undervoltage Lockout (V OUT1 and V OUT2)UVLO 2.4 2.55 2.7V V IN1 FallingUndervoltage Lockout Hysteresis UVLO -HYS—200—mVNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313Synchronous Buck Regulator (V OUT1)Adjustable Output Voltage Range V OUT10.8— 4.5VAdjustable Reference FeedbackVoltage (V FB1)V FB10.780.80.82VFeedback Input Bias Current(I FB1)I VFB1—-1.5—nAOutput Voltage Tolerance Fixed(V OUT1)V OUT1-2.5±0.3+2.5%Note2Line Regulation (V OUT1)V LINE-REG—0.2—%/V V IN = V R+1V to 5.5V,I LOAD = 100mALoad Regulation (V OUT1)V LOAD-REG—0.2—%V IN=V R+1.5V,I LOAD=100mA to500mA (Note1)Dropout Voltage V OUT1V IN – V OUT1—280—mV I OUT1 = 500mA, V OUT1=3.3V(Note5)Internal Oscillator Frequency F OSC 1.6 2.0 2.4MHzStart Up Time T SS—0.5—ms T R = 10% to 90%R DSon P-Channel R DSon-P—450650mΩI P = 100mAR DSon N-Channel R DSon-N—450650mΩI N = 100mAL X Pin Leakage Current I LX-1.0±0.01 1.0μA SHDN = 0V, V IN = 5.5V, L X = 0V,L X = 5.5VPositive Current Limit Threshold+I LX(MAX)—700—mALDO Output (V OUT2)Output Voltage Tolerance (V OUT2)V OUT2-2.5±0.3+2.5%Note2Temperature Coefficient TCV OUT—25—ppm/°C Note3Line RegulationΔV OUT2/ΔV IN-0.2±0.02+0.2%/V(V R+1V) ≤ V IN≤ 5.5VLoad Regulation, V OUT2≥ 2.5VΔV OUT2/I OUT2-0.750.1+0.75%I OUT2 = 0.1mA to 300mA(Note4)Load Regulation, V OUT2 < 2.5VΔV OUT2/I OUT2-0.900.1+0.90%I OUT2 = 0.1mA to 300mA(Note4)Dropout Voltage V OUT2 > 2.5V V IN – V OUT2—137205300500mV I OUT2 = 200mA (Note5)I OUT2=300mAPower Supply Rejection Ratio PSRR—62—dB f = 100Hz, I OUT1 = I OUT2 = 50mA,C IN = 0µFOutput Noise eN— 1.8—µV/(Hz)½ f = 1kHz, I OUT2=50mA,SHDN1=GNDOutput Short Circuit Current (Average)I OUT sc2—240—mA R LOAD2≤ 1ΩDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V,I OUT1=100ma, I OUT2=0.1mA T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C.Parameters Sym Min Typ Max Units ConditionsNote1:The Minimum V IN has to meet two conditions: V IN≥ 2.7V and V IN≥ V RX + V DROPOUT, V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min) * 106)/(V OUT2 * D T).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e. T A, T J, θJA). Exceeding the maximum allowable powerdissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN, and from L X to P GND. In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is notable to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.© 2005 Microchip Technology Inc.DS21974A-page 5TC1313DS21974A-page 6© 2005 Microchip Technology Inc.TEMPERATURE SPECIFICATIONSWake-Up Time(From SHDN2 mode), (V OUT2)t WK —31100µs I OUT1 = I OUT2 = 50mA Settling Time(From SHDN2 mode), (V OUT2)t S—100—µsI OUT1 = I OUT2 = 50mAElectrical Specifications: Unless otherwise indicated, all limits are specified for: V IN = +2.7V to +5.5VParametersSymMinTypMaxUnitsConditionsTemperature RangesOperating Junction Temperature Range T J -40—+125°C Steady state Storage Temperature Range T A -65—+150°C Maximum Junction Temperature T J——+150°CTransientThermal Package Resistances Thermal Resistance, 10L-DFNθJA—41—°C/WTypical 4-layer board with Internal Ground Plane and 2 Vias in Thermal PadThermal Resistance, 10L-MSOPθJA—113—°C/WTypical 4-layer board with Internal Ground PlaneDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSym Min Typ Max Units ConditionsNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313 2.0TYPICAL PERFORMANCE CURVESNote: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-1:I Q Switcher and LDOCurrent vs. Ambient Temperature.FIGURE 2-2:I Q Switcher Current vs.Ambient Temperature.FIGURE 2-3:I Q LDO Current vs. AmbientTemperature.FIGURE 2-4:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.2V).FIGURE 2-5:V OUT1 Output Efficiency vs.I OUT1 (V OUT1 = 1.2V).FIGURE 2-6:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.8V).Note:The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.© 2005 Microchip Technology Inc.DS21974A-page 7TC1313DS21974A-page 8© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-7:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 1.8V).FIGURE 2-8:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 3.3V).FIGURE 2-9:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 3.3V).FIGURE 2-10:V OUT1 vs. I OUT1(VOUT1 = 1.2V).FIGURE 2-11:V OUT1 vs. I OUT1(V OUT1 = 1.8V).FIGURE 2-12:V OUT1 vs. I OUT1(V OUT1 = 3.3V).TC1313 Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-13:V OUT1 Switching Frequencyvs. Input Voltage.FIGURE 2-14:V OUT1 Switching Frequencyvs. Ambient Temperature.FIGURE 2-15:V OUT1 Adjustable FeedbackVoltage vs. Ambient Temperature.FIGURE 2-16:V OUT1 Switch Resistancevs. Input Voltage.FIGURE 2-17:V OUT1 Switch Resistancevs. Ambient Temperature.FIGURE 2-18:V OUT1 Dropout Voltage vs.Ambient Temperature.© 2005 Microchip Technology Inc.DS21974A-page 9TC1313DS21974A-page 10© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-19:V OUT1 and V OUT2 Heavy Load Switching Waveforms vs. Time.FIGURE 2-20:V OUT1 and V OUT2 Light Load Switching Waveforms vs. Time.FIGURE 2-21:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.5V).FIGURE 2-22:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.8V).FIGURE 2-23:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 2.5V).FIGURE 2-24:V OUT2 Output Voltage vs. Input Voltage (V OUT2= 3.3V).Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-25:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 2.5V).FIGURE 2-26:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 3.3V).FIGURE 2-27:V OUT2 Line Regulation vs.Ambient Temperature.FIGURE 2-28:V OUT2 Load Regulation vs.Ambient Temperature.FIGURE 2-29:V OUT2 Power Supply RippleRejection vs. Frequency.FIGURE 2-30:V OUT2 Noise vs. Frequency.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-31:V OUT1 Load Step Responsevs. Time.FIGURE 2-32:V OUT2 Load Step Responsevs. Time.FIGURE 2-33:V OUT1 and V OUT2 Line StepResponse vs. Time.FIGURE 2-34:V OUT1 and V OUT2 StartupWaveforms.FIGURE 2-35:V OUT1 and V OUT2 ShutdownWaveforms.3.0PIN DESCRIPTIONSThe descriptions of the pins are listed in Table3-1. TABLE 3-1:PIN FUNCTION TABLE3.1LDO Shutdown Input Pin (SHDN2) SHDN2 is a logic-level input used to turn the LDO regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.2LDO Input Voltage Pin (V IN2)V IN2 is a LDO power-input supply pin. Connect variable-input voltage source to V IN2. Connect V IN1 and V IN2 together with board traces as short as possible. V IN2 provides the input voltage for the LDO regulator. An additional capacitor can be added to lower the LDO regulator input ripple voltage.3.3LDO Output Voltage Pin (V OUT2)V OUT2 is a regulated LDO output voltage pin. Connect a 1µF or larger capacitor to V OUT2 and A GND for proper operation.3.4No Connect Pin (NC)No connection.3.5Analog Ground Pin (A GND)A GND is the analog ground connection. Tie A GND to the analog portion of the ground plane (A GND). See the physical layout information in Section 5.0 “Application Circuits/Issues” for grounding recommendations. 3.6Buck Regulator Output Sense Pin(V FB/V OUT1)For V OUT1 adjustable-output voltage options, connect the center of the output voltage divider to the V FB pin. For fixed-output voltage options, connect the output of the buck regulator to this pin (V OUT1). 3.7Buck Regulator Shutdown InputPin (SHDN1)SHDN1 is a logic-level input used to turn the buck regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.8Buck Regulator Input Voltage Pin(V IN1)V IN1 is the buck regulator power-input supply pin. Connect a variable-input voltage source to V IN1. Connect V IN1 and V IN2 together with board traces as short as possible.3.9Buck Inductor Output Pin (L X) Connect L X directly to the buck inductor. This pin carries large signal-level current; all connections should be made as short as possible.3.10Power Ground Pin (P GND)Connect all large-signal level ground returns to P GND. These large-signal level ground traces should have a small loop area and length to prevent coupling of switching noise to sensitive traces. Please see the physical layout information supplied in Section 5.0“Application Circuits/Issues” for grounding recommendations.3.11Exposed Pad (EP)For the DFN package, connect the EP to A GND with vias into the A GND plane.Pin Function1SHDN2Active Low Shutdown Input for LDO Output Pin2V IN2Analog Input Supply Voltage Pin3V OUT2LDO Output Voltage Pin4NC No Connect5A GND Analog Ground Pin6V FB / V OUT1Buck Feedback Voltage (Adjustable Version)/Buck Output Voltage (Fixed Version) Pin 7SHDN1Active Low Shutdown Input for Buck Regulator Output Pin8V IN1Buck Regulator Input Voltage Pin9L X Buck Inductor Output Pin10P GND Power Ground PinEP ExposedPad For the DFN package, the center exposed pad is a thermal path to remove heat from the device. Electrically, this pad is at ground potential and should be connected to A GND.4.0DETAILED DESCRIPTION4.1Device OverviewThe TC1313 combines a 500mA synchronous buck regulator with a 300mA LDO. This unique combination provides a small, low-cost solution for applications that require two or more voltage rails. The buck regulator can deliver high-output current over a wide range of input-to-output voltage ratios while maintaining high efficiency. This is typically used for the lower-voltage, higher-current processor core. The LDO is a minimal parts-count solution (single-output capacitor), providing a regulated voltage for an auxiliary rail. The typical LDO dropout voltage (137mV @ 200mA) allows the use of very low input-to-output LDO differential voltages, minimizing the power loss internal to the LDO pass transistor. Integrated features include independent shutdown inputs, UVLO, overcurrent and overtemperature shutdown.4.2Synchronous Buck RegulatorThe synchronous buck regulator is capable of supply-ing a 500mA continuous output current over a wide range of input and output voltages. The output voltage range is from 0.8V (min) to 4.5V (max). The regulator operates in three different modes and automatically selects the most efficient mode of operation. During heavy load conditions, the TC1313 buck converter operates at a high, fixed frequency (2.0MHz) using current mode control. This minimizes output ripple and noise (less than 8mV peak-to-peak ripple) while main-taining high efficiency (typically > 90%). For standby or light-load applications, the buck regulator will automat-ically switch to a power-saving Pulse Frequency Modulation (PFM) mode. This minimizes the quiescent current draw on the battery while keeping the buck output voltage in regulation. The typical buck PFM mode current is 38µA. The buck regulator is capable of operating at 100% duty cycle, minimizing the voltage drop from input to output for wide-input, battery-powered applications. For fixed-output voltage applica-tions, the feedback divider and control loop compensa-tion components are integrated, eliminating the need for external components. The buck regulator output is protected against overcurrent, short circuit and over-temperature. While shut down, the synchronous buck N-channel and P-channel switches are off, so the L X pin is in a high-impedance state (this allows for connecting a source on the output of the buck regulator as long as its voltage does not exceed the input voltage).4.2.1FIXED-FREQUENCY PWM MODE While operating in Pulse Width Modulation (PWM) mode, the TC1313 buck regulator switches at a fixed 2.0MHz frequency. The PWM mode is suited for higher load current operation, maintaining low output noise and high conversion efficiency. PFM to PWM mode transition is initiated for any of the following conditions.•Continuous inductor current is sensed•Inductor peak current exceeds 100mA•The buck regulator output voltage has droppedout of regulation (step load has occurred)The typical PFM-to-PWM threshold is 80mA.4.2.2PFM MODEPFM mode is entered when the output load on the buck regulator is very light. Once detected, the converter enters the PFM mode automatically and begins to skip pulses to minimize unnecessary quiescent current draw by reducing the number of switching cycles per second. The typical quiescent current for the switching regulator is less than 38µA. The transition from PWM to PFM mode occurs when discontinuous inductor current is sensed, or the peak inductor current is less than 60mA (typ.). The typical PWM to PFM mode threshold is 30mA. For low input-to-output differential voltages, the PWM to PFM mode threshold can be low due to the lack of ripple current. It is recommended that V IN1 be one volt greater than V OUT1 for PWM to PFM transitions.4.3Low-Dropout Regulator (LDO)The LDO output is a 300mA low-dropout linear regula-tor that provides a regulated output voltage with a single 1µF external capacitor. The output voltage is available in fixed options only, ranging from 1.5V to 3.3V. The LDO is stable using ceramic output capaci-tors that inherently provide lower output noise and reduce the size and cost of the regulator solution. The quiescent current consumed by the LDO output is typically less than 43.7µA, with a typical dropout volt-age of 137mV at 200mA. The LDO output is protected against overcurrent and overtemperature. While oper-ating in Dropout mode, the LDO quiescent current will increase, minimizing the necessary voltage differential needed for the LDO output to maintain regulation. The LDO output is protected against overcurrent and overtemperature.4.4Soft StartBoth outputs of the TC1313 are controlled during startup. Less than 1% of V OUT1 or V OUT2 overshoot is observed during start-up from V IN rising above the UVLO voltage; or SHDN1 or SHDN2 being enabled.4.5Overtemperature ProtectionThe TC1313 has an integrated overtemperature protection circuit that monitors the device junction temperature and shuts the device off if the junction temperature exceeds the typical 165°C threshold. If the overtemperature threshold is reached, the soft start is reset so that, once the junction temperature cools to approximately 155°C, the device will automatically restart.5.0APPLICATION CIRCUITS/ISSUES5.1Typical ApplicationsThe TC1313 500mA buck regulator + 300mA LDO operates over a wide input-voltage range (2.7V to 5.5V)and is ideal for single-cell Li-Ion battery-powered applications, USB-powered applications, three-cell NiMH or NiCd applications and 3V to 5V regulated input applications. The 10-pin MSOP and 3X3 DFN packages provide a small footprint with minimal exter-nal components.5.2Fixed-Output ApplicationA typical V OUT1 fixed-output voltage application is shown in “Typical Application Circuits”. A 4.7µF V IN1 ceramic input capacitor, 4.7µF V OUT1 ceramic capacitor, 1.0µF ceramic V OUT2 capacitor and 4.7µH inductor make up the entire external component solution for this dual-output application. No external dividers or compensation components are necessary.For this application, the input-voltage range is 2.7V to 4.2V, V OUT1=1.5V at 500mA, while V OUT2=2.5V at 300mA.5.3Adjustable-Output ApplicationA typical V OUT1 adjustable-output application is also shown in “Typical Application Circuits”. For this application, the buck regulator output voltage is adjust-able by using two external resistors as a voltage divider. For adjustable-output voltages, it is recom-mended that the top resistor divider value be 200k Ω.The bottom resistor divider can be calculated using the following formula:EQUATION 5-1:Example:For adjustable output applications, an additional R-C compensation is necessary for the buck regulator control loop stability. Recommended values are:An additional V IN2 capacitor can be added to reduce high-frequency noise on the LDO input-voltage pin (V IN2). This additional capacitor (1µF) is not necessary for typical applications.5.4Input and Output Capacitor Selection As with all buck-derived dc-dc switching regulators, the input current is pulled from the source in pulses. This places a burden on the TC1313 input filter capacitor. In most applications, a minimum of 4.7µF is recom-mended on V IN1 (buck regulator input-voltage pin). In applications that have high source impedance, or have long leads (10 inches) connecting to the input source,additional capacitance should be used. The capacitor type can be electrolytic (aluminum, tantalum, POSCAP ,OSCON) or ceramic. For most portable electronic applications, ceramic capacitors are preferred due to their small size and low cost.For applications that require very low noise on the LDO output, an additional capacitor (typically 1µF) can be added to the V IN2 pin (LDO input voltage pin).Low ESR electrolytic or ceramic can be used for the buck regulator output capacitor. Again, ceramic is recommended because of its physical attributes and cost. For most applications, a 4.7µF is recommended.Refer to Table 5-1 for recommended values. Larger capacitors (up to 22µF) can be used. There are some advantages in load step performance when using larger value capacitors. Ceramic materials, X7R and X5R, have low temperature coefficients and are well within the acceptable ESR range required.TABLE 5-1:TC1313 RECOMMENDED CAPACITOR VALUESR TOP =200k ΩV OUT1=2.1V V FB =0.8VR BOT =200k Ω x (0.8V/(2.1V – 0.8V))R BOT =123k Ω (Standard Value =121k Ω)R COMP =4.99k ΩC COMP =33pFR BOTR TOP V FBV OUT1V FB –--------------------------------⎝⎠⎛⎞×= C (V IN1)C(V IN2)C OUT1C OUT2Min 4.7µF none 4.7µF 1µF Maxnonenone22µF10µF。

Eaton Moeller B3三相戒断器连接器说明说明书

Eaton Moeller B3三相戒断器连接器说明说明书

Eaton 232289Eaton Moeller® series B3 Three-phase busbar link, Circuit-breaker:3, 135 mm, For PKZM0-... or PKE12, PKE32 without side mountedauxiliary contacts or voltage releasesGeneral specificationsEaton Moeller® series B3 AccessoryThree-phase busbar link2322894015082322892135 mm34 mm12 mm0.058 kgUL 508CSA File No.: 98494UL Category Control No.: NLRV CEUL File No.: E36332IEC/EN 60947-4-1ULCSACSA-C22.2 No. 14CSA Class No.: 3211-06For parallel power feed to several motor-protective circuit-breakers on terminals 1, 3, 5B3.0/3-PKZ0Product Name Catalog NumberEANProduct Length/Depth Product Height Product Width Product Weight Certifications Catalog NotesModel CodeBlackForkInsulatedCan be extended by rotating installation 3Three-pole 45 mmIII3Accessories 6000 V AC3 Circuit-breakersPKZ0PKE12PKE32-25 °C 55 °C 690 V 690 V 63 A0 kA 0 kA 4.5 W0 W1.5 W 63 AColorElectric connection type FeaturesFunctionsNumber of phases Number of poles Mounting widthOvervoltage categoryPollution degreeProduct categoryRated impulse withstand voltage (Uimp) Suitable forUsed withAmbient operating temperature - min Ambient operating temperature - max Rated operational voltage (Ue) - max Rated operational voltage (Ue) at AC - max Rated uninterrupted current (Iu)Rated conditional short-circuit current (Iq) Rated short-time withstand current (Icw)Equipment heat dissipation, current-dependent PvidHeat dissipation capacity PdissHeat dissipation per pole, current-dependent PvidRated operational current for specified heat dissipation (In)0 WMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Save time and space thanks to the new link module PKZM0-XDM32ME Motor Starters in System xStart - brochureSwitching and protecting motors - catalogProduct Range Catalog Switching and protecting motorsDA-DC-00004554.pdfDA-DC-00004601.pdfDA-DC-00004109.pdfDA-DC-00004245.pdfDA-DC-00004891.pdfDA-DC-00004918.pdfDA-DC-00004920.pdfDA-DC-00004917.pdfDA-DC-00004883.pdfDA-DC-00004945.pdfDA-DC-00004911.pdfDA-DC-00004879.pdfDA-DC-00004921.pdfDA-DC-00004884.pdfDA-DC-00004962.pdfDA-DC-00004890.pdfDA-DC-00004892.pdfDA-DC-00004888.pdfDA-DC-00004950.pdfDA-DC-00004914.pdfDA-DC-00004887.pdfDA-DC-00004944.pdfeaton-manual-motor-starters-busbar-b3-accessory-dimensions.eps eaton-manual-motor-starters-busbar-b3-accessory-3d-drawing-005.epsETN.B3.0_3-PKZ0Static heat dissipation, non-current-dependent Pvs10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects10.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impact10.2.7 Inscriptions10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components10.7 Internal electrical circuits and connections10.8 Connections for external conductors10.9.2 Power-frequency electric strength BrochuresCataloguesCertification reports Declarations of conformityDrawingseCAD modelInstallation instructionsEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All rights reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaIs the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.IL122027ZUWIN-WIN with push-in technologyb3_0_3_pkz0b3_0_3_pkz0.stp10.9.3 Impulse withstand voltage10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical function Installation videos mCAD model。

NCV1413BDR2G中文资料

NCV1413BDR2G中文资料

Typ
Max
Unit
Output Leakage Current
(VO = 50 V, TA = +85°C) (VO = 50 V, TA = +25°C)
All Types All Types
ICEX
mA


100


50
Collector−Emitter Saturation Voltage
(IC = 350 mA, IB = 500 mA) (IC = 200 mA, IB = 350 mA) (IC = 100 mA, IB = 250 mA)
SOIC−16
SOIC−16 (Pb−Free) SOIC−16
48 Units/Rail 48 Units/Rail
2500 Tape & Reel
SOIC−16 2500 Tape & Reel (Pb−Free)
PDIP−16
25 Units/Rail
PDIP−16 (Pb−Free)
25 Units/Rail
Tstg TJ RqJA
−55 to +150 150
67 100
°C °C °C/W
Thermal Resistance, Junction−to−Case Case 648, P Suffix Case 751B, D Suffix
RqJC
°C/W 22 20
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) Charged Device Model (CDM)

3SK131中文资料

3SK131中文资料

Gate1 Reverse Current
IG1SS
Gate2 Reverse Current Forward Transfer Admittance
IG2SS
yfs
22
28
MAX.
25 2.0 1.5 20 20
Input Capacitance
Ciss
4.0
5.0
6.5
Output Capacitance
VDS = 5 V
20
Gps 4
3 10
2
0
NF
1
−10
0 −1 0 1 2 3 4 5 6 7 8
VG2S-Gate 2 to Source Voltage-V
TEST CIRCUIT
VG2S 1000 pF
22 kΩ 1000 pF
INPUT 7 pF
50 Ω
L1 1000 pF
15 pF 200 Ω
Drain to Source Voltage
VDSX
20
V
Gate1 to Source Voltage
VG1S
8
V
Gate2 to Source Voltage
VG2S
8
V
Drain Current
ID
25
mA
Total Power Dissipation
PT
200
mW
Channel Temperature
4.0
2.0
0
−1.0
0
1.0
2.0
3.0
4.0
VG2S-Gate 2 to Source Voltage-V
Coss-Output Capacitance-pF

1313手持编程器使用手册(中文).pdf

1313手持编程器使用手册(中文).pdf

1313⼿持编程器使⽤⼿册(中⽂).pdf 1313⼿持编程器使⽤⼿册1313⼿持编程器使⽤⼿册 (1)1.概述 (4)2.1313编程器操作 (6)连接 (6)编程器上电 (7)显⽰格式 (8)访问级别 (9)按键功能 (9)3.菜单架构 (13)菜单结构 (13)菜单项类型 (14)九⼤菜单 (15)4. 系统信息菜单 (16)5. 参数菜单 (17)参数菜单中的功能键 (18)6. 监控菜单 (20)监控菜单中的功能键 (20)7. 故障诊断菜单 (22)当前故障⽂件夹 (23)历史故障⽂件夹 (23)故障诊断菜单功能键 (24)8. 编程菜单 (25)“Save .cpf File”(保存.cpf⽂件) (26)“Restore .cpf File”(恢复.cpf⽂件) (29)9. 收藏菜单 (32)收藏菜单中的功能键 (33)在编程或监控菜单中使⽤“Add to” (33)访问收藏菜单 (34)10. ⼿持编程器设置菜单 (36)访问权限(Access Level) (37)语⾔(Language) (37)左⼿功能键(Left Handed Soft Key) (37)背光灯(Backlight) (37)按键⾳效(Keytone) (37)⾃动关机(电池供电)(Auto Poweroff battery) (38)⾃动关机(控制器供电)(Auto Poweroff ext) (38)向左按键退出菜单(Exit menus with left arrow) (38)允许截屏(Enable Screenshot) (38)电池电压低显⽰(Show only empty battery) (38)另存默认字段(Text for save as) (39)键盘使⽤帮助⽂本(Keyboard help text) (39)记录上次显⽰(Remember Last View) (39)按删除缓存⽂件(Delete Cache File) (39)⽇期和时间(Date & Time) (40)关于(About) (40)编程器设置菜单功能键 (40)11. ⽂件管理 (41)⽂件管理菜单中的功能键 (42)12. 绘图和⽇志 (43)⽇志 (44)绘图 (44)13. 键盘使⽤ (46)键盘显⽰的可变功能键 (46)14. 截屏 (48)15. 离线⼯作 (49)编程器未连接 (49)编程器连接控制器但控制器没上电 (50)编程器连上已经运⾏的控制器 (51)1.概述科蒂斯1313⼿持编程器⽤于配置科蒂斯电机控制系统。

ts3usb221复用器开关模块工作原理

ts3usb221复用器开关模块工作原理

ts3usb221复用器开关模块工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!TS3USB221复用器开关模块工作原理引言TS3USB221是一种常用的复用器开关模块,用于在不同的输入和输出端口之间切换信号。

应用于无线电能传输系统的金属异物三级定位检测系统设计

应用于无线电能传输系统的金属异物三级定位检测系统设计

㊀㊀㊀㊀收稿日期:2020-01-18;修回日期:2020-03-20基金项目:国家自然科学基金青年基金项目(51607110)通信作者:夏能弘(1982-),男,博士,副教授,主要从事电磁场数值计算㊁无线电能传输的研究;E -m a i l :a c a d e m i c s h i e p@163.c o m 第37卷第2期电力科学与技术学报V o l .37N o .22022年3月J O U R N A LO FE I E C T R I CP O W E RS C I E N C EA N DT E C H N O L O G YM a r .2022㊀应用于无线电能传输系统的金属异物三级定位检测系统设计王跃跃,夏能弘(上海电力大学电气工程学院,上海200090)摘㊀要:磁谐振式无线电能传输基于高频交变磁场耦合,当有金属异物侵入时,异物产生的涡流效应会给系统带来不可忽视的安全隐患㊂目前无线电能传输系统金属异物的检测主要基于异物造成的功率损耗和热效应,存在延时性高㊁参数提取复杂等缺陷㊂在此背景下,提出一种基于三级线圈的新型金属异物定位检测系统,第1㊁2级线圈均由2个并列矩形单元检测线圈构成,两级线圈布置方向相互垂直,实现金属异物在充电范围四分之一区域内的简单定位;第3级线圈由刚好覆盖发射线圈的4个等腰三角形单元检测线圈构成,实现金属异物在充电范围八分之一区域内的定位检测㊂以发射线圈面积为340mmˑ280mm 的无线电能传输系统为载体进行验证,实验结果表明:当检测阈值电压低至1.4V 时,该异物检测系统能够有效检测到边长仅为20mm 的正方体铁块㊂关㊀键㊀词:磁谐振式无线电能传输;金属异物;三级检测线圈;单元检测线圈D O I :10.19781/j.i s s n .1673-9140.2022.02.024㊀㊀中图分类号:TM 72㊀㊀文章编号:1673-9140(2022)02-0205-08Ad e s i g no f t h r e e -s t a g e l o c a t i o na n dd e t e c t i o n s y s t e mf o r t h em e t a l l i c f o r e i g nb o d ya p p l i e d i n t h ew i r e l e s s p o w e r t r a n s f e r s ys t e m WA N G Y u e y u e ,X I A N e n g h o n g(E l e c t r i c a l P o w e rE n g i n e e r i n g o f S h a n g h a iU n i v e r s i t y o fE l e c t r i cP o w e r ,S h a n gh a i 200090,C h i n a )A b s t r a c t :T h em a g n e t i c r e s o n a n t c o u p l i n g b a s e dw i r e l e s s p o w e r t r a n s f e ru t i l i z e s t h eh i g h -f r e q u e n c y a l t e r n a t i n g m a g-n e t i c f i e l d c o u p l i n g f u n d a m e n t a l l y .O n c e am e t a l l i c f o r e i g nb o d y i n v a d e s ,t h e e d d y c u r r e n t e f f e c t g e n e r a t e db yt h e f o r -e i g nb o d y m a y b r i n g c o n s i d e r a b l e s e c u r i t y r i s k s t o t h e s y s t e m.A t p r e s e n t ,t h e d e t e c t i o nm e t h o d s o fm e t a l l i c f o r e i gn b o d y i n t h i sw i r e l e s s p o w e r t r a n s f e r s y s t e ma r em a i n l y b a s e d o n p o w e r l o s s a n d t h e r m a l e f f e c t c a u s e d b y f o r e i g n b o d y.I t s d o m i n a t e d i s a d v a n t a g e s r e l a y m a i n l y o n t h e h i g hd e l a y a n d c o m p l e x p a r a m e t e r e x t r a c t i o n .U n d e r t h e b a c k g r o u n d ,an e wd e t e c t i o n s y s t e mo fm e t a l l i c f o r e i g nb o d y l o c a t i o nb a s e do n t h r e e -s t a g e c o i l i s p r o p o s e d i n t h i s p a p e r .T h e f i r s t a n d s e c o n d s t a g e c o i l s a r e c o m p o s e do f t w o p a r a l l e l r e c t a n g u l a ru n i td e t e c t i o nc o i l s .T h es e c o n ds t a g e sc o i l sa r ea r -r a n g e d p e r p e n d i c u l a r t o e a c ho t h e r t o a c h i e v e t h e s i m p l e p o s i t i o n i n g o fm e t a l l i c f o r e i g nb o d y i na q u a r t e r o f t h e c h a r -g i n g r a n g e .T h e t h i r d s t a g e c o i l i s c o m p o s e do f f o u r i s o s c e l e s t r i a n g u l a r u n i t d e t e c t i o n c o i l s t h a t ju s t c o v e r t h e t r a n s -m i t t i n g c o i l .T h e l o c a t i n g d e t e c t i o no fm e t a l l i c f o r e i g nb o d y w i t h i no n e e i g h t ho f t h e c h a r g i n g r a n ge i s t h e nr e a l i z e d .Copyright ©博看网. All Rights Reserved.电㊀㊀力㊀㊀科㊀㊀学㊀㊀与㊀㊀技㊀㊀术㊀㊀学㊀㊀报2022年3月F i n a l l y,am a g n e t i c r e s o n a n t c o u p l i n g b a s e dw i r e l e s s p o w e r t r a n s f e r s y s t e m w i t h a n a r e a o f340mmˑ280mmt r a n s-m i t t i n g c o i l i s a p p l i e d f o r v e r i f i c a t i o n.I t i s s h o w n t h a t a s q u a r e i r o nb l o c kw i t h s i d e l e n g t h a s s m a l l a s20mmc a nb e d e t e c t e db y t h e s y s t e m w h e n t h e t h r e s h o l dv o l t a g e i s1.4V.K e y w o r d s:M R C-W P T;m e t a l l i c f o r e i g nb o d y;t h r e e-s t a g e d e t e c t i o n c o i l;u n i t d e t e c t i o n c o i l㊀㊀无线电能传输技术具有方便㊁灵活㊁可靠的供电特点,改善了传统有线输电线路老化㊁场地受限等缺陷,受到越来越多的关注[1]㊂发展至今,该技术在功率㊁效率和传输距离等方面的研究日趋成熟,各种无线电能传输产品相继问世,并能较好满足用户需求[2-4]㊂磁耦合谐振式无线电能传输技术(w i r e l e s s p o w e rt r a n s f e rv i a m a g n e t i cr e s o n a n c ec o u p l i n g, W P T/M R C)利用具有相同谐振频率线圈经高频交变磁场耦合实现电能的无接触式传输[5-8]㊂W P T/ M R C相较于电磁感应式和电场耦合式,不仅可以减小系统对周围环境的磁场辐射,且因其在传输距离㊁传输功率以及传输效率等方面的均衡表现,使其特别适用于电动汽车等较大功率㊁中远距离无线充电领域,成为无线电能传输技术的研究热点[9]㊂实际应用中W P T/M R C仍需克服一些重要问题㊂侵入系统中的金属异物在交变磁场作用下会产生涡流损耗,研究表明,在不考虑散热㊁厚度为15μm的铝箔侵入传输功率为6.6k W的系统时,其温度能够在4m i n内提升到130ħ,如不及时处理,不仅造成系统的功率损耗,降低系统传输效率,还对系统运行的安全性和可靠性造成影响[10-12]㊂为保证系统传输效率,提高系统安全性和可靠性,采用不同原理的金属异物检测方法成为无线电能传输技术研究的热点㊂根据传输功率的变化对金属异物进行检测是最常见的方法,但由于体积小的金属异物造成的功耗有限,在大功率传输系统中检测精度较低[13]㊂还有研究人员提出热成像探头检测法,该方法和常见方法相比,检测灵敏度有一定的提高,但热成像探头脆弱易损坏,检测只能在异物造成功耗㊁温度升高后进行,存在延时性㊂通过附加检测线圈,利用金属异物涡流和磁效应对异物进行检测具有良好的实时性和灵敏性㊂W i T r i c i t y公司提出一种利用平衡检测线圈对金属异物进行检测的方法,具有较高灵敏性和可靠性[14]㊂韩国科学技术院(K A I S T)提出了一种双用途非重叠金属异物检测系统,不仅实现了一个硬币的定位检测,而且可以确定接收线圈的位置,及时对偏移进行调整保证系统的传输效率[15]㊂但该系统输出参数多,参数提取困难,增加了后续传感电路设计复杂度和故障机率,且该方法存在检测死区,降低了系统的可靠性㊂本文提出一种利用三级线圈实现金属异物检测及定位的方法㊂该检测线圈由单匝利兹线绕成,造价低㊁绕制简单㊂紧贴发射线圈的检测线圈通过金属异物引起的感应电压变化检测异物,并通过三级线圈相互配合实现异物定位㊂用户可根据自身需求调整检测精度,具有较高的灵活性㊂该检测方法参数提取简单㊁检测实时性高㊁无检测死区,可为异物后续处理创造有利条件㊂1㊀异物侵入磁场特性分析为分析金属异物对系统磁场特性的影响,并获得可靠的检测方法㊂本文在M a x w e l l中搭建磁耦合执行机构模型,如图1所示,仿真分析金属异物在不同情况下对系统原磁场磁感应强度的影响㊂模型参数如表1所示㊂本次仿真主要从金属异物材质㊁异物面积和厚度及异物所处位置这3个方面对系统原磁场磁感应强度受异物的影响机制进行比较分析㊂为使仿真结图1㊀无线电能传输系统磁耦合机构仿真模型F i g u r e1㊀S i m u l a t i o nm o d e l o fm a g n e t i c c o u p l i n g m e c h a n i s mi nw i r e l e s s p o w e r t r a n s f e r s y s t e m表1㊀模型仿真参数T a b l e1㊀P a r a m e t e r s o f s i m u l a t i o nm o d e l 发射㊁接收线圈尺寸/mm2一次侧工作电流/A传输距离/mm线圈匝数发射接收工作频率/k H z 340ˑ28021002020500602Copyright©博看网. All Rights Reserved.第37卷第2期王跃跃,等:应用于无线电能传输系统的金属异物三级定位检测系统设计果更加直观精确,在不同情况下,通过发射线圈上表面穿过异物几何中心的磁感应强度观测线反应金属异物对系统原磁场磁感应强度的影响程度㊂在高频交变磁场环境中,金属异物主要通过涡流和磁效应对磁场产生影响㊂系统工作时发射线圈中的交流电I1产生交变磁场B1,处于B1中的非铁磁性金属(铜)感应出涡电流I2,I2产生一个与系统原磁场B1方向相反的新磁场B2,金属附近磁场变成B1-B2,如图2(a)所示㊂由于铁磁特性,铁磁性金属对原磁场的影响和非铁磁性金属大不相同㊂铁磁性金属(铁)处于B1中被磁化,磁化后的金属内部磁偶极子对齐排列产生附加磁场B2,B2与原磁场B1方向一致,金属附近磁场变为B1+B2,如图(a)涡流效应(b)磁效应图2㊀金属异物产生的附加磁场与原磁场叠加示意F i g u r e2㊀D i a g r a mo fm a g n e t i c f i e l d s u p e r p o s i t i o no fm e t a l l i c f o r e i g nb o d y对于不同材质的金属异物仿真结果如图3(a)所示,正常情况下系统磁场以发射线圈中心为轴对称分布㊂异物存在时铜块和铝块侧明显低于无异物侧磁感应强度,而铁块侧明显高于无异物侧磁感应强度,与理论分析结果一致㊂值得一提的是铜和铝的电导率数量级都为-8,在系统参数一定的情况下,2种金属因涡流产生的反向磁场B2相同,仿真结果显示铜块和铝块附近磁感应强度曲线重合㊂材质相同㊁面积(mm2)和厚度(mm)不同的金属异物对磁场造成的影响不同㊂如图3(b)所示,厚度一定时铁块对原磁场磁感应强度的影响随铁块面积增大而增强;面积一定时铁块对原磁场磁感应强度的影响随铁块厚度的增加而增强㊂系统正常工作时系统磁场是对称而不均匀的,同一金属异物处于同一分区㊁不同位置时异物对磁场的影响程度不同㊂为明确此影响机制,分别在不同大小的磁场中放置同一金属异物进行仿真,仿真结果表明,金属异物对原磁场磁感应强度的影响随着原磁场磁感应强度的增大而增强㊂如图3(c)所示,发射线圈由外到内,原磁场磁感应强度从最小值增大到最大值又降至一个稳定值,当异物处于B㊁C㊁D原磁场磁感应强度较强的外围区域时,异物对原磁场的影响越大㊂(a)同一位置、大小相同、材质不同的异物(b)同一位置、大小不同的铁块(c)同一分区、不同位置、大小相同的铁块观测线长度/mm观测线长度/mm观测线长度/mm图3㊀不同情况下发射线圈上表面特定取值线上的磁感应强度仿真结果F i g u r e3㊀S i m u l a t i o n r e s u l t s o fm a g n e t i c i n d u c t i o ni n t e n s i t y u n d e r d i f f e r e n t c o n d i t i o n s2㊀三级线圈检测系统结构设计2.1㊀系统结构及检测原理如图4所示,本文提出的金属异物检测系统由三级线圈组成㊂第1级线圈由并行放置且刚好覆盖发射线圈的2个矩形单元检测线圈构成,定义该级2个单元检测线圈为1_1㊁1_2㊂每个单元检测线圈都是平衡线圈,即线圈两侧采用反向绕制的方式,等效电路模型如图5所示㊂702Copyright©博看网. All Rights Reserved.电㊀㊀力㊀㊀科㊀㊀学㊀㊀与㊀㊀技㊀㊀术㊀㊀学㊀㊀报2022年3月3_4图4㊀三级检测线圈结构F i g u r e4㊀S t r u c t u r e o f t h r e e-s t a g e d e t e c t i o n c o il2U图5㊀单元检测线圈等效电路模型F i g u r e5㊀E q u i v a l e n t c i r c u i tm o d e l o f u n i t d e t e c t i o n c o i l当单元检测线圈两侧磁通变化率相同时,两侧产生大小相同㊁方向相反的感应电压U1和U2㊂测量整个单元检测线圈的输出感应电压,两侧产生的感应电压相互抵消,每个单元检测线圈的输出感应电压为0V,即ΔU=U1-U2=0V㊂当金属异物侵入系统时,改变所处区域原磁场磁感应强度,进而打破与该区域对应的单元检测线圈原本平衡的状态,单元检测线圈输出的感应电压不再是0V,即ΔU= U1-U2-U Sʂ0V,其中U S为受金属异物影响的单元检测线圈感应电压㊂因此,测量各单元检测线圈的输出感应电压就可以对侵入系统的金属异物进行检测㊂第2级线圈构造同第1级线圈,但2个单元检测线圈布置方向垂直于第1级线圈中2个单元检测线圈布置方向,定义该级2个单元检测线圈为2_1㊁2_2㊂当金属异物侵入系统时,1㊁2级线圈都有与异物侵入区域对应的单元检测线圈,其通过输出感应电压做出反应,1㊁2级线圈相互配合实现异物的简单定位,即充电范围四分之一区域内的定位检测㊂第3级线圈由顶点相交㊁刚好覆盖发射线圈的4个等腰三角形单元检测线圈构成,定义该级4个单元检测线圈为3_1㊁3_2㊁3_3㊁3_4㊂等腰三角形单元检测线圈以底边高为轴,同样采用两侧反向绕制的方式,等效电路模型见图5㊂第3级线圈和前两级线圈相互配合,在前两级线圈实现金属异物简单定位的基础上,将充电范围分割成8个检测分区a㊁b㊁c㊁d㊁e㊁f㊁g㊁h,实现充电范围八分之一区域内的金属异物定位检测,如图6所示㊂该金属异物检测系统具有零检测死区的特性,即实现了覆盖范围内的全检测,系统的检测性能不会因异物某些特殊位置而受到影响,可靠性高㊂3_2图6㊀检测分区F i g u r e6㊀D i a g r a mo f d e t e c t i o n p a r t i t i o n2.2㊀系统等效电路模型分析对带有单个单元检测线圈的无线电能传输系统进行分析,其等效电路模型如图7所示,U S为高频电源,U O为检测线圈输出感应电压,R L为负载电阻;R1㊁R2㊁R3以及L1㊁L2㊁L3分别为发射线圈㊁接收线圈和检测线圈回路等效电阻和电感;M12㊁M13㊁M23分别为发射与接收㊁发射与检测以及检测与接收线圈之间互感;各谐振回路串联补偿电容为C1㊁C2㊁C3,ω为系统谐振角频率,满足ω=1/L1C1= 1/L2C2/L3C3U L图7㊀系统等效电路模型F i g u r e7㊀E q u i v a l e n t c i r c u i tm o d e l o fM R C-W P Ts y s t e m流过各线圈的电流分别为I1㊁I2㊁I3(图7),根据基尔霍夫电压定律(K V L)得:Z1I1+jωM12I2+jωM13I3=U SjωM12I1+Z2I2+jωM23I3=0jωM13I1+jωM23I2+Z3I3+U O=0ìîí(1)其中Z1=R1+jωL1+1/jωC1,Z2=R2+jωL2+802Copyright©博看网. All Rights Reserved.第37卷第2期王跃跃,等:应用于无线电能传输系统的金属异物三级定位检测系统设计1/j ωC 2+R L ,Z 3=R 3+j ωL 3+1/j ωC 3㊂系统谐振时有j ωL i +1/j ωC i =0i =1,2,3(),求解式(1)得到:㊀I 1=[R 3(R 2+R L )+ω2M 223]U S /[R 1(R 3㊃㊀㊀(R 2+R L )+ω2M 223)+ω2M 213(R 2+㊀㊀R L )+ω2M 212R 3-j 2ω3M 13M 12M 23]I 2=-ω2M 13M 23-j ωM 12R 3R 3(R 2+R L )+ω2M 223I 1I 3=-ω2M 12M 23-j ωM 13(R 2+R L )R 3(R 2+R L )+ω2M 223I 1ìîí(2)㊀㊀接收和检测线圈之间的距离较远且检测线圈为单匝,M 23忽略不计,传输效率为η=I 22R L /[I 21R 1+I 22(R 2+R L )+I 23R 3]=ω2R L M 212R 23/[R 3(R 2+R L )(R 1R 3(R 2+R L )+ω2M 213(R 2+R L )+ω2M 212R 3)](3)㊀㊀由式(3)可知,η与发射㊁接收及检测线圈回路多个参数有关㊂为明确检测线圈对η的影响,将η对R 3求偏导,∂η/∂R 3恒大于0,且η存在极大值,可见η随R 3增大而增大,并最终趋于不加检测线圈时系统的传输效率η0㊂η随R 3变化趋势如图8所示,检测线圈和电压表串联,检测线圈回路的电阻R 3非常大,因此,三级检测线圈对于系统传输效率几乎没有影响㊂100755025传输效率η/%检测线圈回路电阻R 3/M Ω108642η0图8㊀系统传输效率曲线F i gu r e 8㊀S y s t e mt r a n s m i s s i o ne f f i c i e n c y c u r v e 2.3㊀确定最佳阈值电压当三级线圈工作于完全对称的磁场中,各单元检测线圈输出的感应电压为0V ,但系统实际磁场难免存在一些微小误差,导致单元平衡检测线圈的输出感应电压略高于0V ㊂为确定有效的阈值电压,本文对M a x w e l l 磁耦合执行机构模型和S i m -pl o r e r 外电路建立联合仿真,在不同情况下,将金属异物对系统磁感应强度的影响反映到检测线圈的感应电压中㊂本次仿真分别采用120mm ˑ120mm ˑ20mm 铁㊁铜和铝块模拟金属异物,分别置于图6中e 分区的中心区域㊂仿真结果如图9(a )所示,当放入铝和铜块时,单元检测线圈1_2㊁2_2㊁3_3的输出电压相同且比放入铁块时大得多㊂根据处于同一分区㊁不同位置的异物对系统原磁场磁感应强度影响程度不同的结论,以检测线圈输出较小的铁块为参照异物,当铁块处于同一分区㊁不同位置时,仿真分析检测线圈的输出情况㊂仿真结果如图9(b )所示,当铁块处于图6中B ㊁C ㊁D 磁感应强度较强的外围区域时,检测线圈输出感应电压明显大于处于A 区域时的输出感应电压㊂假设发射线圈输入的是正弦电流,则发射线圈产生的原磁场受铁块影响的变化量为ΔB =A 1c o s (ωt +θ)(4)式中㊀A 1为铁块影响发射线圈原磁场磁感应强度变化量的幅值;ω为系统谐振角频率;θ为发射线圈原磁场的初始角㊂穿过检测线圈的磁通变化量为Δϕ=ΔB ㊃S =A 1c o s (ωt +θ)㊃S (5)式中㊀S 为铁块覆盖面积㊂匝数为单匝的检测线圈中产生的感应电压U为磁通变化量对时间的导数,即U =d Δϕd t=d ΔB ㊃Sd t=-S ㊃A 1ωs i n (ωt +θ)(6)㊀㊀根据式(6),结合同一异物对磁场越强区域影响越大的结论,可知检测线圈输出的感应电压大小和发射线圈产生的磁场的幅值成正比㊂所以异物越靠近线圈外侧磁感应强度较强区域,对应的单元检测线圈输出的感应电压越大㊂为得到有效的阈值电压,需要确定对原磁场磁感应强度影响最小的金属异物处于磁感应强度最小区域时检测线圈能够检测出的异物最小面积和厚度㊂对于异物面积和厚度的仿真,本文将不同规格铁块置于磁感应强度最弱的A 区域(图6),仿真结果如图9(c )所示㊂当120mmˑ120mmˑ20mm 铁块置于A 区域时,对应单元检测线圈1_2㊁2_2㊁3_3的输出电压远远大于其他单元检测线圈的输出电压㊂随着铁块面积和厚度减小,单元检测线圈1_2㊁902Copyright ©博看网. All Rights Reserved.电㊀㊀力㊀㊀科㊀㊀学㊀㊀与㊀㊀技㊀㊀术㊀㊀学㊀㊀报2022年3月2_2㊁3_3的输出电压减小,其他单元检测线圈的输出电压增大㊂当20mmˑ20mmˑ10mm 铁块置于A 区域时,单元检测线圈1_2的输出电压小于没有异物时单元检测线圈1_2的输出电压,而单元检测线圈2_1的输出电压超过单元检测线圈1_2的输出电压,此时系统失去检测功能㊂综上所述,当本文取20mmˑ20mmˑ20mm的铁块处于e 分区A 区域时,与e 分区对应的3个单元检测线圈中输出感应电压最小的单元检测线圈输出电压为阈值电压,即㊂(a )同一位置、大小相同材质不同的异物(b )同一分区、不同位置、大小相同的铁块(c )同一位置、大小不同的铁块感应电压/V检测线圈检测线圈检测线圈图9㊀不同情况下检测线圈输出电压的仿真结果F i gu r e 9㊀S i m u l a t i o n r e s u l t s o f d e t e c t i o n c o i l o u t p u t v o l t a ge i nd if f e r e n t c o n d i t i o n s 3㊀实验结果与分析基于三级线圈的结构设计,拟定金属异物位置参照,如表2所示㊂当金属异物侵入充电范围某分区时,对应该分区的单元检测线圈输出电压升高(ɿ表示),达到异物定位检测的目的㊂表2㊀金属异物位置参照T a b l e 2㊀R e f e r e n c e t a b l e f o r l o c a t i o no fm e t a l l i c f o r e i g nb o d y分区1_11_22_12_23_13_23_33_4a ɿ ɿ ɿ b ɿ ɿ ɿ c ɿ ɿ ɿ d ɿ ɿ ɿeɿ ɿ ɿf ɿ ɿɿg ɿɿ ɿ hɿɿɿ为验证该检测系统的实际有效性,搭建谐振式无线电能传输实验平台,如图10所示㊂实验平台几何尺寸和仿真模型参数保持一致,系统工作频率为500k H z ,输入电流为2A ,检测线圈紧附于发射线圈上表面㊂为保证实验效果,减小趋肤效应对载流导线造成的损耗,实验所用的发射㊁接收及检测线圈均用250股半径为0.1mm 的导线组成的利兹线(截面积为1.962mm 2)绕制而成㊂系统工作过程中E 类逆变器工作于Z V S 状态,大大降低了开关损耗,提高了工作可靠性㊂2号示波器1号示波器接收线圈三级检测线圈函数信号发生器电源发射线圈高频电源板图10㊀实验原型实物F i gu r e 10㊀E x p e r i m e n t a l p r o t o t y p e 没有异物侵入时各单元检测线圈输出电压波形如图11所示㊂同一级中的单元检测线圈输出电压大小相同,输出电压最大的单元检测线圈1_1输出电压峰值为1320m V ,小于阈值电压1.4V ,与仿真结果一致,符合检测要求㊂012Copyright ©博看网. All Rights Reserved.第37卷第2期王跃跃,等:应用于无线电能传输系统的金属异物三级定位检测系统设计(c )三级检测线圈输出波形(a )一级检测线圈输出波形(b )二级检测线圈输出波形U m1_1=1320mVU m1_2=1080mV输出电压/m V1000200015000-500500-1000-1500-20005004003002001000时间/nsU m2_1=960mVU m2_2=1200mV输出电压/m V1000200015000-500500-1000-1500-2000500400300200100时间/nsU m3_4=650mVU m3_3=1130mV U m3_1=1040mVU m3_2=850mV输出电压/m V1000200015000-500500-1000-1500-2000500400300200100时间/ns图11㊀无异物时检测线圈输出电压波形F i gu r e 11㊀O u t p u t v o l t a g ew a v e f o r mo f c o i l w i t hn o f o r e i g nb o d y将30mmˑ30mmˑ10mm 铜片置于发射线圈表面d 分区(图6),各单元检测线圈输出电压波形如图12所示㊂受铜片影响各单元检测线圈输出电压发生了明显变化㊂铜片所处区域对应的单元检测线圈输出电压明显高于无异物时各自的输出电压,而非异物区域对应的单元检测线圈输出电压比在无异物时各自的输出电压低,且输出电压升高的单元检测线圈输出电压峰值均高于阈值电压1.4V ,符合检测要求㊂实验结果表明,三级线圈检测系统可对侵入系统的金属异物做出灵敏反应,且输出电压升高的单元检测线圈与拟定的金属异物位置参照表一致,进一步证明了该系统对于金属异物定位检测的有效性㊂(a )一级检测线圈输出波形(b )二级检测线圈输出波形(c )三级检测线圈输出波形U m1_1=1700mVU m1_2=971mV输出电压/m V20000-1000-2000500400300200100时间/ns1000U m2_1=1116mVU m2_2=2140mV输出电压/m V30000-1000-30005004003002001000时间/ns10002000-2000U m3_2=659mVU m3_3=1450mVU m3_4=483mV输出电压/m V16000-400-16005004003002001000时间/ns4001200-800800U m3_1=395mV -1200-5001500-1500500图12㊀30mmˑ30mmˑ10mm 铜片于d 分区时检测线圈输出波形F i gu r e 12㊀T h e o u t p u t v o l t a g ew a v e f o r mo f t h e c o i lw i t h 30mmˑ30mmˑ30mmc o p pe r s h e e t i nd p a r t i t i o n 4㊀结语针对磁谐振式无线电能传输系统金属异物侵入问题,本文设计了一种基于三级线圈的新型金属异物定位检测系统;分析了金属异物在不同情况下对系统原磁场磁感应强度的影响机制,并基于上述分析结果,阐述了三级线圈金属异物定位检测系统的工作原理㊂该系统能够在零检测死区的情况下实现充电范围八分之一区域内的金属异物定位检测,具有良好的适用性和灵敏性,且对电能的传输功率和效率不会产生影响㊂最后,通过仿真和实验验证了112Copyright ©博看网. All Rights Reserved.电㊀㊀力㊀㊀科㊀㊀学㊀㊀与㊀㊀技㊀㊀术㊀㊀学㊀㊀报2022年3月系统的有效性㊂该新型金属异物定位检测系统能够提高现今飞速发展的磁谐振式无线电能传输技术的安全性和可靠性,具有广阔应用前景㊂参考文献:[1]范兴明,莫小勇,张鑫.无线电能传输技术的研究现状与应用[J].中国电机工程学报,2015,35(10):2584-2600.F A N X i n g m i n g,MO X i a o y o n g,Z HA NG X i n.R e s e a r c h s t a t u sa n da p p l i c a t i o n o f w i r e l e s s p o w e rt r a n s m i s s i o n t e c h n o l o g y[J].P r o c e e d i n g s o f t h eC S E E,2015,35(10): 2584-2600.[2]C H E N G Y H,WA N GGF,G HO V A N L O O M.A n a l y t-i c a lm o d e l i n g a n d o p t i m i z a t i o n o f s m a l l s o l e n o i d c o i l s f o r m i l l i m e t e r-s i z e db i o m e d i c a l i m p l a n t s[J].I E E ET r a n s a c-t i o n so n M i c r o w a v e T h e o r y a n d T e c h n i q u e s,2017,65 (3):1024-1035.[3]秦伟,张文杰,吝伶艳,等.基于失谐的无线电能传输系统抗偏移性研究[J].电测与仪表,2022,59(3):32-37. Q I N W e i,Z HA N G W e n j i e,L I NL i n g y a n,e t a l.R e s e a r c h o n a n t i-m i s a l i g n m e n t o fw i r e l e s s p o w e r t r a n s f e r s y s t e m-b a s e d o n d e t u n i n g[J].E l e c t r i c a l M e a s u r e m e n t&I n-s t r u m e n t a t i o n,2022,59(3):32-37.[4]杨阳,崔金龙,崔信.电动汽车无线充电系统磁耦合线圈耦合系数的研究[J].智慧电力,2020,48(8):56-62+115. Y A N G Y a n g,C U IJ i n l o n g,C U I X i n.C o u p l i n g c o e f f i-c i e n to f m a g n e t i cs t r u c t u r ec o i lf o r w i r e l e s sc h a r g i n g s y s t e m o fe l e c t r i cv e h i c l e s[J].S m a r tP o w e r,2020,48 (8):56-62+115.[5]焦宇峰,李锐杰,宋国兵.磁耦合谐振无线传输系统传输特性的研究及优化[J].电力系统保护与控制,2020,48 (9):112-120.J I A O Y u f e n g,L IR u i j i e,S O N G G u o b i n g.R e s e a r c ha n do p-t i m i z a t i o no ft r a n s m i s s i o n c h a r a c t e r i s t i c so f m a g n e t i c a l l y c o u p l e dr e s o n a n t w i r e l e s st r a n s m i s s i o ns y s t e m[J].P o w e r S y s t e mP r o t e c t i o n a n dC o n t r o l,2020,48(9):112-120.[6]E S K A N D A R I A N N,HA R C H E G A N IA T,K A Z E M IS S.A n o v e l s t r u c t u r e f o rh i g hs t e p-u p D C-D Cc o n v e r t e r w i t hf l e x i b i l i t y u n d e rt h ev a r i a b l el o a d sf o r E V s o l a r c h a r g i n g s y s t e m[J].I n t e r n a t i o n a lT r a n s a c t i o n so nE l e c-t r i c a l E n e r g y S y s t e m s,2020,30(6):e12375. [7]S H I SS,Z HA N G Y,F U ZJ,e t a l.O p t i m a l c o n f i g u r a-t i o no f e n e r g y s t o r a g e s y s t e mc a p a c i t y i nP V-i n t e g r a t e dE Vc h a r g i n g s t a t i o nb a s e do n N S G A-I I I[J].J o u r n a lo f P h y s i c s:C o n f e r e n c eS e r i e s,2021,1993(1):012013. [8]李阳,杨庆新,闫卓,等.磁耦合谐振式无线电能传输方向性分析与验证[J].电工技术学报,2014,29(2):197-203.L IY a n g,Y A N G Q i n g x i n,Y A N Z h u o,e ta l.A n a l y s i s a n dv a l i d a t i o no n c h a r a c t e r i s t i c o f o r i e n t a t i o n i nw i r e l e s s p o w e r t r a n s f e r s y s t e m v i ac o u p l e d m a g n e t i cr e s o n a n c e s [J].T r a n s a c t i o n s o f C h i n a E l e c t r o t e c h n i c a l S o c i e t y, 2014,29(2):197-203.[9]B I ZC,K A N TZ,M IC T C,e t a l.Ar e v i e wo fw i r e l e s s p o w e r t r a n s f e rf o re l e c t r i cv e h i c l e s:P r o s p e c t st oe n h a n c e s u s t a i n a b l em o b i l i t y[J].A p p l i e dE n e r g y,2016,179:413-425.[10]J A N G GC,J E O N GSY,KWA K H G,e t a l.M e t a l o b-j e c t d e t e c t i o n c i r c u i t w i t h n o n-o v e r l a p p e d c o i l s f o rw i r e l e s sE Vc h a r g e r s[C]//I E E E2n dA n n u a l S o u t h e r nP o w e rE l e c t r o n i c sC o n f e r e n c e,S P E C2016,A u c k l a n d, N e wZ e a l a n d,2016.[11]王黎明,李宗,孟晓波,等.一种交流电场无线取能电源的优化设计[J].高压电器,2020,56(5):121-127.W A N G L i m i n g,L IZ o n g,M E N G X i a o b o,e t a l.O p t i m i z a-t i o nd e s i g no f a nA Ce l e c t r i c f i e l dw i r e l e s s p o w e r s u p p l y[J].H i g hV o l t a g eA p p a r a t u s,2020,56(5):121-127. [12]陈晓娟,贾敏,李明晨.基于线圈偏移的无线电能传输系统参数优化方法[J].中国电力,2021,54(7):125-131.C H E N X i a o j u a n,J I A M i n,L I M i n g c h e n.C o i lo f f s e tb a s e dw i r e l e s s p o w e r t r a n s f e rs y s t e m p a r a m e t e ro p t i-m i z a t i o n[J].E l e c t r i cP o w e r,2021,54(7):125-131.[13]林光,姚益彬,樊昌,等.中短波发射台供配电故障定位研究[J].电网与清洁能源,2020,36(3):49-54.L I N G u a n g,Y A O Y i b i n,F A N C h a n g,e t a l.R e s e a r c h o n l o c a t i o no f p o w e r s u p p l y f a u l t so f t h em e d i u ma n d s h o r tw a v e t r a n s m i t t i n g s t a t i o n[J].P o w e rS y s t e ma n dC l e a nE n e r g y,2020,36(3):49-54.[14]R O Y AM,K A T ZN,K U R SAB.F o r e i g no b j e c t d e t e c-t i o ni n w i r e l e s se n e r g y t r a n s f e rs y s t e m s[P].U n i t e d S t a t e sP a t e n t:U S1*******B2,2020-06-16. [15]J E O N GSY,KWA K H G,J A N G GC,e t a l.D u a l-p u r-p o s en o n-o v e r l a p p i n g c o i l s e t s a sm e t a l o b j e c t a n d v e h i-c l e p o s i t i o nde t e c t i o n sf o r w i r e l e s s s t a t i o n a r y E Vc h a r g e r s[J].I E E ET r a n s a c t i o n s o nP o w e rE l e c t r o n i c s,2018,33(9):7387-7397.212Copyright©博看网. All Rights Reserved.。

硅传科技 CC1310-TC-009 大功率嵌入式 433M 无线数传模块 V3.1 说明书

硅传科技 CC1310-TC-009 大功率嵌入式 433M 无线数传模块 V3.1 说明书

CC1310-TC-009大功率嵌入式433M无线数传模块V3.1深圳市硅传科技有限公司地址:深圳市龙华区创业路汇海广场C座13层1305邮编:518109电话**************传真:*************邮箱:**********************网址:https://版本说明目录一、功能介绍 (4)二、应用领域 (4)三、模块特性 (5)四、尺寸示意图 (5)五、引脚说明 (6)六、硬件连接 (7)七、AT指令 (9)7.1 AT+MODE –设置工作模式 (9)7.2 AT+UART –设置串口参数 (9)7.3 AT+TXP –设置设备射频发射功率 (10)7.4 AT+RFRATE –设置设备射频空中波特率 (10)7.5 AT+CH –设置设备射频的工作频道 (11)7.6 AT+FACTORY –参数恢复出厂设置 (11)7.7 AT+RSTSTM –软件复位系统 (11)7.8 AT+GETRSSI –读取RSSI (12)7.9 AT+SNTYPE –设置传感器类型 (12)7.10 AT+NTP –设置传感器节点类型 (13)7.11 AT+SNPT –设置传感器数据上报周期 (13)7.12 AT+GID –设置传感器组ID (14)7.13 AT+SID –设置传感器节点ID (14)7.14 AT+VER –读取固件版本 (15)7.15 AT+EPW –模组供电电压值 (15)7.16 AT+SNTO –设置传感器数据上电延时上报时间 (16)7.17 AT+WTMD –设置射频白化功能 (16)7.18 AT+SCPRD –设置ADC传感器采样检测个数 (17)7.19 AT+BYP –内部PA/LNA Bypass模式 (17)八、电脑端上位机 (19)8.1 上位机操作说明 (19)8.2 传感器应用操作说明 (20)8.3 分组ID和节点ID (21)九、传感器串口数据协议 (22)十、使用注意事项 (23)10.1 上电延时 (23)10.2 AT指令 (23)10.3 透传数据分包机制 (23)10.4 功耗设计 (23)10.5 透传数据吞吐量 (23)十一、附加说明 (24)一、功能介绍CC1310属于德州仪器 (TI) CC26xx 和 CC13xx 系列器件中的经济高效型超低功耗Sub 1GHz的SOC RF器件。

一种复方抗病毒抗菌保健多功能纤维母粒及制备与应用[发明专利]

一种复方抗病毒抗菌保健多功能纤维母粒及制备与应用[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010584575.8(22)申请日 2020.06.24(71)申请人 广州市中诚新型材料科技有限公司地址 510450 广东省广州市白云区江高镇茅山东北街27号自编6-8栋(72)发明人 黄蕊烨 黄钊维 邓细利 罗湘军 钟敏丽 (74)专利代理机构 广州市科丰知识产权代理事务所(普通合伙) 44467代理人 罗啸秋(51)Int.Cl.C08L 23/12(2006.01)C08L 23/06(2006.01)C08L 67/02(2006.01)C08L 77/00(2006.01)C08K 9/12(2006.01)C08K 5/00(2006.01)C08K 3/015(2018.01)C08K 3/013(2018.01)C08K 9/06(2006.01)C08J 3/22(2006.01)D01F 1/10(2006.01)A01N 65/36(2009.01)A01N 65/22(2009.01)A01N 65/12(2009.01)A01N 65/08(2009.01)A01N 59/16(2006.01)A01N 59/20(2006.01)A01N 25/08(2006.01)A01P 1/00(2006.01)A01P 3/00(2006.01) (54)发明名称一种复方抗病毒抗菌保健多功能纤维母粒及制备与应用(57)摘要本发明属于功能纤维材料领域,公开了一种复方抗病毒抗菌保健多功能纤维母粒及制备与应用。

所述纤维母粒包括中药抗病毒粒子、无机抗菌粒子、健康保健功能粒子和纤维基体;所述中药抗病毒粒子是指负载中药抗病毒成分的二氧化硅气凝胶微球,所述无机抗菌粒子是指负载无机抗菌元素的二氧化硅气凝胶微球。

本发明创新的采用二氧化硅气凝胶微球作为中药抗病毒成分和无机抗菌元素的载体,将其引入到纤维材料中制备成纤维母粒,方便添加使用且可根据需要制成各种抗病毒抗菌保健多功能纤维制品。

hy2113obb规格书

hy2113obb规格书

hy2113obb规格书一、产品概述:该规格书旨在为HY2113OBB产品提供具体的参考内容。

HY2113OBB是一种高性能的电子元件,适用于各种电子设备中的数字信号处理和存储应用。

其设计和制造的主要目标是提供低功耗、高速度和可靠性,以满足现代电子设备对高性能元件的需求。

二、主要特性:1. 低功耗:HY2113OBB采用先进的设计和制造工艺,具有较低的功耗,能够节省电池能量,在保证长时间使用的同时减少能源消耗。

2. 高速度:HY2113OBB能够处理高速输入和输出信号,具有快速的响应时间和处理能力。

这使其适用于对实时性要求较高的应用场景,如多媒体播放器和网络通信设备。

3. 可靠性:HY2113OBB采用高质量的材料和制造工艺,具有较高的可靠性和稳定性。

它能够在广泛的温度范围内正常工作,并且能够抵抗电磁干扰和外部干扰。

4. 兼容性:HY2113OBB兼容多种电子设备和系统,包括PC、手机、平板电脑等。

它支持常见的操作系统和软件平台,方便用户集成和使用。

三、性能参数:1. 工作电压范围:3.3V-5V2. 工作温度范围:-40℃-85℃3. 输入/输出接口:具备多种输入/输出接口,如UART、I2C和SPI等。

4. 处理能力:HY2113OBB能够同时处理多个输入和输出信号,具有较大的数据处理能力。

5. 存储容量:HY2113OBB具有较大的存储容量,能够存储大量的数据和程序。

6. 时钟频率:HY2113OBB的时钟频率可达到XXMHz,能够快速响应和处理信号。

7. 功耗:HY2113OBB的平均功耗为XX mW,最大功耗为XX mW。

四、应用场景:1. 智能家居:HY2113OBB可以用于控制和管理智能家居设备,如灯光控制、温度调节、门锁控制等。

2. 电子商务:HY2113OBB能够提供安全的支付和数据传输功能,可以应用于电子商务平台和移动支付终端。

3. 医疗设备:HY2113OBB具有较高的实时处理能力和稳定性,适用于医疗设备中的数据处理和信号控制。

ES+海德汉1313编码器参数表

ES+海德汉1313编码器参数表

参数﹟0。

**号菜单003004加速斜率减速斜率标准编号名称参数值备注0.5cm/s20.6cm/s2加大数值,曲线则陡。

加大数值,曲线则陡。

﹟1。

**号菜单1.06为最高速度限值一般设置为电机额定转速﹟2。

**号菜单(其它参数一般不用设置)﹟3。

**号菜单(其它参数一般不用设置)3.05零速阀值3.08超速限值3.25编码器相位角3. 29变频器编码器位置2020485v 300At SC SC.END 11ON 很重要,直接影响停车舒适感此值自动生成,根据1.06整定出的相位角,U V W 的位置此参数很重要,自学习后断电送电检查是否改变3.33编码器转位3.34编码器脉从数3.36编码器电压3.373.38编码器的类型3.39编码器终端选择3.40错误检测级别3.41编码器自动配置﹟4。

**号菜单(其它参数不用设置)4.07对称电流限值4.11转矩方式选择4.12电流给定滤波器1 4. 13电流环比例增益4.14电流环积分增益4.15电极热时间常数4.23电流给定滤波器1标准编号200%42ms8910ms降低电机噪音自学习生成自学习生成降低电机噪音,﹟5。

**号菜单(其它参数不用设置)电机额定电流A 5.07电机额定速度5.08Rmp电机额定电压5.09380V电机极数5.1120PWM开关频率选择5.186K HZ﹟6。

**号菜单(不用设置)﹟7。

**号菜单(不用设置)7.10=0 7.14=0﹟8。

**号菜单(其它参数不用设置)8.21 24端子功能选择8.2225端子输入源8.2326端子输入源8.2427端子功能选择8.2528端子功能选择8.2629端子输入源8.3124端子输入(出)选择8.3225端子输入(出)选择按铭牌设定按铭牌设定10.02运行使能(10.02变频器工作)18.38相当于我们主板的多端速输出Y1518.37相当于我们主板的多端速输出Y1419.44顺时针旋转(上升)可以通过18.45=1改变运行方18.44逆时针旋转(下降)向18.36相当于我们主板的多端速输出Y13ON 0:输入功能1:输出功能OFF 0:输入功能1:输出功能﹟16**菜单(其他参数不用设置)16.17编码器故障检测级别16.24编码器分频输出源16.25编码器分频输出分子16.26编码器分频输出分母16.28编码器分频输出方式标准编号03.290.20481.63844检修速度双层速度单层爬行速度﹟18。

MWI-13467 清晰视觉 Classic Series 隔离输出 Din 槽放大器说明书

MWI-13467 清晰视觉 Classic Series 隔离输出 Din 槽放大器说明书

MAN-13467R EV CA C LASSIC S ERIES A MPLIFIER W/I SOLATED O UTPUTST ABLE OF C ONTENTS1P RODUCT O VERVIEW (5)1.1G ENERAL D ESCRIPTION (5)1.1.1CE EMC Responsibility (6)1.2G ENERAL S PECIFICATIONS (7)1.3P HYSICAL S PECIFICATIONS (7)1.4O PERATING C ONDITIONS (7)1.5E NVIRONMENTAL R EQUIREMENTS (8)1.6EMC T ECHNICAL R ATINGS (8)1.7E MISSION SPECIFICATIONS (8)2S ETUP AND C ONFIGURATION (10)2.1L OAD C ELL (T RANSDUCER)T ERMINALS (10)2.2P OWER S UPPLY T ERMINALS (10)2.3O UTPUT T ERMINALS (10)2.4R ECOGNITION D IAGRAMS (11)2.5C ONFIGURING THE S WITCH S ETTINGS (12)2.6P OTENTIOMETERS (13)2.7E XCITATION V OLTAGE S ELECT (13)2.8G AIN S ELECT S WITCHES (13)2.9M ETER V OLTAGE/C URRENT C ONFIGURATION (14)2.10M ETER O UTPUT D AMPING S ELECT (14)2.11W IRING (14)2.11.1Wiring termination (14)2.11.2Transducer Wiring (15)2.12T HE P OWER S UPPLY (15)2.12.1Power Wiring diagram (16)2.12.2Output wiring (16)3P OWER-UP AND T ESTING (20)3.1.1Before Applying Power (20)3.1.2Power Application (21)3.2T RANSDUCER P OLARITY C HECK (21)3.3S AFETY C ONSIDERATIONS (22)3.4C ALIBRATION (22)3.5C HECKING T RANSDUCER M OUNTING (22)3.6A CCURACY C ONSIDERATIONS (23)3.7P ROPER P RACTICES FOR A PPLYING C ALIBRATION F ORCES (24)3.8A DJUSTMENT T OOLS (26)3.9A DJUSTING A MPLIFIER C OARSE Z ERO (27)3.10G AIN A ND F INE Z ERO C ALIBRATION (27)3.11EMC C ONNECTIONS AND I NSTALLATION (28)A PPENDIX A.M ANUFACTURERS D ECLARATION OF C ONFORMITY (29)A PPENDIX B.C ABLE G LANDS (30)MAN-13467R EV CA C LASSIC S ERIES A MPLIFIER W/I SOLATED O UTPUTS1 P RODUCT O VERVIEW1.1 G ENERAL D ESCRIPTIONThe Classic Series DIN Rail amplifier (Isolated) provides a complete signal conditioning solution for amplifying and reporting signals from a pair of strain gage-based load cells. Either semiconductor or foil-based load cells can be used and the Classic Series Isolated DIN Rail amplifier offers an added benefit of an isolation amplifier stage to provide galvanic isolation.Because the output stage is free to float, be aware of voltage differences on the outputside of the amplifier with respect to protective earth ground.The isolated Classic Series DIN Rail amplifier has a separate ground reference (common) for the output signals. The ground used by the output circuits is electrically separate from the ground reference for the combined 24V supply and strain-gage signal conditioning.The Classic Series DIN Rail amplifier uses an Instrumentation Amplifier (IA) to amplify the signal from a pair of half-bridge transducers. The IA stage amplifies the millivolt level signals generated by the load cells, while effectively rejecting common-mode noise. A wide range of switch selectable gains can be used to provide the most appropriate level of initial amplification. Low drift Surface Mount Technology (SMT) components, Multi-layer Printed Circuit Boards (PCB) and optimum circuit topologies are incorporated to promote load cell signal integrity.A variable gain stage further amplifies the output of the instrumentation amplifier. The gain of this stage is adjustable over a 10:1 range to allow span calibration of the analog outputs.A precision voltage source is provided for exciting the strain gage elements in the inter-connected load cells (tension transducers). The circuit includes a short circuit current limit feature to protect the amplifier in the event of mis-wiring. Output voltage is selectable to either of the following:• 5.0 VDC•10.0 VDCThe use of galvanic isolation can aid in reducing noise pickup caused by ground loops in the field wiring and accommodates limited voltage gradients between input and output sections of the application wiring.The output circuits (+/-10 Volt, 4-20mA and the meter outputs) are galvanically isolated with respect to the combined 24VDC supply terminals and the load cell interface circuits. The isolation is accomplished by using a servo-stabilized linear opto-isolator stage. The output circuitry is powered by an isolated DC to DC converter.The final analog tension signal is available in a variety of forms. The un-damped output signal is provided from a+/-10V analog buffer stage.A damped (low pass filtered) version of the tension signal is available for driving displays or recording devices. The damping is switch selectable for a cutoff frequency of either 0.3 Hz or 3.7 Hz. Damping is useful for improving the readability, effectively masking higher frequency fluctuations superimposed on the tension signal. This damped output stage can be configured to be either:•+/- 2V analog output - intended primarily for driving Digital Panel Meters(DPM).•+/-1 mA current source - When configured as the current source, the 1 mAoutput is typically used to drive D’Arsonval style analog meters.MAN-13467R EV CA C LASSIC S ERIES A MPLIFIER W/I SOLATED O UTPUTS1.2 G ENERAL S PECIFICATIONSItem Specification CommentsInput SupplyPower Supply Requirements 24 VDC @ 120 milliAmps Basic Isolated AmplifierPower Supply Limits 20 to 28 VDC Basic Isolated AmplifierLoad Cell (Transducer)Transducer Excitation (Vexc) 5.0 or 10.0 VDC Shipped with V EXC. Set at 5.0 VDC.100milliAmp maximum.Switchable to 10 VDC with internalswitch.Transducer Resistance Range 100 to 1000 Ohms Do not exceed maximum excitationcurrent.Transducer Gage Types Semi-Conductor (20-100 mV/V) orFoil (2-3 mV/V) Gain switches configure input gain from 5 to 620 as needed, to amplify transducer voltage.AmplifierInput Impedance 10K (Line-Line) Nominal Inputs may be used single ended ortogether as a differential pair Selectable Gains, IA stage 5, 25, 125, 620 Gains switched by referring to section2.5 in this document.Calibration Range stage Min. 1.8 - Max. 18 Multi-turn Gain adjustment provided. Zero Range +/- Full Scale Output Coarse adjustment for input stageprovided.Nominal Input Signal Levels 0-250 milliVolts0-10 milliVolts Each semi-conductor load cell Each foil-gage load cellPulse Response 10-90% Step,0-10V and 4-20 mA 300 milliseconds for undamped signalsAmplifier Output Signal +/-10 VDC @ 2 mA4-20 mA current loop0-2 VDC @ 2 mA+/- 1milliAmp into ≤ 8 K Ohm +/-10 is undamped signalCurrent loop is undamped+/- 2VDC signal (or 1mA) has switch selectable damping (0.3 or 3.7 Hz)1.3 P HYSICAL S PECIFICATIONSItem Specification CommentsEnclosure Type DIN Rail mountable with main useradjustments accessible from frontsurface. Snap-on cover to accessconfiguration switches and setuppotentiometers.Phoenix EG type ABS enclosure.Color green.Enclosure Size Base: 45 mm wide by 75 mm highDepth: 105 mm1.8 inches (width) by 3.0 inches(height)4.2 inches (depth)Weight – Basic Amplifier 170 Grams 6 ouncesTerminals Two removable plugs of eight terminalseach, keyed to avoid mis-pluggingScrew type terminals, will accept upto one 12 AWG or equivalent.Phoenix “Combicon” type.1.4 O PERATING C ONDITIONSCondition Classic Series DIN Rail amplifier Installation category Category IIIPollution PollutionDegree2 Input supply Earth (Ground) referencedProtection EnclosuremountedMAN-13467R EV CA C LASSIC S ERIES A MPLIFIER W/I SOLATED O UTPUTS2.4 R ECOGNITION D IAGRAMSP5Input BoardOutput BoardJ2J1J32.6 P OTENTIOMETERSIn addition to the Gain and Zero adjustable Potentiometers visible on the front of the unit, there is an adjustment you can make by removing the snap-off cover on the side of the amplifier. The adjustment is located on the input printed circuit board as shown in Figure 4. The following table provides you with a list of all Potentiometers, where they are located on the Classic Series DIN Rail input printed circuit board, and a description of their functions.PotentiometerReference DesignatorLocationFunctionGAIN P2 Unit Front Provides 10:1 “vernier” adjustment of the variable gain amplifier. It is a multi-turn potentiometer, with clockwise rotation causing an increase inamplifier gain. When turned fully counter clockwise, the potentiometer willcause the amplifier stage to provide the minimum gain of 1.8. ZERO P1 Unit FrontProvides a fine zero (offset) adjustment. It is a multi-turn potentiometer, with clockwise rotation causing a positive shift in the analog outputs. It should be set mid-way prior to setting the COARSE ZERO adjustment.Coarse Zero P5Input, behind access coverEstablishes the coarse zero of instrumentation amplifier. Because of the ability to cause +/- Full scale (+/- F.S.) output shifts, it is important tocorrectly follow the final set-up and calibration procedure so that premature amplifier “clipping” is avoided2.7 E XCITATION V OLTAGE S ELECTThe Excitation Voltage is determined by the position of jumper switch J3. Refer to Figure 4 for Jumper-switch locations. The jumper default setting is J3 (1-2) for 5.00V excitation Do not use 10V setting J3 (2-3) unlessexplicitly permitted by the load cell electrical specifications. Promptly verify the excitation voltage after power-up to avoid overdriving strain gages. Note that if there is no external load resistance, the voltage may rise to 6.4V, but will immediately regulate at 5.00V when the load cells are connected.Keep in mind that the strain gage based load cells can readily operate at less than rated voltage (with acorresponding reduction in output signal). This fact is helpful in the event that a “10 V “ load cell exhibits an output signal that is excessive for even the lowest amplifier gain.2.8 G AIN S ELECT S WITCHESThe group of jumper-switches that control the fixed gain of the Instrumentation Amplifier (IA) are located closest to the front left edge of the Input card. (Refer to Figure 4) The lowest gain (Av = 5) occurs when all of the switches are in the 1-2 position. As switches are moved “away” (into position 2-3) from left to right, the gain progressively increases as described in following table:Jumper Switches J10 J9 J7 Voltage Gain1-2 1-2 1-2 5 2-3 1-2 1-2 25 2-3 2-3 1-2 125 2-3 2-3 2-3620For best performance a regulated power supply should be used with the Classic Series DIN Rail amplifier. It is important that you pay particular attention to the power supply for susceptibility to the effects of conducted and radiated energy from noise sources. Every effort should be made to provide stable voltage to the amplifier using correct wiring practices and filters. To protect against circuit damage, include a 0.38 Amp fuse in the power supply output lead to each amplifier in case of amplifier or power supply malfunction.2.12.2.2 A PPLICATION I NTERFACE DETAILSThe 4-20 mA output stage is designed to drive a loop current through a floating burden resistance. Examples of driving a loop current through a floating burden resistance include: a loop powered 4-20 mA display or, the isolated input of receiving electronics (isolated Analog to Digital input). The 4-20 mA output can also drive non-isolated (or ground referred) burden resistances provided that the circuit that employs the burden does not connect to the isolated common (COM, J2-3) of the amplifier.For a better understanding as to why the burden must be floating with respect to the amplifier’s isolated common (COM, J2-3) refer to Figure 9. This figure illustrates that the 4-20 mA OUT (J2-7) is connected to the +15V internal supply voltage and the 4-20mA RET terminal sinks loop current toward the -15V internal supply. A truly floating burden receives the loop current that is controlled by the amount of current sinking into the -15V supply. The current is supplied by the +15V supply. Incorrectly connecting burden resistance between the 4 -20mA OUT and COM (J2-3) would cause excessive current to flow. Incorrectly connecting the 4-20mA RET (J2-8) to COM (J2-3) results in the 4-20mA current being drawn from ground and bypassing the burden resistance.Figure 9 - 4-20 mA Output Circuit Wired for Floating BurdenWhile possible to interface the 4-20 mA current loop into circuits which do exhibit resistances between their burden and the amplifier isolated COM, (refer to Figure 10.), this is a less desirable configuration. If you chose to wire the amplifier in this way, you must keep the following in mind. When the commons of both circuits are connected, be sure that the amplifier’s 4-20 mA OUT remains unconnected and that the 4-20 mA RET (J2-8) is connected to draw loop current from a ground referred burden resistance at the receiving circuit. The burden resistance must not exceed 250 Ohms due to the reduced bias voltage, however a full-scale signal of -5.0 VDC is still possible (-5V= -20 mA x 250 Ohms).8+5763421142365784 to 20 mAi+SHIELD GNDLOOP RESISTANCE 50 - 750 OHMSFigure 10 – 4-20 mA Output Wiring for Ground Referred Burden2.12.2.3DIGITAL VOLTMETERThe +/- output terminal is designed to provide +2.0 volts when the +/- 10 V output terminal is adjusted (with the Gain and Zero pots) to be +10.0 volts (this is full scale). To achieve different scaling, adjust gains on the Digital Panel meter (DPM).MINIMUM METER RESISTANCE = 2000 OHMSDIGITAL VOLT METER0 TO 1.99 VOLT+8657324132418765Figure 11Output Wiring, Damped +/- 2V Analog3.1.2 P OWER A PPLICATIONApply DC power to the amplifier and use a DC voltmeter to confirm that the supply polarity and voltage is within the prescribed limits. As soon as is practical, confirm that the excitation voltage is either 5.0 VDC or 10.0 VDC as appropriate for the type of load cells being used. Promptly identifying any over-voltage condition can help minimize potential damage to the strain gage elements internal to the transducer. Note that the excitation voltage may rise to approximately 6.5 VDC if the amplifier is operated without any transducers attached. This voltage will return to the precisely regulated value when the transducer load is connected.3.2 T RANSDUCER P OLARITY C HECKThis step is important in identifying transducer or wiring problems early on in the setup procedure. Information learned in this check will be instrumental in setting the optimum gains for the Instrumentation Amplifier stage.1.Measure the -INPUT signal from transducer 1 with a digital voltmeter (DVM) at the input to the amplifierwith respect to the Excitation Return (EXC RET) to confirm that it is roughly 50% of the excitationvoltage.Measure the +INPUT signal from transducer 2 to confirm that it is roughly 50% of the excitation voltage.If either measurement is less than 45% or greater than 55% of the excitation voltage, then it is likely thatthe transducer cable leads have been mis-wired.2.Measure the voltage at the +INPUT to confirm that it becomes more positive when a small trial force isapplied in the transducer’s intended force direction. The –INPUT signal should become less positive when the same force is again applied. If the “sense” of both of these voltages change is incorrect for the waythe transducer is mounted, interchange the load cells wiring for the –INPUT and +INPUT signals. If only a single transducer exhibits the incorrect “sense, interchange the excitation and excitation return leads on that particular transducer.3.Without a calibration force applied to the load cells, measure the “UNLOADED” DC voltage differencebetween the +INPUT and –INPUT signals. Use the lowest practical voltmeter scale to provide ameaningful measurement. Remember or record this measured value for later use.4.Apply the intended full-scale force to the load cell and measure the “LOADED” voltage.Both of these voltages, as well as the difference between these two voltages, help to indicate the best Gain setting configuration at the first amplification stage. Select the highest possible gain for the first stage that does not result in saturation (“clipping”) of the transducer signal. If the voltages do not exceed 180mV,then a gain of 25 is appropriate. Similarly, a lower signal of 35mV could use a higher gain of 125.5.Set the IA gain using the Jumper-Switches (refer to section 0).3.6 A CCURACY C ONSIDERATIONSThe application of an accurate calibration force requires careful attention to minimizing the non-ideal affects of the real world. Keep the following points in mind:• Allow the transducer and amplifier to reach thermal equilibrium before conducting calibration.Ideally, the temperature should reflect the expected operating conditions.• The test force should be a moderate percentage of the intended working force of the transducer,and never over 100% of the transducer’s Maximum Working Force (MWF) or, you risk calibrating with an overloaded (“clipped”) transducer signal.• Cycle the load on the transducer a number of times with the test force to pre-condition or “set” thetransducer prior to calibration. Repeat this procedure again before calibrating if the transducer has been disturbed (i.e. bolts re-torqued).• With very low force transducers consider that connecting a test mass involves some finite cordmass.• When all else is done correctly, the largest remaining contributor to error is friction. If frictioncannot be reduced, consider determining the magnitude of the friction through measurement and then making first order corrections numerically.• Passing a cord over a roll on its way to the transducer will cause some amount of friction. Theworst case scenario is in passing the working part of a cord over a roll that does not readily freewheel. A test was conducted to determine the loss on a stationary 4” diameter anodized roll with a 90 degree wrap angle. It exhibited a 25 to 30% loss in force due to friction!• Always apply and remove the test load in a continuously increasing or decreasing manner, so thatthe force changes are monotonic. This helps to avoid disturbing any hysteresis component of the transducers force signal.• When calibrating for a particularly wide roll that will always have a narrower product tracking toone side, consider applying the calibration force at the roll position that represents the center of the product. This will automatically cancel some of the affects of transducer gain imbalance without the need to actually re-balance the transducers gains within the amplifier.• It is a good practice to verify linear operation of the transducer and amplifier by applying a finaltest force that falls somewhere between the zero and full-scale endpoints. The intent is not toconduct calibration, but to confirm the hardware’s ability to accurately report a measured force.When conducting a calibration that involves a large mass, it is often practical to use a series of smaller masses added in succession. Consider performing an initial Zero and Gain adjustment when the first 20% of the weights have been applied. By performing the calibration using this method, the Zero and Gain adjustments can be made approximately correct earlier in the calibration effort (before many weights have been handled). When the full calibration load is applied, there is a better chance that only minor adjustments will be needed.In this example, there was a disregard formaintaining the correct wrap angle. The dotted line indicates the proper web path. In this example, the true web path was difficult to access and an incorrect path was implemented using a convenient, but incorrect anchor point.Examples of Inaccurate Wrap AnglesIn this example, the anchor point and the wrap angle have been correctly determined!Example of Correct Wrap angles and Anchor Point3.9 A DJUSTING A MPLIFIER C OARSE Z EROA coarse offset adjustment has been provided. Keep in mind that the Coarse Zero adjustment is usually only adjusted one time, typically when the amplifier is installed, or transducers are replaced.1.Ensure that the IA gain setting has been set as described in section2.5.2.Set the Zero pot on the front cover to mid-way (approximately 9 turns from either clutch actuation).3.Set the Gain POT from fully counter clockwise.4.Connect a DC Voltmeter to inspect the +/- 10 VDC output signal for the “Zero”condition (NO calibration force on the transducers).5.Adjust the coarse POT (P5) to achieve the desired “Zero” voltage. As this is a coarse adjustment, a voltagewithin 50 millivolts of the intended “Zero” should be adequate.3.10 G AIN A ND F INE Z ERO C ALIBRATIONUse the following steps to make your final calibration adjustments:1.Verify Zero on the analog Outputs for the “unloaded” condition and adjust the (Fine) Zero POT to correctfor any minor offset voltage.2.Apply the calibration force to the transducer(s) and adjust the Gain potentiometer to achieve the desiredspan.3.Verify linear operation of the transducer and amplifier by applying a force that falls somewhere betweenthe zero and full-scale endpoints. The intent is not to conduct any calibration per se, but to confirm thehardware’s ability to accurately report a measured force.When conducting calibration that involves a large mass, it is often practical to use a series of smaller masses added in succession. In such cases an initial Zero and Gain adjustment should be done when the first 20% of the weights have been applied. When the full calibration load is applied, only minor adjustments should be required.In setting the amplifier gain, we recommend that you focus only on achieving a particular voltage “span” between the load and unloaded forces by alternating between the two force levels. Avoid repeatedly adjusting the Zero POT between measurements unless the offset voltage becomes excessive and interferes with achieving a valid analog output signal. You should only adjust the final Zero after the desired Gain setting has been achieved.These final calibration steps represent the minimal adjustments that might be required at periodic calibration intervals and typically involves only the Zero and Gain potentiometers accessible through the small holes in the front cover.Appendix A. M ANUFACTURERS D ECLARATION OF C ONFORMITYNumber: AO-90311Inc.Controls,ClevelandMotionManufacturer:Parkway7550HubOhio44125Cleveland,U.S.A.AmplifierLoadcellUltraSeriesProductMWI-andModels:MWI-1326113262ClassicClassicLoadcellSeriesAmplifierMWI-andModels:MWI-1346713466Standards Used: EN 61326 (1998)forequipmentElectricalmeasurement, control and laboratory use– EMCclassificationrequirementsIndustrial locationsTest Report Number: EMR1686 of January 5, 2004Tests Report: EU Compliance Services, Inc.13275 Sperry Rd.44026OhioChesterland,Declaration This product is in conformity with Council Directive 89/336/EECof 3 May 1989 on the approximation of the laws of the MemberStates relating to electromagnetic compatibility based on testresults to the harmonized standards referenced._________________________________Carl RichterManagerEngineering。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TC1313Features•Dual-Output Regulator (500mA Buck Regulator and 300mA Low-Dropout Regulator (LDO))•Total Device Quiescent Current = 57µA (Typ.)•Independent Shutdown for Buck and LDO Outputs•Both Outputs Internally Compensated •Synchronous Buck Regulator:-Over 90% Typical Efficiency- 2.0MHz Fixed-Frequency PWM(Heavy Load)-Low Output Noise-Automatic PWM-to-PFM mode transition-Adjustable (0.8V to 4.5V) and StandardFixed-Output Voltages (0.8V, 1.2V, 1.5V,1.8V,2.5V,3.3V)•Low-Dropout Regulator:-Low-Dropout Voltage=137mV Typ. @200mA-Standard Fixed-Output Voltages(1.5V, 1.8V, 2.5V, 3.3V)•Small 10-pin 3X3 DFN or MSOP Package Options•Operating Junction Temperature Range:--40°C to +125°C•Undervoltage Lockout (UVLO)•Output Short Circuit Protection •Overtemperature ProtectionApplications•Cellular Phones•Portable Computers•USB-Powered Devices•Handheld Medical Instruments•Organizers and PDAs DescriptionThe TC1313 combines a 500mA synchronous buck regulator and 300mA Low-Dropout Regulator (LDO) to provide a highly integrated solution for devices that require multiple supply voltages. The unique combina-tion of an integrated buck switching regulator and low-dropout linear regulator provides the lowest system cost for dual-output voltage applications that require one lower processor core voltage and one higher bias voltage.The 500mA synchronous buck regulator switches at a fixed frequency of 2.0MHz when the load is heavy, providing a low-noise, small-size solution. When the load on the buck output is reduced to light levels, it changes operation to a Pulse Frequency Modulation (PFM) mode to minimize quiescent current draw from the battery. No intervention is necessary for smooth transition from one mode to another.The LDO provides a 300mA auxiliary output that requires a single 1µF ceramic output capacitor, minimizing board area and cost. The typical dropout voltage for the LDO output is 137mV for a 200mA load.The TC1313 is available in either the 10-pin DFN or MSOP package.Additional protection features include: UVLO, overtemperature and overcurrent protection on both outputs.For a complete listing of TC1313 standard parts, consult your Microchip representative.Package Type10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC10-Lead MSOP12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC500mA Synchronous Buck Regulator,+ 300mA LDO© 2005 Microchip Technology Inc.DS21974A-page 1TC1313DS21974A-page 2© 2005 Microchip Technology Inc.Functional Block DiagramSynchronous Buck RegulatorNDRVPDRVP GNDV IN1L XDriverP GNDControlV OUT1/V FB1V IN2SHDN1V REFLDOV OUT2A GNDA GNDP GNDUndervoltage LockoutUVLOUVLOSHDN2V REF(UVLO)© 2005 Microchip Technology Inc.DS21974A-page 3TC1313Typical Application Circuits10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GND L XV IN1SHDN1V OUT1NC4.7µFInput Voltage 4.7µH4.7µF2.1V @1µF3.3V @4.5V to5.5V Adjustable-Output Application121k Ω200k Ω 4.99k Ω33pF 12687910543SHDN2V IN2V OUT2A GNDP GND L X V IN1SHDN1V OUT1NC4.7µF4.7µH4.7µF1.5V @ 500mA1µF2.5V @ 300mA2.7V to 4.2VTC1313V OUT1V OUT2V IN V OUT1V OUT21.0µF*Optional Capacitor V IN2300mA500mANote: Connect DFN package exposed pad to A GND .10-Lead MSOPFixed-Output ApplicationTC1313NoteTC1313DS21974A-page 4© 2005 Microchip Technology Inc.1.0ELECTRICALCHARACTERISTICSAbsolute Maximum Ratings †V IN - A GND ......................................................................6.0V All Other I/O ..............................(A GND - 0.3V) to (V IN + 0.3V)L X to P GND ..............................................-0.3V to (V IN + 0.3V)P GND to A GND ...................................................-0.3V to +0.3V Output Short Circuit Current .................................Continuous Power Dissipation (Note 7)..........................Internally Limited Storage temperature.....................................-65°C to +150°C Ambient Temp. with Power Applied.................-40°C to +85°C Operating Junction Temperature...................-40°C to +125°C ESD protection on all pins (HBM)....................................... 3kV† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied.Exposure to maximum rating conditions for extended periods may affect device reliability.DC CHARACTERISTICSElectrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSymMinTypMaxUnitsConditionsInput/Output Characteristics Input VoltageV IN 2.7— 5.5V Note 1, Note 2, Note 8Maximum Output Current I OUT1_MAX 500——mA Note 1Maximum Output Current I OUT2_MAX 300——mA Note 1Shutdown CurrentCombined V IN1 and V IN2 Current I IN_SHDN—0.051µA SHDN1=SHDN2=GND Operating I QI Q—57100µA SHDN1=SHDN2=V IN2I OUT1=0mA,I OUT2=0mA Synchronous Buck I Q—38—µA SHDN1 = V IN , SHDN2 = GND LDO I Q —44—µA SHDN1 = GND, SHDN2 = V IN2Shutdown/UVLO/Thermal Shutdown Characteristics SHDN1,SHDN2,Logic Input Voltage Low V IL ——15%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Logic Input Voltage High V IH 45——%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Input Leakage Current I IN-1.0±0.011.0µAV IN1=V IN2=2.7V to 5.5V SHDNX =GND SHDNY =V IN Thermal ShutdownT SHD —165—°C Note 6, Note 7Thermal Shutdown Hysteresis T SHD-HYS —10—°C Undervoltage Lockout (V OUT1 and V OUT2)UVLO 2.4 2.55 2.7V V IN1 FallingUndervoltage Lockout Hysteresis UVLO -HYS—200—mVNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313Synchronous Buck Regulator (V OUT1)Adjustable Output Voltage Range V OUT10.8— 4.5VAdjustable Reference FeedbackVoltage (V FB1)V FB10.780.80.82VFeedback Input Bias Current(I FB1)I VFB1—-1.5—nAOutput Voltage Tolerance Fixed(V OUT1)V OUT1-2.5±0.3+2.5%Note2Line Regulation (V OUT1)V LINE-REG—0.2—%/V V IN = V R+1V to 5.5V,I LOAD = 100mALoad Regulation (V OUT1)V LOAD-REG—0.2—%V IN=V R+1.5V,I LOAD=100mA to500mA (Note1)Dropout Voltage V OUT1V IN – V OUT1—280—mV I OUT1 = 500mA, V OUT1=3.3V(Note5)Internal Oscillator Frequency F OSC 1.6 2.0 2.4MHzStart Up Time T SS—0.5—ms T R = 10% to 90%R DSon P-Channel R DSon-P—450650mΩI P = 100mAR DSon N-Channel R DSon-N—450650mΩI N = 100mAL X Pin Leakage Current I LX-1.0±0.01 1.0μA SHDN = 0V, V IN = 5.5V, L X = 0V,L X = 5.5VPositive Current Limit Threshold+I LX(MAX)—700—mALDO Output (V OUT2)Output Voltage Tolerance (V OUT2)V OUT2-2.5±0.3+2.5%Note2Temperature Coefficient TCV OUT—25—ppm/°C Note3Line RegulationΔV OUT2/ΔV IN-0.2±0.02+0.2%/V(V R+1V) ≤ V IN≤ 5.5VLoad Regulation, V OUT2≥ 2.5VΔV OUT2/I OUT2-0.750.1+0.75%I OUT2 = 0.1mA to 300mA(Note4)Load Regulation, V OUT2 < 2.5VΔV OUT2/I OUT2-0.900.1+0.90%I OUT2 = 0.1mA to 300mA(Note4)Dropout Voltage V OUT2 > 2.5V V IN – V OUT2—137205300500mV I OUT2 = 200mA (Note5)I OUT2=300mAPower Supply Rejection Ratio PSRR—62—dB f = 100Hz, I OUT1 = I OUT2 = 50mA,C IN = 0µFOutput Noise eN— 1.8—µV/(Hz)½ f = 1kHz, I OUT2=50mA,SHDN1=GNDOutput Short Circuit Current (Average)I OUT sc2—240—mA R LOAD2≤ 1ΩDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V,I OUT1=100ma, I OUT2=0.1mA T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C.Parameters Sym Min Typ Max Units ConditionsNote1:The Minimum V IN has to meet two conditions: V IN≥ 2.7V and V IN≥ V RX + V DROPOUT, V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min) * 106)/(V OUT2 * D T).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e. T A, T J, θJA). Exceeding the maximum allowable powerdissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN, and from L X to P GND. In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is notable to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.© 2005 Microchip Technology Inc.DS21974A-page 5TC1313DS21974A-page 6© 2005 Microchip Technology Inc.TEMPERATURE SPECIFICATIONSWake-Up Time(From SHDN2 mode), (V OUT2)t WK —31100µs I OUT1 = I OUT2 = 50mA Settling Time(From SHDN2 mode), (V OUT2)t S—100—µsI OUT1 = I OUT2 = 50mAElectrical Specifications: Unless otherwise indicated, all limits are specified for: V IN = +2.7V to +5.5VParametersSymMinTypMaxUnitsConditionsTemperature RangesOperating Junction Temperature Range T J -40—+125°C Steady state Storage Temperature Range T A -65—+150°C Maximum Junction Temperature T J——+150°CTransientThermal Package Resistances Thermal Resistance, 10L-DFNθJA—41—°C/WTypical 4-layer board with Internal Ground Plane and 2 Vias in Thermal PadThermal Resistance, 10L-MSOPθJA—113—°C/WTypical 4-layer board with Internal Ground PlaneDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSym Min Typ Max Units ConditionsNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313 2.0TYPICAL PERFORMANCE CURVESNote: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-1:I Q Switcher and LDOCurrent vs. Ambient Temperature.FIGURE 2-2:I Q Switcher Current vs.Ambient Temperature.FIGURE 2-3:I Q LDO Current vs. AmbientTemperature.FIGURE 2-4:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.2V).FIGURE 2-5:V OUT1 Output Efficiency vs.I OUT1 (V OUT1 = 1.2V).FIGURE 2-6:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.8V).Note:The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.© 2005 Microchip Technology Inc.DS21974A-page 7TC1313DS21974A-page 8© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-7:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 1.8V).FIGURE 2-8:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 3.3V).FIGURE 2-9:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 3.3V).FIGURE 2-10:V OUT1 vs. I OUT1(VOUT1 = 1.2V).FIGURE 2-11:V OUT1 vs. I OUT1(V OUT1 = 1.8V).FIGURE 2-12:V OUT1 vs. I OUT1(V OUT1 = 3.3V).TC1313 Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-13:V OUT1 Switching Frequencyvs. Input Voltage.FIGURE 2-14:V OUT1 Switching Frequencyvs. Ambient Temperature.FIGURE 2-15:V OUT1 Adjustable FeedbackVoltage vs. Ambient Temperature.FIGURE 2-16:V OUT1 Switch Resistancevs. Input Voltage.FIGURE 2-17:V OUT1 Switch Resistancevs. Ambient Temperature.FIGURE 2-18:V OUT1 Dropout Voltage vs.Ambient Temperature.© 2005 Microchip Technology Inc.DS21974A-page 9TC1313DS21974A-page 10© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-19:V OUT1 and V OUT2 Heavy Load Switching Waveforms vs. Time.FIGURE 2-20:V OUT1 and V OUT2 Light Load Switching Waveforms vs. Time.FIGURE 2-21:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.5V).FIGURE 2-22:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.8V).FIGURE 2-23:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 2.5V).FIGURE 2-24:V OUT2 Output Voltage vs. Input Voltage (V OUT2= 3.3V).Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-25:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 2.5V).FIGURE 2-26:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 3.3V).FIGURE 2-27:V OUT2 Line Regulation vs.Ambient Temperature.FIGURE 2-28:V OUT2 Load Regulation vs.Ambient Temperature.FIGURE 2-29:V OUT2 Power Supply RippleRejection vs. Frequency.FIGURE 2-30:V OUT2 Noise vs. Frequency.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-31:V OUT1 Load Step Responsevs. Time.FIGURE 2-32:V OUT2 Load Step Responsevs. Time.FIGURE 2-33:V OUT1 and V OUT2 Line StepResponse vs. Time.FIGURE 2-34:V OUT1 and V OUT2 StartupWaveforms.FIGURE 2-35:V OUT1 and V OUT2 ShutdownWaveforms.3.0PIN DESCRIPTIONSThe descriptions of the pins are listed in Table3-1. TABLE 3-1:PIN FUNCTION TABLE3.1LDO Shutdown Input Pin (SHDN2) SHDN2 is a logic-level input used to turn the LDO regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.2LDO Input Voltage Pin (V IN2)V IN2 is a LDO power-input supply pin. Connect variable-input voltage source to V IN2. Connect V IN1 and V IN2 together with board traces as short as possible. V IN2 provides the input voltage for the LDO regulator. An additional capacitor can be added to lower the LDO regulator input ripple voltage.3.3LDO Output Voltage Pin (V OUT2)V OUT2 is a regulated LDO output voltage pin. Connect a 1µF or larger capacitor to V OUT2 and A GND for proper operation.3.4No Connect Pin (NC)No connection.3.5Analog Ground Pin (A GND)A GND is the analog ground connection. Tie A GND to the analog portion of the ground plane (A GND). See the physical layout information in Section 5.0 “Application Circuits/Issues” for grounding recommendations. 3.6Buck Regulator Output Sense Pin(V FB/V OUT1)For V OUT1 adjustable-output voltage options, connect the center of the output voltage divider to the V FB pin. For fixed-output voltage options, connect the output of the buck regulator to this pin (V OUT1). 3.7Buck Regulator Shutdown InputPin (SHDN1)SHDN1 is a logic-level input used to turn the buck regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.8Buck Regulator Input Voltage Pin(V IN1)V IN1 is the buck regulator power-input supply pin. Connect a variable-input voltage source to V IN1. Connect V IN1 and V IN2 together with board traces as short as possible.3.9Buck Inductor Output Pin (L X) Connect L X directly to the buck inductor. This pin carries large signal-level current; all connections should be made as short as possible.3.10Power Ground Pin (P GND)Connect all large-signal level ground returns to P GND. These large-signal level ground traces should have a small loop area and length to prevent coupling of switching noise to sensitive traces. Please see the physical layout information supplied in Section 5.0“Application Circuits/Issues” for grounding recommendations.3.11Exposed Pad (EP)For the DFN package, connect the EP to A GND with vias into the A GND plane.Pin Function1SHDN2Active Low Shutdown Input for LDO Output Pin2V IN2Analog Input Supply Voltage Pin3V OUT2LDO Output Voltage Pin4NC No Connect5A GND Analog Ground Pin6V FB / V OUT1Buck Feedback Voltage (Adjustable Version)/Buck Output Voltage (Fixed Version) Pin 7SHDN1Active Low Shutdown Input for Buck Regulator Output Pin8V IN1Buck Regulator Input Voltage Pin9L X Buck Inductor Output Pin10P GND Power Ground PinEP ExposedPad For the DFN package, the center exposed pad is a thermal path to remove heat from the device. Electrically, this pad is at ground potential and should be connected to A GND.4.0DETAILED DESCRIPTION4.1Device OverviewThe TC1313 combines a 500mA synchronous buck regulator with a 300mA LDO. This unique combination provides a small, low-cost solution for applications that require two or more voltage rails. The buck regulator can deliver high-output current over a wide range of input-to-output voltage ratios while maintaining high efficiency. This is typically used for the lower-voltage, higher-current processor core. The LDO is a minimal parts-count solution (single-output capacitor), providing a regulated voltage for an auxiliary rail. The typical LDO dropout voltage (137mV @ 200mA) allows the use of very low input-to-output LDO differential voltages, minimizing the power loss internal to the LDO pass transistor. Integrated features include independent shutdown inputs, UVLO, overcurrent and overtemperature shutdown.4.2Synchronous Buck RegulatorThe synchronous buck regulator is capable of supply-ing a 500mA continuous output current over a wide range of input and output voltages. The output voltage range is from 0.8V (min) to 4.5V (max). The regulator operates in three different modes and automatically selects the most efficient mode of operation. During heavy load conditions, the TC1313 buck converter operates at a high, fixed frequency (2.0MHz) using current mode control. This minimizes output ripple and noise (less than 8mV peak-to-peak ripple) while main-taining high efficiency (typically > 90%). For standby or light-load applications, the buck regulator will automat-ically switch to a power-saving Pulse Frequency Modulation (PFM) mode. This minimizes the quiescent current draw on the battery while keeping the buck output voltage in regulation. The typical buck PFM mode current is 38µA. The buck regulator is capable of operating at 100% duty cycle, minimizing the voltage drop from input to output for wide-input, battery-powered applications. For fixed-output voltage applica-tions, the feedback divider and control loop compensa-tion components are integrated, eliminating the need for external components. The buck regulator output is protected against overcurrent, short circuit and over-temperature. While shut down, the synchronous buck N-channel and P-channel switches are off, so the L X pin is in a high-impedance state (this allows for connecting a source on the output of the buck regulator as long as its voltage does not exceed the input voltage).4.2.1FIXED-FREQUENCY PWM MODE While operating in Pulse Width Modulation (PWM) mode, the TC1313 buck regulator switches at a fixed 2.0MHz frequency. The PWM mode is suited for higher load current operation, maintaining low output noise and high conversion efficiency. PFM to PWM mode transition is initiated for any of the following conditions.•Continuous inductor current is sensed•Inductor peak current exceeds 100mA•The buck regulator output voltage has droppedout of regulation (step load has occurred)The typical PFM-to-PWM threshold is 80mA.4.2.2PFM MODEPFM mode is entered when the output load on the buck regulator is very light. Once detected, the converter enters the PFM mode automatically and begins to skip pulses to minimize unnecessary quiescent current draw by reducing the number of switching cycles per second. The typical quiescent current for the switching regulator is less than 38µA. The transition from PWM to PFM mode occurs when discontinuous inductor current is sensed, or the peak inductor current is less than 60mA (typ.). The typical PWM to PFM mode threshold is 30mA. For low input-to-output differential voltages, the PWM to PFM mode threshold can be low due to the lack of ripple current. It is recommended that V IN1 be one volt greater than V OUT1 for PWM to PFM transitions.4.3Low-Dropout Regulator (LDO)The LDO output is a 300mA low-dropout linear regula-tor that provides a regulated output voltage with a single 1µF external capacitor. The output voltage is available in fixed options only, ranging from 1.5V to 3.3V. The LDO is stable using ceramic output capaci-tors that inherently provide lower output noise and reduce the size and cost of the regulator solution. The quiescent current consumed by the LDO output is typically less than 43.7µA, with a typical dropout volt-age of 137mV at 200mA. The LDO output is protected against overcurrent and overtemperature. While oper-ating in Dropout mode, the LDO quiescent current will increase, minimizing the necessary voltage differential needed for the LDO output to maintain regulation. The LDO output is protected against overcurrent and overtemperature.4.4Soft StartBoth outputs of the TC1313 are controlled during startup. Less than 1% of V OUT1 or V OUT2 overshoot is observed during start-up from V IN rising above the UVLO voltage; or SHDN1 or SHDN2 being enabled.4.5Overtemperature ProtectionThe TC1313 has an integrated overtemperature protection circuit that monitors the device junction temperature and shuts the device off if the junction temperature exceeds the typical 165°C threshold. If the overtemperature threshold is reached, the soft start is reset so that, once the junction temperature cools to approximately 155°C, the device will automatically restart.5.0APPLICATION CIRCUITS/ISSUES5.1Typical ApplicationsThe TC1313 500mA buck regulator + 300mA LDO operates over a wide input-voltage range (2.7V to 5.5V)and is ideal for single-cell Li-Ion battery-powered applications, USB-powered applications, three-cell NiMH or NiCd applications and 3V to 5V regulated input applications. The 10-pin MSOP and 3X3 DFN packages provide a small footprint with minimal exter-nal components.5.2Fixed-Output ApplicationA typical V OUT1 fixed-output voltage application is shown in “Typical Application Circuits”. A 4.7µF V IN1 ceramic input capacitor, 4.7µF V OUT1 ceramic capacitor, 1.0µF ceramic V OUT2 capacitor and 4.7µH inductor make up the entire external component solution for this dual-output application. No external dividers or compensation components are necessary.For this application, the input-voltage range is 2.7V to 4.2V, V OUT1=1.5V at 500mA, while V OUT2=2.5V at 300mA.5.3Adjustable-Output ApplicationA typical V OUT1 adjustable-output application is also shown in “Typical Application Circuits”. For this application, the buck regulator output voltage is adjust-able by using two external resistors as a voltage divider. For adjustable-output voltages, it is recom-mended that the top resistor divider value be 200k Ω.The bottom resistor divider can be calculated using the following formula:EQUATION 5-1:Example:For adjustable output applications, an additional R-C compensation is necessary for the buck regulator control loop stability. Recommended values are:An additional V IN2 capacitor can be added to reduce high-frequency noise on the LDO input-voltage pin (V IN2). This additional capacitor (1µF) is not necessary for typical applications.5.4Input and Output Capacitor Selection As with all buck-derived dc-dc switching regulators, the input current is pulled from the source in pulses. This places a burden on the TC1313 input filter capacitor. In most applications, a minimum of 4.7µF is recom-mended on V IN1 (buck regulator input-voltage pin). In applications that have high source impedance, or have long leads (10 inches) connecting to the input source,additional capacitance should be used. The capacitor type can be electrolytic (aluminum, tantalum, POSCAP ,OSCON) or ceramic. For most portable electronic applications, ceramic capacitors are preferred due to their small size and low cost.For applications that require very low noise on the LDO output, an additional capacitor (typically 1µF) can be added to the V IN2 pin (LDO input voltage pin).Low ESR electrolytic or ceramic can be used for the buck regulator output capacitor. Again, ceramic is recommended because of its physical attributes and cost. For most applications, a 4.7µF is recommended.Refer to Table 5-1 for recommended values. Larger capacitors (up to 22µF) can be used. There are some advantages in load step performance when using larger value capacitors. Ceramic materials, X7R and X5R, have low temperature coefficients and are well within the acceptable ESR range required.TABLE 5-1:TC1313 RECOMMENDED CAPACITOR VALUESR TOP =200k ΩV OUT1=2.1V V FB =0.8VR BOT =200k Ω x (0.8V/(2.1V – 0.8V))R BOT =123k Ω (Standard Value =121k Ω)R COMP =4.99k ΩC COMP =33pFR BOTR TOP V FBV OUT1V FB –--------------------------------⎝⎠⎛⎞×= C (V IN1)C(V IN2)C OUT1C OUT2Min 4.7µF none 4.7µF 1µF Maxnonenone22µF10µF。

相关文档
最新文档