湘教版七年级期末测评
湘教版七年级上册数学期末考试试卷及答案
湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数是()A .13B .-13C .±13D .32.下面说法错误的是()A .M 是线段AB 的中点,则AB=2AM B .直线上的两点和它们之间的部分叫做线段C .一条射线把一个角分成两个角,这条射线叫做这个角的平分线D .同角的补角相等3.已知-25a 2mb 和7b 3-na 4是同类项,则m +n 的值是()A .2B .3C .4D .64.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种6.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°7.已知0<x <1,则2x 、x 、1x大小关系是()A .2x <x<1xB .x<2x <1xC .x<1x <2x D .1x<x <2x 8.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()A .6折B .7折C .8折D .9折9.下列几何图形中,是棱锥的是()A .B .C .D .10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上随意画出一条长2021cm 长的线段AB ,则线段AB 盖住的的整点有()个A .2018或2019B .2019或2020C .2022或2023D .2021或202211.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°12.解方程2(3)3(4)5x x ---=时,下列去括号正确的是()A .23345x x --+=B .26345x x --+=C .263125x x ---=D .263125x x --+=二、填空题13.据报道,我国因环境问题造成的经济损失每年高达680000000元,这个数用科学记数法可表示为______________________元.14.若方程3511x +=与6318x a +=的解相同,则=a ____________.15.已知∠α=72°36′,则∠α的余角的补角是________度.16.若22x x +的值是5-,则2365x x +-的值是________________.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2021次输出的结果为___________.18.1∠与2∠互为余角,若13420∠=︒',则2∠=_______.三、解答题19.计算(1)()232223|3|----÷-(2)1234602345⎛⎫⨯-+-+ ⎪⎝⎭20.解下列方程(1)52(32)3x x --=-(2)11232x x x +--=-21.先化简,再求值:()()22522367ab ab a ab a +---,其中a b 、满足()21103a b ++-=22.如图,线段AD=8cm ,线段AC=BD=6cm ,点E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.23.李明针对自行车和长跑项目进行专项训练某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.25.若0>>>a b c ,且||||||a b c <<,化简||||||||a c a b c a b b c ++++---+.26.如图,将一副直角三角形的直角顶点C 叠放一起(1)如图1,若CE 恰好是∠ACD 的角平分线,请你猜想此时CD 是不是的∠ECB 的角平分线?并简述理由;(2)如图1,若∠ECD =α,CD 在∠ECB 的内部,请猜想∠ACE 与∠DCB 是否相等?并简述理由;(3)在如图2的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.27.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.参考答案1.B 【分析】根据倒数的定义求解即可.【详解】解:∵-3×(-13)=1,∴-3的倒数是-13,故选:B .【点睛】本题考查求一个数的倒数,乘积等于1的两个数互为倒数.2.C 【分析】由题意根据中点的性质,线段、角平分线的定义,分别对各选项进行判断即可.【详解】解:A 、M 是AB 的中点,则AB=2AM ,正确,故本选项错误;B 、直线上的两点和它们之间的部分叫作线段,正确,故本选项错误;C 、从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,原说法错误,故本选项正确;D 、同角的补角相等,正确,故本选项错误;故选:C .【点睛】本题考查角平分线的定义、余角和补角的知识,熟练掌握各知识点的内容是解题的关键.3.C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B 【分析】直接利用多项式的有关定义分析得出答案.【详解】A 、多项式23230.3271x y x y xy --+,是五次四项式,故此选项正确;B 、四次项的系数是-7,故此选项错误;C 、它的常数项是1,故此选项正确;D 、按y 降幂排列为3322720.31xy x y x y --++,故此选项正确;故选:B .【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.5.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.C【详解】解:因为∠AOC=80°,∠BOC=30°,所以∠AOB=∠AOC-∠BOC=80°-30°=50°,又因为∠BOD=80°,所以∠AOD=∠AOB+∠BOD=50°+80°=130°.故选C.7.A【分析】根据0<x<1,可得:0<x2<x<1,1x>1,据此判断即可.【详解】解:∵0<x<1,∴0<x2<x<<1,1x>1,∴x2<x<1 x.故选:A.【点睛】此题主要考查了有理数的大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负数绝对值大的反而小.8.C【分析】设打x折时,利润率为20%,则利用利润的两种不同的表示方法得相等关系,再列方程,解方程即可.【详解】解:设打x折时,利润率为20%,则解得:8,x=答:要保证利润率不低于20%,则至少可以打八折.故选C【点睛】本题考查的是一元一次方程的应用,掌握“利润=售价-成本或利润=进价⨯利润率”是解本题的关键.易错点是不按照题干的要求作答.9.D 【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A 是圆柱,不符合题意;B 是圆锥,不符合题意;C 是正方体,不符合题意;D 是棱锥,符合题意,故选D .【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.10.D 【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB 盖住2021或2022个整点.故选:D【点睛】本题考查了数轴,解题的关键是根据题意得到找出长度为n (n 为正整数)的线段盖住n 或n+1个整点并注意利用分类讨论思想解答.11.C 【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【详解】∵OC 平分∠DOB ,∠COB=35°∴∠BOD=2∠COB=2×35°=70°∴∠AOD=180°-70°=110°故选:C .【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.12.D 【分析】根据去括号法则运算即可.【详解】解:方程2(3)3(4)5x x ---=去括号得:263125x x --+=,故答案为:D .【点睛】本题考查了去括号法则,括号前面为“+”时,去掉括号及括号前的符号,括号里每一项都不变号;括号前面为“-”时,去掉括号及括号前的符号,括号里每一项都要变号;掌握基本法则是解题的关键.13.6.8×108【详解】按照科学记数法的表示形式是10n a⨯,其中110a ≤<,n 为整数.题中 6.8a =,小数点从右至左移动了8位,所以这个数用科学记数法表示为6.8×108.故答案为:6.8×108.14.2【详解】解:3511x +=,36,x ∴=解得2,x = 方程3511x +=与6318x a+=的解相同,解得:2a =故答案为:2【点睛】本题考查的是同解方程,掌握“同解方程的含义”是解本题的关键.15.162.6【详解】解: ∠α=72°36′,故答案为162.6.【点睛】本题主要考查余补角的定义,熟练掌握求一个角的余补角是解题的关键.16.-20【分析】化简所求的式子,根据整体代入计算即可;【详解】由题可得()22365325+-=+-x x x x ,∵225+=-x x ,∴原式()35520=⨯--=-;故答案是20-.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.17.6【分析】将开始的值48代入进行计算,求出多次输出的值后,找到数值之间的规律即可作答.【详解】根据运算程序可知,当输入的值为48时,输出:当输入的值为24时,输出:124122⨯=,当输入的值为12时,输出:11262⨯=,当输入的值为6时,输出:1632⨯=,当输入的值为3时,输出:336+=,由前面的规律可知,依次输出的结果为24,12,6,3,6,3,……发现从第三次开始,输出结果以6和3为一个循环组依次循环,第奇数次为6,第偶数次为3,由于2021是奇数,所以第2021次输出的结果为6.故答案为:6【点睛】本题考查了代数式求值当中的流程图问题,解题关键是计算出前几次输出的结果,找到规律,即可总结出第n 次计算的结果.18.5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.19.(1)-15;(2)13【分析】(1)根据有理数的乘方混合运算求解即可;(2)利用乘法分配律进行有理数的混合运算即可.【详解】解:(1)原式=84315---=-;(2)原式=123460606060=30404548132345⎛⎫⨯-+⨯-⨯+⨯-+-+= ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)13;(2)13-【分析】(1)本题首先去括号,继而合并同类项与移项,最后未知项系数化为1即可.(2)本题首先去分母,继而去括号、移项、合并同类项即可求解.【详解】(1)∵52(32)3x x --=-,∴5643x x -+=-,∴93x =,∴13x =.(2)∵11232x x x +--=-,∴2(1)1263(1)x x x +-=--,∴2212633x x x +-=-+,∴6322123x x x --=--,∴13x=-.【点睛】本题考查一元一次方程的求解,熟练掌握去分母、移项、合并同类项等运算手段,其次注意计算仔细即可.21.原式=a 2+3ab ;0.【分析】先去括号、合并同类项化简原式,再根据非负数性质得出a 、b 的值,代入计算可得.【详解】解:原式=5ab+4ab-6a 2-6ab+7a 2=a 2+3ab ,∵()21103a b ++-=∴a=-1、b=13,则原式=1-3×1×13=1-1=0.【点睛】本题考查整式的加减,解题关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.22.6cm 【分析】根据题意、结合图形分别求出AB 、CD 的长,根据线段中点的性质求出EA 、DF ,计算即可.【详解】∵8AD =,6AC BD ==∴862AB AD BD =-=-=,862CD AD AC =-=-=∵点E 、F 分别是线段AB 、CD 的中点∴112122AE AB ==⨯=,112122DF CD ==⨯=∴8116EF AD AE DF =--=--=cm 答:线段EF 的长是6cm .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.23.自行车路段的长度为3000米,长跑路段的长度为2000米.【分析】设自行车路段的长度为x 米,则长跑路段的长度为()5000x -米,结合题意,通过列方程并求解,即可得到答案.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x -+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际问题中,即可完成求解.24.(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】解:(1)设一个暖瓶x 元,则一个水杯(38-x )元,根据题意得:2x+3(38-x )=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.25.3a b c-+-【详解】解:∵0>>>a b c ,且||||||a b c <<∴0a c +<,0a b c ++<,0a b ->,0b c +<∴||||||||a c abc a b b c ++++---+()()()()a c a b c a b b c =-++-++----+⎡⎤⎡⎤⎣⎦⎣⎦a c abc a b b c=------+++3a b c =-+-.26.(1)CD 是∠ECB 的角平分线,见解析;(2)∠ACE =∠DCB ,见解析;(3)∠DCE+∠ACB =180°,见解析.【分析】(1)CD 是∠ECB 的角平分线,求出∠ECD =∠BCD =45°即可证明;(2)∠ACE =∠DCB ,求出∠ACE =∠DCB =90°﹣α即可;(3)∠DCE+∠ACB =180°,根据∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE 即可进行求解证明.【详解】解:(1)CD 是∠ECB 的角平分线,理由是:∵∠ACD =90°,CE 是∠ACD 的角平分线,∴∠ECD =12∠ACD =45°,∴∠BCD =90°﹣∠ECD =45°=∠ECD ,即CD 是∠ECB 的角平分线;(2)∠ACE =∠DCB ,理由是:∵∠ACD =∠BCE =90°,∠ECD =α,∴∠ACE =90°﹣α,∠DCB =90°﹣α,∴∠ACE =∠DCB ;(3)∠DCE+∠ACB =180°,理由是:∵∠ACD =∠BCE =90°,∴∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE =90°+90°=180°,即∠DCE+∠ACB =180°.27.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).。
湘教版数学七年级下册第二学期期末 达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(共10题,每题3分,共30分) 1. 下面四个图形中,是轴对称图形的是( )2. 如图,AB ∥CD ,直线l 分别交AB ,CD 于E ,F ,∠1=56°,则∠2的度数是( )A .56°B .146°C .134°D .124°(第2题) (第6题)3. 已知⎩⎨⎧x =-2,y =2是方程kx +2y =-2的解,则k 的值为( )A .-3B .3C .5D .-5 4. 下列运算正确的是( )A .4a 2-2a 2=2a 2B .(a 2)3=a 5C .a 2·a 3=a 6D .a 3+a 2=a 55. 下列从左到右的变形中,属于因式分解的是( )A .x 2-1=(x +1)(x -1)B .2xy 2=2x ·yC .(-x -1)2=x 2+2x +1D .x 2+2x +2=x (x +2)+26. 如图,三角形DEF 是由三角形ABC 平移得到的,若点A ,D 之间的距离为1,CE =2,则BC =( ) A .3 B .1 C .2 D .不能确定7. 下列多项式乘法,能用平方差公式计算的是( )A .(-3x -2)(3x +2)B .(-a -b )(-b +a )C .(-3x +2)(2-3x )D .(3x +2)(2x -3)8. 某生物兴趣小组按照老师的安排去采集标本,该小组共10人交回的标本数为:3名同学每人5件,2名同学每人6件,4名同学每人7件,1名同学10件.同学们交回的标本件数的众数和中位数分别为( ) A .众数4,中位数3 B .众数7,中位数7 C .众数7,中位数6 D .众数7,中位数6.59. 为响应国家“全民阅读,建设学习型社会”的倡议,某校欲购进《论语》《弟子规》两种图书以供学生阅读.购买《论语》80本、《弟子规》130本,共需要3 040元;购买《论语》60本、《弟子规》150本,共需要2 700元.设《论语》的单价为x 元,《弟子规》的单价为y 元,可列方程组为( ) A.⎩⎨⎧60x +130y =3 040,80x +150y =2 700 B.⎩⎨⎧130x +80y =3 040,60x +150y =2 700 C.⎩⎨⎧80x +150y =3 040,60x +130y =2 700 D.⎩⎨⎧80x +130y =3 040,60x +150y =2 70010. 如图,点E 在CA 的延长线上,DE ,AB 交于点F ,且∠BDE =∠AEF ,∠B=∠C ,∠EF A 比∠FDC 的余角小10°,P 为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,FM 为∠EFP 的平分线.下列结论:①CE ∥BD ;②AB ∥CD ;③FQ 平分∠AFP ;④∠QFM =20°.其中结论正确的序号是( )A .①②③④B .①②③C .②③D .①④ 二、填空题(共5题,每题3分,共15分) 11. 已知2m =5,2n =6,则2m +n =________.12. 因式分解:a 3-25a =________.13. 已知一组数据3,4,1,a ,2,a 的平均数为2,则这组数据的中位数是________. 14. 如图,直线a ,b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠5;③∠1=∠4;④∠2+∠3=180°.其中能判定a ∥b 的条件是______________.(把你认为正确的序号填在横线上)3(第14题) (第15题)15. 如图,将三角形ABC 绕点A 逆时针旋转一定角度,得到三角形ADE .若∠CAE=63°,∠E =71°,且AD ⊥BC ,则∠BAC 的度数为________°. 三、解答题(共8题,共75分) 16. (8分)(1)计算:①(2x 2)4-x ·x 3·x 4; ②(x -1)(x 2+x +1).(2)因式分解:①a 2(1-m )+4(m -1); ②(x -y )2-4(x -y -1).17. (8分)解方程组:(1)⎩⎨⎧y =2x ,3x +5y =26; (2)⎩⎨⎧x +2y =7,2x +y =2.18. (8分)先化简,再求值:(a-3b)2+(2a+2b)(a-3b)+(a+b)2.其中a=b+2.19. (8分)在如图所示的方格纸中,(1)作三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的.20. (10分)如图,D是三角形ABC的边BC延长线上一点,连接AD,把三角形ACD绕点A顺时针旋转60°恰好得到三角形ABE,其中D,E是对应点.(1)若∠CAD=18°,求∠BAC,∠EAC的度数;(2)若S三角形ABD=9,S三角形ABE=3,求S三角形ABC.21. (10分)为了提高学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:(1)经计算甲的平均成绩是8环,则a=________;(2)甲成绩的中位数是______环,乙成绩的众数是______环;(3)已知甲成绩的方差是1.2,请求出乙成绩的方差,并判断甲、乙两名队员谁的成绩更为稳定.22. (10分)某高校共有5个大餐厅和2个小餐厅.若同时开放1个大餐厅和2个小餐厅,可供1 600名学生就餐;若同时开放2个大餐厅和1个小餐厅,可供2 000名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐.(2)餐厅装修升级期间,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供1 800名学生同时就餐?请说明理由.23. (13分)如图①,点F,G分别在直线AB,CD上,且AB∥CD.5(1)问题发现:若∠BFE=40°,∠CGE=130°,则∠GEF的度数为________.(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?并说明理由.(3)深入探究:如图②,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ与∠GEF之间的数量关系,请直接写出你的结论.答案一、1.A 2.D 3.B 4.A5.A【点拨】x2-1=(x+1)(x-1)符合因式分解的定义,选项A符合题意.6.A7.B8.D9.D10.A【点拨】①因为∠BDE=∠AEF,所以CE∥BD,结论①正确;②因为CE∥BD,所以∠B=∠EAF.因为∠B=∠C,所以∠EAF=∠C,所以AB∥CD,结论②正确;③因为AB∥CD,所以∠AFQ=∠FQP.因为∠FQP=∠QFP,所以∠AFQ=∠QFP,所以FQ平分∠AFP,结论③正确;④因为FM为∠EFP的平分线,所以∠MFP=12∠EFP=12∠EF A+12∠AFP.因为∠AFQ=∠QFP,所以∠QFP=12∠AFP,所以∠QFM=∠MFP-∠QFP=12∠EF A.因为AB∥CD,所以∠EF A=∠FDC.又因为∠EF A比∠FDC的余角小10°,所以∠EF A=(90°-∠FDC)-10°,所以∠EF A=40°,所以∠QFM=20°,结论④正确.综上所述:正确的结论有①②③④.二、11.3012.a(a-5)(a+5)13.1.514.①②④15.82【点拨】因为三角形ABC绕点A逆时针旋转一定角度,得到三角形ADE,所以∠ACB=∠E=71°,∠BAD=∠CAE=63°.因为AD⊥BC,所以∠CAD=90°-∠ACB=90°-71°=19°,所以∠BAC=∠BAD+∠CAD=63°+19°=82°.三、16.解:(1)①原式=16x8-x8=15x8.②原式=x3+x2+x-x2-x-1=x3-1.(2)①原式=a2(1-m)-4(1-m)=(1-m)(a2-4)=(1-m)(a+2)(a-2).②原式=(x-y)2-4(x-y)+4=(x-y-2)2.717.解:(1)⎩⎨⎧y =2x ,①3x +5y =26,②把①代入②,得3x +10x =26,解得 x =2,将x =2代入①,得y =2×2=4,所以方程组的解是⎩⎨⎧x =2,y =4.(2)⎩⎨⎧x +2y =7,①2x +y =2,②①+②,得3x +3y =9,所以x +y =3,③ ①-③,得y =4,②-③,得x =-1, 所以方程组的解是⎩⎨⎧x =-1,y =4.18.解:原式=(a -3b )2+2(a +b )(a -3b )+(a +b )2=[(a -3b )+(a +b )]2 =(2a -2b )2=4(a -b )2.因为a =b +2,所以a -b =2,所以原式=4×22=16. 19.解:(1)如图,三角形A 1B 1C 1即为所求.(2)先向右平移6格,再向下平移2格.(答案不唯一)20.解:(1) 因为把三角形ACD 绕点A 顺时针旋转60°恰好得到三角形ABE ,所以旋转角为60°,所以∠BAC =60°.易得∠DAE =60°.又因为∠CAD =18°, 所以∠EAC =∠EAD -∠CAD =42°.(2)若S 三角形ABD =9,S 三角形ABE =3,由旋转可知S 三角形ACD =S 三角形ABE =3,所以S三角形ABC=S 三角形ABD -S 三角形ACD =9-3=6.21.解:(1)8(2)8;79 (3)乙的平均成绩为110×(6+7+9+7+9+10+8+7+7+10)=8(环), 所以乙成绩的方差为110×[(7-8)2×4+(9-8)2×2+(10-8)2×2+(6-8)2+(8-8)2]=1.8,因为甲和乙的平均成绩都是8环,而甲成绩的方差小于乙成绩的方差,所以甲的成绩更为稳定.22.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,依题意,得⎩⎨⎧x +2y =1 600,2x +y =2 000,解得⎩⎨⎧x =800,y =400.答:1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐. (2)能.理由如下:800×5×40%+400×2×30%=1 840(名), 因为1 840>1 800,所以同时开放7个餐厅,能供1 800名学生同时就餐. 23.解:(1)90°(2)∠GEF =∠BFE +180°-∠CGE .理由如下: 如图,过点E 作EH ∥AB , 所以∠FEH =∠BFE . 因为AB ∥CD ,EH ∥AB , 所以EH ∥CD ,所以∠HEG =180°-∠CGE ,所以∠GEF =∠FEH +∠HEG =∠BFE +180°-∠CGE .(3)∠GPQ +12∠GEF =90°.。
最新湘教版七年级地理上册期末试卷及完整答案
最新湘教版七年级地理上册期末试卷及完整答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(共25个小题,每题2分,共50分)1、美洲国家中,领土濒临三大洋的是()A.美国B.墨西哥 C.巴西 D.阿根廷2、撒哈拉以南非洲主要以什么景观为主()A.热带沙漠 B.热带雨林 C.热带草原 D.亚寒带针叶林3、七大板块中,几乎全部是海洋的板块是()A.亚欧板块B.太平洋板块C.印度洋板块D.美洲板块4、从半球位置看,中国位于()A.西半球、北半球B.东半球、北半球C.西半球、南半球D.东半球、南半球5、甲地位于东经52°、北纬47°,乙地位于西经152°、南纬74°,甲地位于乙地的()A.西北方B.东北方C.西南方D.东南方6、亚洲是世界第一大洲,下面是对“世界第一大洲”的说明,其中不正确的是()A.世界上跨经度最广的一个大洲B.世界上跨纬度最广的一个大洲C.东西距离最长的一个大洲D.世界上面积最大的一个大洲7、亚洲季风气候区水旱灾害频繁的主要原因是()A.不同年份冬季风的强弱不同B.不同年份夏季风的强弱不同C.纬度位置的影响D.地形的影响8、印度除了热浪以外,还经常遭受水旱灾害的威胁,这与下面哪个因素有关()A.受西北季风的影响B.受西南季风的影响C.受东北季风的影响D.受东南季风的影响9、东南亚与中国陆界相邻国家的首都分别是()A.内比都、曼谷、万象B.河内、金边、曼谷C.河内、万象、内比都D.万象、金边、河内10、小明从赤道出发,先向正北,再向正西、正南、正东各走200千米,最后到达的地点位于A.起点 B.起点的正西 C.起点的正东D.不能确定11、世界各大洲中,既有热带气候,又有温带和寒带气候的是()A.亚洲、欧洲B.亚洲、大洋洲C.亚洲、北美洲D.欧洲、南美洲12、图中的建筑分别代表的宗教是()A.伊斯兰教、佛教、基督教 B.基督教、伊斯兰教、佛教C.佛教、伊斯兰教、基督教 D.基督教、佛教、伊斯兰教13、长江三角洲城市群的核心城市是A.南京B.杭州C.苏州D.上海市14、目前对印度农业影响最大的灾害是()A.台风 B.寒潮 C.沙尘暴 D.旱涝灾害15、下图中能正确反映美国中部自西向东地势起伏的剖面图是()A.B.C.D.16、下面四幅图中, 地球自转方向正确的是()A.B.C.D.17、日本面积最大的岛屿和纬度最高的岛屿分别是()A.北海道岛、四国岛B.本州岛、四国岛C.本州岛、北海道岛D.九州岛、北海道岛18、世界上最大的棕榈油生产国是()A.巴西 B.泰国 C.印度尼西亚 D.马来西亚19、在画有指向标的平面图上,确定方向的一般方法是()A.面对地图“上北下南,左西右东”B.根据指向标箭头指向北方来确定方向C.不论什么样的地图,均用经纬线确定方向D.经线指示南北方向,纬线指示东西方向20、下列商品中,最不可能从俄罗斯进口的是()A.石油、天然气 B.服装、玩具 C.木材 D.铁矿21、苏联宇航员加加林说:地球看上去更像个水球,这是因为()A.海洋是蓝的B.天是蓝的C.海洋占陆地面积的90% D.地球表面71%是海洋22、跨东西南北四个半球的大洲是()A.南、北美洲 B.亚洲、欧洲 C.亚洲、大洋州 D.南极州23、俄罗斯的人口、城市主要集中在()A.东欧平原B.西西伯利亚平原C.中西伯利亚高原D.东西伯利亚山地24、下图是某地气温年变化曲线图,据此判断该地位于 ( )A.热带B.北温带C.南温带D.寒带25、下图漫画《手下留情》,给我们的启示是()A.我国自然资源总量丰富,人均不足 B.禁止采伐森林,杜绝使用木材C.减少一次性筷子的使用,保护森林资源 D.退耕还草,加快国土绿化二、综合题(第1题12分,第2题10分,第3题15分,第4题13分,共50分)1、世界人口分布不均匀,但又有一定的规律。
湘教版七年级上册数学期末考试试卷带答案
湘教版七年级上册数学期末考试试题一、单选题1.13-的倒数是()A.3B.3-C.13-D.132.把3720000进行科学记数法表示正确的是()A.0.372×106B.3.72×105C.3.72×106D.37.2×105 3.在-1,12,-20,0,-(-5),-3+中,负数的个数有()A.2个B.3个C.4个D.5个4.下列各组的两个数中,运算后的结果相等的是()A.(﹣2)3和(﹣3)2B.(﹣2)3和﹣23C.(﹣2)2和﹣22D.23和325.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位6.已知a﹣2b=3,则代数式6b﹣3a+5的值为()A.14B.11C.4D.﹣47.如图摆放的几何体的左视图是()A.B.C.D.8.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°9.如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离B .线段AD 的长度表示点A 到BC 的距离C .线段CD 的长度表示点C 到AD 的距离D .线段BD 的长度表示点A 到BD 的距离10.下列式子正确的是()A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z =x ﹣2(z+y )D .﹣a+c+d+b =﹣(a ﹣b )﹣(﹣c ﹣d )11.下列各图经过折叠后不能围成一个正方体的是()A .B .C .D .12.如图所示,下列结论成立的是()A .若∠1=∠4,则BC ∥ADB .若∠5=∠C ,则BC ∥ADC .若∠2=∠3,则BC ∥AD D .若AB ∥CD ,则∠C +∠ADC =180°二、填空题13.把式子(3)(6)(4.8)(7)-+--+--改写成省略括号的和的形式:_____________.14.比较大小:-2.1×108______-1.9×10815.以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)16.单项式323ab -的系数是______,次数是____.17.如图,OP//QR//ST ,若∠2=100°,∠3=120°,则∠1=______.18.已知2x+4与3x -2互为相反数,则x=_____.三、解答题19.计算:(1)-20+(-14)-(-18)-13(2)3571(491236--+÷20.如图,点A ,O ,B 在同一直线上,OD 是AOC ∠的平分线,OD OE ⊥,且120AOC ∠=︒.(1)试求∠BOE 的度数:(2)直接写出图中所有与AOD ∠互余的角.21.先化简,再求值已知|x ﹣2|+(y+1)2=0,求2x 2﹣[5xy ﹣3(x 2﹣y 2)]﹣5(﹣xy+y 2)的值.22.如图,已知∠1+∠2=180°,∠3=∠B ,试说明EF ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180°(已知).∠2=∠4(______).∴∠______+∠4=180°(______).∴______∥______(______).∴∠B=∠______(______).∵∠3=∠B(______).∴∠3=∠______(______).∴EF∥BC(______).23.某区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=度.(2)灯A射线从AM开始顺时针旋转至AN需要秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=度,∠MAC=度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在(3)的条件下,将“当AC到达AN之前”改为“在BD到达BQ之前”,其它条件不变.是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出AC转动时间,若不存在,请说明理由.24.为了解某社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区参与问卷调查人中,用微信支付方式的哪个年龄段人数多?25.如图,C 是线段AB 的中点,D 是线段AB 的三等分点,如果CD=2cm ,求线段AB 的长.26.如图,在一块边长为acm 的正方形铁皮上,一边截去4cm ,另一边截去3cm ,用A 表示截去的部分,B 表示剩下的部分.(1)用两种不同的方式表示A 的面积(用代数式表示)(2)观察图形或利用(1)的结果,你能计算(3)(4)a a --吗?如果能,请写出计算结果.27.如图,直线AB ,CD 交于点O ,且∠BOC =80°,OE 平分∠BOC ,OF 为OE 的反向延长线.(1)∠2=,∠3=;(2)OF 平分∠AOD 吗?为什么?参考答案1.B 【分析】倒数:乘积是1的两数互为倒数.【详解】解:13-的倒数是3-,故选:B .【点睛】本题考查了倒数,掌握倒数的定义是解答本题的关键.2.C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3720000=3.72×106,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要确定a 的值以及n 的值.3.B 【分析】先把()3,5-+--化简,再根据负数的含义逐一分析即可得到答案.【详解】解:()33,55,-+=---=Q -1,12,-20,0,-(-5),-3+中负数有:1,20,3,---+故选B【点睛】本题考查的是负数的含义,相反数的含义,绝对值的含义,掌握与有理数相关的基础知识是解题的关键.4.B【分析】根据有理数乘方法则依次计算解答.【详解】解:A、(﹣2)3=-8,(﹣3)2=9,故该选项不符合题意;B、(﹣2)3=-8,﹣23=-8,故该选项符合题意;C、(﹣2)2=4,﹣22=-4,故该选项不符合题意;D、23=8,32=9,故该选项不符合题意;故选:B.5.B【分析】根据近似数的精确度求解.【详解】3.20精确的数位是百分位,故选B.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.D【分析】根据已知条件求出2b-a=-3,得到6b-3a=-9,代入计算即可.【详解】解:∵a﹣2b=3,∴2b-a=-3,∴6b-3a=-9,∴6b﹣3a+5=-9+5=-4,故选:D.7.A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.8.C【分析】求出∠3即可解决问题;【详解】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,由平行可得∠2=∠3=55°,故选C.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.9.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B.线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C.线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D.线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.10.D【分析】根据去括号与添括号法则逐项计算即可求解.【详解】解:A.x﹣(y﹣z)=x﹣y+z,故该选项不正确,不符合题意;B.﹣(x﹣y+z)=﹣x+y﹣z,故该选项不正确,不符合题意;C.x+2y﹣2z=x﹣2(z-y),故该选项不正确,不符合题意;D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d),故该选项正确,符合题意;故选D【点睛】本题考查了去括号与添括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.11.D【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C【分析】若同位角相等或内错角相等或同旁内角互补,则两直线平行,反之亦然.【详解】解:A,若∠1=∠4,则AB∥CD,故错误;B,若∠5=∠C,,则AB∥CD,故错误;C ,若∠2=∠3,则BC ∥AD ,故正确;D ,若AB ∥CD ,则∠C +∠ABC =180°,故错误;故选择C.【点睛】本题考查了平行线的判定及性质.13.36 4.87---+【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.【详解】解:(3)(6)(4.8)(7)36 4.87-+--+--=---+.故答案为:36 4.87---+.【点睛】本题考查的是有理数的加减混合运算,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式是解题的关键.14.<【分析】根据有理数大小比较解答,正数>0>负数,对于用科学记数法表示的数,10的n 次方相同,比较前面的数即可.【详解】解:因为10的指数相同,2.1>1.9,所以-2.1<-1.9,故答案为<【点睛】本题考查科学记数法和两个负数比较,绝对值大的反而小.15.①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误.故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.16.23-4【分析】直接写出单项式的系数及次数即可.【详解】解:323ab -=323ab -,其系数为23-,次数为所有字母次数之和,即1+3=4次,故答案为23-,4.【点睛】本题考查了单项式的系数及次数,熟记单项式的次数为所有字母次数之和是解题的关键.17.40°【分析】根据平行线的性质得到2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,求出∠PRQ的度数,根据∠1=∠SRQ ﹣∠PRQ 代入即可求出答案.【详解】解:∵////OP QR ST ,2=100∠︒,3=120∠︒,∴2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,∴=180100=80PRQ ∠︒-︒︒,∴1==40SRQ PRQ ∠∠-∠︒,故答案是40°.【点睛】本题主要考查对平行线的性质的理解和掌握,能灵活运用平行线的性质进行计算是解此题的关键.18.25-【分析】根据相反数的性质列出方程,解方程即可.【详解】∵2x+4与3x -2互为相反数,∴2x+4=-(3x -2),解得x=-25.故答案为-25.【点睛】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(1)-29;(2)-26.【分析】(1)先去括号,然后计算加减即可;(2)利用乘法分配率,进行计算即可.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)(﹣3574912-+)136÷=(﹣3574912-+)×36=﹣27﹣20+21=﹣26.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的乘法运算律进行计算.20.(1)30°(2)∠COE 与∠BOE【分析】(1)利用OD是∠AOC的平分线,得出∠AOD=∠COD12=∠AOC,求出∠AOE,再利用平角的意义求得问题;(2)利用互余两角的和是90°直接写出即可.(1)解:∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD12=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∵∠COE+∠COD=90°又AOD∠=∠COD,∠BOE=∠COE∴∠COE+∠COD=90°,∠BOE+∠COD=90°∴与AOD∠互余的角为:∠COE与∠BOE.【点睛】此题考查两角互余的关系、角平分线的意义、平角的意义,以及角的和与差等知识点.21.5x2﹣8y2,12【分析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.22.对顶角相等;1;等量代换;AB;DF;同旁内角互补,两直线平行;FDC;两直线平行,同位角相等;已知;FDC;等量代换;内错角相等,两直线平行【分析】先由已知和对顶角相等得∠1+∠4=180°,证出AB∥DF,再由平行线的性质得∠B=∠FDC,然后结合已知证出∠3=∠FDC,即可得出结论.【详解】∵∠1+∠2=180°(已知).∠2=∠4(对顶角相等).∴∠1+∠4=180°(等量代换).∴AB∥DF(同旁内角互补,两直线平行).∴∠B=∠FDC(两直线平行,同位角相等).∵∠3=∠B(已知).∴∠3=∠FDC(等量代换).∴EF∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质以及对顶角相等等知识;熟练掌握平行线的判定与性质是解题的关键.23.(1)60(2)90(3)①(t+30),2t;②当AC转动30秒时,两灯的光束射线AC∥BD(4)存在,t=110秒【分析】(1)根据邻补角互补,即可求解;(2)根据题意可得灯A射线从AM开始顺时针旋转至AN,旋转了180°,即可求解;(3)①根据旋转的角度等于旋转的速度乘以时间,即可求解;②根据平行线的性质可得∠CAM=∠PBD,可得到关于t的方程,即可求解;(4)根据平行线的性质可得∠PBD+∠CAN=180°,可得到关于t的方程,即可求解.(1)解:∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴2∠BAN+∠BAN=180°,∴∠BAN=60°;故答案为:60(2)解:灯A射线从AM开始顺时针旋转至AN,旋转了180°,∴所需时间为180÷2=90(秒)(3)解:①∵灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,∴∠PBD=(t+30)°,∠MAC=2t°,答案为:(t+30),2t②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,理由如下:如图:∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=(30+t),解得t=30(秒);所以当AC转动30秒时,两灯的光束射线AC∥BD(4)解:BD到达BQ之前,即90<t<150时,还存在某一时刻,使两灯的光束射线AC∥BD,如图:∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴(30+t)+(2t﹣180)=180,解得t=110(秒).存在t=110秒使两灯的光束射线AC∥BD【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用方程思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.(1)500;(2)详见解析;(3)用微信支付方式的20-40岁年龄段人数多【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可得出答案;(2)根据喜欢现金支付所占的比例×总人数,得出喜欢现金支付的参与调查的人数,再减去20-40岁年龄段人数,即可得到喜欢现金支付的41-60岁年龄段人数,据此补全图形即可;(3)通过条形统计图可直接得出用微信支付方式的20-40岁年龄段人数多.【详解】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图如下:(3)该社区参与问卷调查人中,用微信支付方式的20-40岁年龄段人数多.【点睛】本题考查的知识点是扇形统计图与条形统计图,解题的关键是将扇形统计图与条形统计图中的信息相关联.25.AB的长为12cm.【分析】设线段AB的长为xcm,则AC的长为12x cm,AD的长为13x cm,列方程求解即可.【详解】解:设AB 的长为xcm ,则AC 的长为12x cm ,AD 的长为13x cm ;依题意得:11223x x -=,解得:12x =.答:AB 的长为12cm .【点睛】本题考查的知识点是一元一次方程的应用,根据图形找出线段间的等量关系是解此题的关键.26.(1)4(3)3a a -+或2(3)(4)a a a ---;(2)能计算,结果为2712a a -+.【分析】(1)第一种方法:可以用大的正方形的面积减去B 的面积得出;第二种方法可以A 分割成两个小长方形的面积和即可计算;(2)根据(1)中的结果建立一个等式,根据等式即可求出(3)(4)a a --的值.【详解】(1)第一种方法:用正方形的面积减去B 的面积:则A 的面积为2(3)(4)a a a ---;第二种方法,把A 分割成两个小长方形,如图,则A 的面积为:4(3)3a a-+(2)能计算,过程如下:根据(1)得,2(3)(4)4(3)3a a a a a---=-+∴22(3)(4)4(3)3712a a a a a a a --=---=-+【点睛】本题主要考查列代数式和整式加减的应用,数形结合是解题的关键.27.(1)∠2=100°,∠3=40°.(2)OF 平分∠AOD.【分析】(1)根据邻补角和角平分线的定义进行计算即可;(2)分别计算∠AOD 和∠3的大小,然后进行判断即可.【详解】解:(1)由题意可知:2+180BOC ∠∠= ,且∠BOC =80°,∴∠2=100°,∵OE平分∠BOC∴11=402BOC∠∠=∴∠3=180°-∠1-∠2=40°.(2)OF平分∠AOD.理由:∵∠AOD=180°-∠2=180°-100°=80°,∴∠3=12∠AOD所以OF平分∠AOD.。
湘教版七年级下册地理期末测试卷含答案
湘教版七年级下册地理期末测试卷含答案一、选择题(每小题2分,共30分)1. 一个国家小时候出生的婴儿很多,但老年人比较少,这个国家的人口数量可能是()A. 增加中B. 减少中C. 基本不变D. 不确定正确答案:A2. 中国的地势从东向西递降,流经我国的最长的河流是()A. 长江B. 黄河C. 塔里木河D. 辽河正确答案:A3. 以下不属于中国的四个直辖市的是()A. 北京B. 天津C. 重庆D. 上海正确答案:C...二、填空题(每小题2分,共30分)1. 我国有34个省级行政区,其中包括23个省、5个自治区和____个直辖市。
正确答案:42. 中国最大的盆地是____盆地。
正确答案:塔里木3. 中国的国土面积位居世界第____位。
正确答案:三...三、解答题(总计40分)1. 用简洁的语言,解释什么是地理。
正确答案:地理是研究地球与人类活动相互关系的学科。
它研究地球上的事物,包括地球的构造、地理环境和自然资源等。
2. 选择一个中国的省份,介绍该省的地理特点。
正确答案:以江苏省为例,江苏省位于中国东部沿海地区,东临黄海、东海,北靠山东省,南界浙江省,西连安徽省。
该省地势平坦,河网密布,盛传“水乡四十八,河道八百余”的说法。
江苏省的气候四季分明,温暖湿润,适合农业生产。
江苏省经济发达,拥有众多工业和服务业。
此外,该省还有丰富的历史文化资源,如苏州园林、南京夫子庙等。
...四、附加题(总计10分)1. 列举3个你认为地理学有助于人们生活和工作的方面。
正确答案:(1)地理知识可以帮助人们更好地了解自然环境,从而做好环境保护和资源利用;(2)地理知识可以提供有关地方文化、历史和产业等方面的信息,帮助人们更好地了解和尊重不同地区的差异;(3)地理知识可以为人们的旅行和出行提供参考,帮助他们更好地规划路线和选择目的地。
...以上是湘教版七年级下册地理期末测试卷及答案,希望你能成功完成测试!。
湘教版(2024)七年级数学上册期末质量评价 答案版
湘教版(2024)七年级数学上册期末质量评价(考试时间120分钟,满分120分)姓名________ 班级________ 分数________一、单项选择题(本大题共12小题,每小题3分,共36分)1.-13的相反数是(A)A.13B.-13C.3 D.-32.第24届冬季奥林匹克运动会单板大跳台项目场馆坐落在北京市首钢园区的北京冬季奥林匹克公园,园区总占地面积171.2公顷即1 712 000 m2.将1 712 000用科学记数法表示应为(C)A.1 712×103 B.1.712×107 C.1.712×106 D.0.171 2×107 3.已知∠1与∠2互补,若∠2=29°20′,则∠1的度数为(C)A.151°40′ B.160°80′ C.150°40′ D.119°20′4.下列式子中计算正确的是(D)A.2x+y=2xy B.x+x=x2C.3x2-x2=2 D.5mn-5nm=05.解一元一次方程13(x-1)=2-16x时,去分母正确的是(D)A.2(x-1)=2-6x B.2(x-1)=12-5xC.3(x-1)=12-2x D.2(x-1)=12-x6.某班抽查了8名同学的期末质量评价成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+9,-3,+10,-2,-8,+7,+4,-1.则这8名同学的期末质量评价成绩的平均分是(C)A.96分 B.84分 C.82分 D.80分7.下列两个有理数的比较中,正确的是(C)A.-12>-(-\f(1,2)) B.-|-2|>-1C.-13>-12 D.(-\f(1,4))2>(-\f(1,3))28.已知正方体六个面上分别写了“校”“训”“公”“勇”“勤”“朴”这6个字,它的表面展开图如图所示,其中“公”字的相对面上的字是(A)A.校 B.勤 C.朴 D.勇9.由方程组{2x+m=1,y-4=m可得出x与y的关系是(B)A.2x-y=5 B.2x+y=5 C.2x+y=-5 D.2x-y=-5 10.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其意思:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程为前一天的一半,一共走了6天才到达目的地.若设此人第一天走了x里,则可列出方程为(D)A.x+2x+4x+8x+16x+32x=378B.x2+x4+x8+x16+x32+x64=378C.2x+4x+8x+16x+32x+64x=378D.x+x2+x4+x8+x16+x32=37811.若多项式3x2-2(5+y-2x2)+mx2的值与x的值无关,则m的值为(D)A.0 B.1 C.-1 D.-712.线段AB=12,C是线段AB的中点,若点D在线段AB上,AC=3CD,则线段BD的长为(C)A.4 B.8C.4或8 D.3或9二、填空题(本大题共6小题,每小题2分,共12分)13.单项式-5a2bc3的次数是6.14.把弯曲的公路改直,就能缩短路程,应用的数学知识是两点之间线段最短.15.方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=-2. 16.如图,把长方形的一角折叠,得到折痕EF,已知∠EFB=35°,则∠BFC=110°.17.如图,小明把纸杯整齐地叠放在一起,根据图中的信息,若小明把50个纸杯整齐叠放在一起时,它的高度约是56cm.18.下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,图案③需22根小木棒,……,按此规律,第n个图案需要的小木棒的根数是7n+1.(用含n的式子表示)三、解答题(本大题共8小题,共72分)19.(6分)计算:(1)(-\f(3,4)+\f(7,12)-\f(5,8))×(-24);解:原式=18-14+15=19.(2)-12+|1+(-2)×3|-(-2)2÷4 5 .解:原式=-1+|1-6|-4×5 4=-1+5-5=-1.20.(6分)解下列方程:(1)4-x=x-(2-x);解:去括号,得4-x=x-2+x,移项,得-x-x-x=-2-4,合并同类项,得-3x=-6,系数化为1,得x=2.(2)2x-13-x+16=x-2.解:去分母,得2(2x-1)-(x+1)=6(x-2),去括号,得4x-2-x-1=6x-12,移项,得4x-x-6x=-12+2+1,合并同类项,得-3x=-9,系数化为1,得x=3.21.(10分)已知:a,b互为相反数(a≠0),c,d互为倒数,x=4(a+b)-2,y=2cd-b a .(1)填空:a+b=0,cd=1,ba=-1;(2)先化简,后求出2(2x-y)-(2x-3y)的值.解:(2)原式=4x-2y-2x+3y=2x+y,因为x=4(a+b)-2=-2,y=2cd-ba=2+1=3,所以原式=2×(-2)+3=-1.22.(10分)老师倡导同学们多读书,读好书,要求每天读课外书30 min,小伟由于种种原因,实际每天读课外书的时间与老师要求时间相比有出入,下表是小伟某周读课外书的情况(增加记为正,减少记为负).星期一二三四五六日增减/min+5-2-4+13-10+15-9(1)读课外书最多的一天比最少的一天多多少分钟?(2)根据记录的数据可知,小伟该周实际读课外书多少分钟?解:(1)15-(-10)=15+10=25(min).答:读课外书最多的一天比最少的一天多25 min .(2)5-2-4+13-10+15-9+30×7=8+210=218(min).答:小伟该周实际读课外书218 min.23.(10分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD =2∠BOD.(1)求∠BOE 的度数;解:因为∠AOD =2∠BOD ,∠AOD +∠BOD =180°.所以∠BOD =13×180°=60°,因为OE 平分∠BOD ,所以∠BOE =12∠BOD =12×60°=30°.(2)求∠BOF 的度数.解:∠COE =∠COD -∠DOE=180°-30°=150°.因为OF 平分∠COE ,所以∠EOF=12∠COE=12×150°=75°.所以∠BOF=∠EOF-∠BOE=75°-30°=45°.24.(10分)本学期某学校开展以“校外实践活动”为主题的研学活动,组织120名学生参观县文博园和县烈士陵园纪念馆,每一名学生只能参加其中一项活动,学校租车一次性支付车票2 200元.车票信息如下:(1)请问参观县烈士陵园纪念馆和县文博园的人数各是多少人?地点票价县烈士陵园纪念馆20元/人县文博园16元/人(2)若学生都去参观县文博园,则能节省车票票款多少元?解:(1)设参观县烈士陵园纪念馆的有x人,依题意,得20x+(120-x)×16=2 200,解得x=70.所以120-70=50(人),答:参观县文博园的有50人,参观县烈士陵园纪念馆的有70人.(2)由题意得2 200-120×16=280(元).答:若学生都去参观县文博园,则能节省车票票款280元.25.(10分)阅读材料,回答下列问题:对于未知数为x,y的二元一次方程组,如果方程组的解x满足|x-y|=1,我们就说方程组的解x与y具有“邻好关系”.的解x与y是(选填“是”或“不是”)具有“邻(1)方程组{x+2y=7,x-y=1好关系”?的解x与y具有“邻好关系”,求m的值.(2)若方程组{2x-y=6,4x+y=6m解:(2)方程组{2x-y=6①,4x+y=6m②,②+①得6x=6+6m,即x=1+m,把x=1+m代入①得y=2m-4,所以x-y=1+m-2m+4=5-m.因为方程组的解x,y具有“邻好关系”,所以|x-y|=1,即5-m=±1,所以m=6或m=4.26.(10分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴发现:在数轴上,点O为原点,点A,B表示的数分别是a和b,点B在点A的右边(即b>a),则A,B 两点之间的距离(即线段AB的长)AB=b-a.【问题情境】如图,数轴上点A表示的数a=-6,点B表示的数为b=4,线段AB 的中点C 表示的数为x.点M 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动.设运动时间为t s(t >0).【综合运用】根据“背景知识”和“问题情境”解答下列问题:(1)填空:①A ,B 两点之间的距离AB = 10,线段AB 的中点C 表示的数x = -1;②用含t 的代数式表示t s 后,点M 表示的数为2t -6 ;点N 表示的数为4-3t ;(2)求当t 为何值时,点M 运动到线段AB 的中点C ,并求出此时点N 所表示的数;(3)求当t 为何值时,MN =12AB.解:(2)当点M 运动到线段AB 的中点C 时,点M 与AB 的中点C 表示同一个数,即2t -6=-1,解得t =52.此时,点N 表示的数为4-3t =4-3×52=-72.(3)因为AB =10,MN =12AB ,所以MN =5.当点M 在点N 的左边时,(4-3t)-(2t-6)=5,解得t=1;当点M在点N的右边时,(2t-6)-(4-3t)=5,解得t=3.故当t=1或t=3时,MN=12 AB.。
湘教版七年级数学上册期末考试题及答案【完整版】
湘教版七年级数学上册期末考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( ) A .1x -B .1x +C .21x -D .()21x -2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800x B .1000(13﹣x )=800x C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x x C .233072x xD .323072x x6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( ) A .y=(x+1)2+4 B .y=(x ﹣1)2+4 C .y=(x+1)2+2D .y=(x ﹣1)2+27.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm8.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6510.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.一个n边形的内角和为1080°,则n=________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是________.4.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.5.分解因式:4ax2-ay2=_____________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x-7(x-1)=3-2(x+3) (2) 12334x xx-+-=-2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、A5、D6、D7、C8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、20°.34、53°5、a(2x+y)(2x-y)6、54°三、解答题(本大题共6小题,共72分)1、(1)x=5(2)x=-22、(x﹣y)2;1.3、(1)证明见解析;(2)75.4、(1)略;(2)略;(3)略;(4)略;5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
湘教版七年级上册数学期末考试试卷附答案
湘教版七年级上册数学期末考试试题一、单选题1.3-的相反数是( )A .3B .3-C .3±D .132.在10,2,1,2-这四个数中,最小的数是( ) A .0 B .-2 C .1 D .123.如图,数轴上被墨水遮盖的数可能是( )A .-1B .-1.5C .-3D .-44.买一个足球需m 元,买一个篮球需n 元,则买5个足球和4个篮球共需( ) A .9mn 元 B .20mn 元 C .()45m n +元 D .()54m n +元 5.下列计算正确的是( )A .2a a a +=B .4353x x x -=C .235235x x x +=D .22245a b ba a b -=-6.方程314x -=的解是( ) A .53x =B .53x =-C .1x =D .1x =-7.下列调查中,适宜采用抽样调查方式的是( ) A .调查2022年北京冬奥运会参赛运动员兴奋剂的使用情况 B .调查一个班级的学生对电视节目“奇葩说”的知晓率 C .调查一架“歼15”舰载战机各零部件的质量 D .调查荷塘区中小学生每天体育锻炼的时间 8.已知7620α︒∠=',则α∠的补角是( )A .10340︒'B .10380︒'C .1340︒'D .1380︒' 9.有理数a 在数轴上的位置如图所示,则5a -=( )A .5a -B .5a -C .5a +D .5a --10.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145° 二、填空题11.某仓库运进面粉25t 记做25+,那么运出面粉18t 应记做_________. 12.将360000用科学记数法表示应为________.13.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是_________.14.火星赤道的夏季,白天气温高达35C ︒,晚上温度降至73C ︒-,则日晚温差是_________C ︒.15.如图,90BAC ︒∠=,90ADC ∠=︒,150∠=︒,则C ∠=________.16.已知关于x 的方程2x+a ﹣5=0的解是x=2,则a 的值为_______.17.若,a b 为有理数,我们定义新运算“⊕”使得2a b a b ⊕=-,则13⊕=________. 18.如图所示的运算程序中,若开始输入的x 的值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2021次输出的结果为________.三、解答题19.(1)计算:()32165÷--(2)计算:()()211264--⨯--⎡⎤⎣⎦20.(1)解方程:3927y y -=- (2)解方程:2131136x x -+-=21.先化简,再求值:()()222423x xy xy x ----,其中1,2x y =-=.22.如图,线段20AB cm =,C 是线段AB 上一点,25AC AB =,M 是AB 的中点,N 是AC 的中点.(1)AC =________cm ,BM =_________cm ; (2)求线段CM 的长; (3)求线段MN 的长.23.某校计划组织师生共440人参加一次公益活动,如果租用10辆大型客车和5辆中型客车恰好全部坐满.已知每辆大型客车的乘客座位数比中型客车多17个.求每辆大型客车和每辆中型客车的乘客座位数.24.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图∠、∠的统计图,已知“查资料”的人数是40人.注:0-1表示大于0同时小于等于1,以此类推.请你根据以上信息解答下列问题:(1)“玩游戏”的所占百分比是________;(2)这次抽样中,共抽取了________人进行调查;(3)补全条形统计图;(4)该校共有学生2200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.25.已知点O是直线AB上的一点,∠COE=090,OF是∠AOE的平分线。
湘教版七年级上册数学期末考试试卷含答案
湘教版七年级上册数学期末考试试题一、单选题1.如果向右走5步记为+5,那么向左走3步记为()A .+3B .-3C .+13D .-132.月球白天的温度可达127℃,夜晚可降到-183℃,那么月球表面白天气温比晚上高()A .310℃B .-310℃C .56℃D .-56℃3.下列说法中,正确的是()A .单项式x 没有系数B .35x y 的次数是3C .2mn 与22n m -是同类项D .多项式31x -的项是3x 和14.下列运算中,结果正确的是()A .55x x -=B .235224x x x +=C .220a b ab -=D .43b b b-+=-5.下列方程中,解为3x =-的是()A .23x x +=B .30x -=C .103x +=D .31x -=6.如图所示几何图形中,是棱柱的是()A .B .C .D .7.在如图所示四幅图中,符合“射线PA 与射线PB 表示同一条射线”的图形是()A .B .C .D .8.下列调查中,适合采用全面调查(普查)方式的是()A .了解湖南卫视“快乐大本营”的收视率B .了解洪山竹海中竹蝗的数量C .了解全国快递包裹产生包装垃圾的数量D .了解某班同学“跳绳”的成绩9.如图,线段AB =22cm ,C 是AB 上一点,且AC =14cm ,O 是AB 的中点,线段OC 的长度是()A .2cmB .3cmC .4cmD .5cm10.按照如图所示的计算程序,若x=3,则输出的结果是()A .1B .9C .71-D .81-二、填空题11.2021的倒数是___________.12.数据4400000000人,这个数用科学记数法表示为_________.13.若一个多项式与m n -的和等于2m ,则这个多项式是_______.14.当x =________时,代数式122x -的值为0.15.为了做一个试管架,在长为a (cm )(a >6)的木板上钻3个小孔(如图)每个小孔的直径为2cm ,则x 等于_____cm .16.如图是根据某市2017年至2021年的各年工业生产总值绘制而成的折线统计图,则比上年增长额最大的年份是___________年.17.关于m 、n 的单项式﹣2manb 与32(1)a m -n 的和仍为单项式,则这两个单项式的和为___.18.如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.三、解答题19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.计算:3221(3)(2)[(2)(1)]12⎛⎫-⨯-+-⨯-+÷- ⎪⎝⎭21.先化简,再求值:()()254222.510xy x xy xy -+-+,其中1x =,2y =-.22.解方程:(1)3(x+1)=2(4x ﹣1);(2)32225x xx ---=.23.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强就某日午餐浪费饭菜情况进行了调查,随机抽取了若干名学生,将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图:回答下列问题:(1)这次调查的样本容量是________﹔(2)已知该中学共有学生2500人,请估计这日午餐饭和菜都有剩的学生人数;若按平均每人剩10克米饭计算.这日午餐将浪费多少千克米饭?24.5名老师带领若干名学生旅游(旅游费统一支付)他们联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?AB BC,AB长为1200米,BC长为1600米,一个人骑摩托25.如图,现有两条乡村公路,AB BC向C处行驶;另一人骑自行车从B处以5米/车从A处以20米/秒的速度匀速沿公路,秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.直线AB与CD相交于点O,OE平分70BOD AOC OF CD∠∠=⊥,,于O.∠互余的角是________.(1)图中与EOF∠的度数.(2)求EOF27.阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图,点M表示数1-,点N 表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、-3时,b 的值分别是多少?②利用(1)中的结论,探索a 与b 的关系,并用含a 的式子表示b ;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.参考答案1.B 2.A 3.C 4.D 5.A 6.B 7.C 8.D 9.B 10.C 11.12021【详解】2021的倒数是12021故答案为:12021.12.94.410⨯【详解】解:4400000000=94.410⨯,故答案为:94.410⨯.13.m n+【分析】已知一个加式与和求另一个加式,用减法,所以可得这个多项式是()2m m n --,再去括号,合并同类项即可得到答案.【详解】解: 一个多项式与m n -的和等于2m ,∴这个多项式是()22,m m n m m n m n --=-+=+故答案为:.m n +14.14【分析】根据题意可得1202x -=,解出即可.【详解】解:根据题意得:1202x -=,解得:14x =.故答案为:1415.64a -.【分析】根据题意可知4x 加上三个圆的直径(6cm )的和是acm ,列方程得到4x+3×2=a ,然后解关于x 的一元一次方程即可.【详解】根据题意得4x+3×2=a ,解得x =64a -,故答案为64a -.16.2021【分析】折线统计图中越陡说明增长的幅度越大,从图中看出2021年的折线最陡,所以增长额最大,进而知道增长额最大年份.【详解】解:从图中看出2021年的折线最陡,所以增长额最大,∴2021年比上年增长额最大故答案为:2021.【点睛】本题考查折线统计图的综合运用,读懂统计图,了解图形的变化情况是解决问题的关键.17.m 2n .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值,再代入代数式计算即可.【详解】∵﹣2manb 与3m 2(a ﹣1)n 的和仍为单项式,∴﹣2manb 与3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴﹣2manb+3m 2(a ﹣1)n =﹣2m 2n+3m 2n =m 2n .故答案为:m 2n .18.1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解: 点C 为线段AB 的中点,且10AB =,152BC AB ∴==,4DB = ,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.19.()13 2.50232-<-<<<--<【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.【详解】解:33--=-,(2)2--=,∵13 2.50232-<-<<<<,∴13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.-22【分析】根据有理数的四则混合运算顺序,先算乘方,再算乘除,最后算加减,有括号的要先算括号.【详解】原式219(2)21(8=÷-++-⨯()1848=-++-22=-【点睛】本题考查了有理数的四则混合运算,掌握四则运算顺序是解题的关键.21.24220x xy ---,20-【分析】把整式去括号、合并同类项后,然后把x 和y 的值代入计算即可得出结果.【详解】解:原式()2542520=---+xy x xy xy 2542520=----xy x xy xy 24220=---x xy ,当1x =,2y =-时,原式()24121220=-⨯-⨯⨯--()4420=----20=-.【点睛】本题考查了整式的加减—化简求值.去括号、合并同类项把整式正确化简是解题的关键.22.(1)x =1;(2)x =2.【分析】(1)先去括号,然后移项合并,再系数化为1,即可得到答案;(2)先去分母、去括号,然后移项合并,再系数化为1,即可得到答案;【详解】解:(1)3(x+1)=2(4x ﹣1),去括号,得3x+3=8x ﹣2,移项,得3x ﹣8x =﹣2﹣3,合并同类项,得﹣5x =﹣5,系数化为1,得x =1;(2)32225x xx ---=,去分母,得5(3x ﹣2)﹣2(2﹣x )=10x ,去括号,得15x ﹣10﹣4+2x =10x ,移项,得15x+2x ﹣10x =10+4,合并同类项,得7x =14,系数化为1,得x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法.23.(1)120(2)这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭【分析】(1)用A 组人数除以它所占的百分比即可得到调查的总人数;(2)先求出这日午饭有剩饭的学生人数为:2500×(1-60%-10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.(1)解:这次调查的样本容量=72÷60%=120(人),故答案为120;(2)解:122500250120⨯=(人);()250020%250107500⨯+⨯=(克)=7.5千克,答:这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.24.(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+⨯=,B 旅行社的费用为:()0.852020a a ⨯+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.25.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x 秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y 秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x 秒摩托车追上自行车,列方程得20x=1200+5x ,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y 秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.26.(1)∠DOE 和∠BOE ;(2)55︒【分析】(1)根据余角定义:如果两个角的和等于90︒(直角),就说这两个角互为余角可得答案;(2)首先计算出∠BOE 的度数,再计算出∠BOF 的度数,再求和即可.(1)∵OE 平分∠BOD ,∴∠BOE=∠DOE ,∵OF ⊥CD ,∴∠DOF=90︒,∴∠EOF+∠DOE=90︒,∠EOF+∠BOE=90︒,∴图中与EOF ∠互余的角是∠DOE 和∠BOE ;故答案为:∠DOE 和∠BOE ;(2)∵直线AB 、CD 相交于点O ,∠AOC=70︒,∴∠BOD=70︒,∵OE 平分∠BOD ,∴∠BOE=35︒,∵OF ⊥CD ,∴∠BOF=180709020︒-︒-︒=︒,∴∠EOF=∠BOE+∠BOF=55︒.【点睛】此题主要考查了角的计算,以及余角,关键是掌握余角定义,理清图形中角的关系.27.(1)①画图见解析,2,-2,5;②2b a =-;③-2019;(2)107.【分析】(1)①根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;②根据2a b +=,变换后即可得出结论;③根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;(2)设点A 表示的数为x ,根据点A 的运动找出点B ,结合互为基准变换点的定义即可得出关于x 的一元一次方程,解之即可得出结论;(1)解:画图略,① 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当0a =时,2b =,当4a =时,2b =-,当3a =-时,5b =,故答案为:2;2-;5;②2a b += ,2b a ∴=-,故答案为:2a -;③ 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当2021a =时,2019b =-;(2)解:设点A 表示的数为x ,根据题意得:5422x x -+=,解得:107x =.。
湘教版初中七年级下学期数学期末试题及答案
下列式子由左到右的变形是因式分解的是
4.
2
(
)
(
如图,下列条件中,不能判定直线a∥b 的是
7.
期末综合检测卷
10.
如果多项式 x2-mx+9(
14.
m 为常数)可以用完全平方公式进行
因式分解,那么 m = .
如图,将一张长方形纸条 ABCD 沿EF 折叠,点 B ,
15.
A 分别落在
点 B′,
若 ∠DGF =110
A′的位置上,
FB′与 AD 的 交 点 为 G .
°,
则 ∠A′EF 的度数为 .
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
{
A
C
3x+3y=100
x+y=100,
3x+y=100
x+y=100,
(
{
B
x+3y=100
ìïx+y=1
00,
ï
D
í
1
ï3
00
ï x+3y=1
î
)
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
A
{
B
3x+3y=100
x+3y=100
ìïx+y=1
00,
ï
D
í
1
ï3
00
ï x+3y=1
î
x+y=100,
{
C
湘教版七年级上册数学期末考试试卷含答案
湘教版七年级上册数学期末考试试题一、单选题1.下列几何体中,是圆柱的为()A .B .C .D .2.若a b =,则下列等式变形不正确...的是()A .33a b=B .22a b -=-C .a bm m=D .55a b +=+3.将6.38亿这个数用科学记数法可表示为()A .76.3810⨯B .86.3810⨯C .763.810⨯D .96.3810⨯4.若221a a +=-,则2487a a ++的值为()A .3B .4C .5D .65.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元6.如图,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若AC =6cm ,MN =5cm ,则线段MB 的长度是()A .7cmB .6cmC .8cmD .10cm7.如图,∠BOD =118°,∠COD 是直角,OC 平分∠AOB ,则∠AOB 的度数是()A .48°B .56°C .60°D .32°8.下列运算中正确的是()A .4x ﹣3x =1B .2x 2+3x 2=5x 2C .3x +4y =7xyD .x 2+x 2=2x 49.下列多项式不是同类项的是()A .22a b 与23a b-B .13x 与4xC .23ab 与5abD .22a b 与23ab 10.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是A .我B .中C .国D .梦二、填空题11.如果收入800元表示为800+元,那么支出300元可表示为_______元.12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.13.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费________元(用含,a b 的代数式表示).14.若单项式22m xy 与313n x y -为同类项,则n m 的值为____________.15.若x =2是关于x 的一元一次方程2(x ﹣m )=32x+m 的解,则m 的值是__.16.若a b ,互为相反数,c d ,互为倒数,m 的绝对值是2,则代数式25220221a b m cdm ++-+的值为__________.17.小明和妈妈今年的年龄之和为36岁,再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,则今年小明的年龄为______________岁.18.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.三、解答题19.计算:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦.20.先化简,再求值:()()22225335x y xyxyx y --+,其中2,1x y ==-.21.解方程:43252x x x ---=.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,110BOC ∠=°.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数.23.某校为了解七年级学生对“阳光跑操”活动的喜欢程度,学校随机抽取部分学生进行调查,被调查的每位学生从A :非常喜欢,B :比较喜欢,C :一般,D :不喜欢,四个选项中任选一项(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据图中信息,解答下列问题:(1)求本次调查学生的总人数及扇形统计图中D 部分的圆心角的度数;(2)请补全条形统计图;(3)若该校七年级共有750名学生,根据调查结果,估计对阳光跑操活动“比较喜欢”学生共有多少人?24.已知多项式()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭的值与字母x 的取值无关.(1)求m n ,的值;(2)先化简多项式()()2222442mmn n m mn n +--+-,再求其值.25.如图,数轴上两个动点A ,B 开始时所表示的数分别为-10,5,A B ,两点都在数轴上运动,且A 点的运动速度为3个单位长度/秒,B 点的运动速度为2个单位长度/秒.(1)如果AB 、两点同时出发,相向而行,那么它们经过几秒相遇?(2)如果AB 、两点同时出发,都向数轴正方向运动,那么几秒时两点相距6个单位长度?26.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+的成立的一对有理数,a b 为“共生有理数对”,记为:(),a b .例如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)判断数对()2,1-,13,2⎛⎫⎪⎝⎭是否为“共生有理数对”,并说明理由;(2)若(),3a 是“共生有理数对”,求a 的值;(3)若(),m n 是“共生有理数对”,试判断(),n m --是否为“共生有理数对”,并说明理由.27.如图,点O 是直线AB 上一点,OD 平分∠BOC ,∠COE=90°,若∠AOC=46°,求∠DOE 的度数.参考答案1.A【分析】根据几何体的特征进行判断即可.【详解】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥.故选:A .【点睛】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.2.C【分析】根据等式性质1,等式两都加上或减去同一数或整式等式应成立可判断B ,D ;根据等式性质2,等式两边都乘以或除以同一个不为0的数或整式,等式应成立可判断A 、C 即可.【详解】解:A.33a b =,根据等式性质2等式两边都乘以3,应成立,故选项A 不合题意;B.22a b -=-,根据等式性质1,等式两边都减2,应成立,故选项B 不合题意;C.a bm m=,根据等式性质2,等式两边都除以不为零的数,等式应成立,但m 要求不为0,故选项C 符合题意;D.55a b +=+,根据等式性质1,等式两边都加5,应成立,故选项D 不合题意.故选C .【点睛】本题考查等式的性质,掌握等式性质和应用条件是解题关键.3.B【详解】整数6.38亿共计9位,采用10n a⨯表达,则有 6.38a =,918n =-=,即:6.38亿用科学记数法表示为86.3810⨯,故选:B .4.A【详解】解:∵a 2+2a=-1,∴4a 2+8a+7=4(a 2+2a )+7=4×(-1)+7=-4+7=3,故选:A.5.B【分析】根据题意,可以用含x的代数式表示出6月份的产值.【详解】由题意可得,6月份的产值是x(1+30%)=130%x(万元),故选:B.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.A【分析】根据线段中点的定义可求解MC,结合MN=5cm可求解CN=BN=2cm,进而可求解.【详解】解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=12AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN-MC=5-3=2cm,∴MB=MN+BN=5+2=7cm,故选:A.【点睛】本题主要考查线段中点的定义,两点间的距离,根据线段的和差求解释解体的关键.7.B【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.【点睛】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.8.B【分析】根据合并同类项的计算,在合并同类项时,系数相加减,字母及其指数不变,进行计算,然后进行判断.【详解】解:A.4x ﹣3x =x ,故此选项不符合题意;B.2x 2+3x 2=5x 2,正确;C.3x 、4y 不是同类项,不能合并计算,故此选项不符合题意;D.x 2+x 2=2x 2,故此选项不符合题意故选:B .【点睛】本题考查合并同类项,正确理解同类项的概念和合并同类项的计算法则正确计算是解题关键.9.D【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可作出判断.【详解】解:A.22a b 与23a b -是同类项;B.13x 与4x 是同类项;C.23ab 与5ab 是同类项;D.22a b 与23ab ,a 的指数不同,b 的指数也不同,故不是同类项.故选:D .【点睛】本题考查了同类项的定义,熟练掌握同类项定义中的两个“相同”并能利用其进行准确判断是解题的关键,注意同类项的判别与系数和字母的顺序无关.10.D【详解】这是一个正方体的平面展开图,共有六个面,根据正方体侧面展开图的特点,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.故选:D .【点睛】考点:正方体的展开图11.300-【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可【详解】解:若规定收入为正,则支出为负,即:收入800元表示为+800元,那么他每月支出300元表示为-300元.故答案为:-300.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.-3【分析】数轴上的点能表示实数,从点在数轴上位置可得出A 表示的数.只有符号不同的两个数互为相反数,求一个数的相反数,直接在前面添上“-”号即可,由此可得出本题答案.【详解】从图上可知点A 表示的数是3,而3的相反数是-3.故答案为:-3.【点睛】本题考察了数轴上的点表示实数和相反数的定义,能正确求已知数的相反数是做出本题的关键.13.()610a b +或者(10b+6a)【分析】根据单价×数量=总费用进行解答.【详解】解:依题意得:小明共花费(6a+10b )元,故答案是:(6a+10b ).【点睛】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.14.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m ,n 的值,继而可求得mn 的值.【详解】解:∵单项式22m x y 与313n x y -是同类项,∴n=2,m=3,则mn=32=9.故答案为:9.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.13.【分析】把x=2代入方程,得到关于m 的一元一次方程,解方程即可.【详解】把x =2代入方程得:2(2﹣m )=3+m ,∴4﹣2m =3+m ,∴﹣3m =﹣1,∴m =13,故答案为:13.【点睛】本题考查了一元一次方程的解,掌握一元一次方程的解的定义是解题的关键,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.18【分析】根据题意,可得:a+b=0,cd=1,m=±2,据此求出代数式25220221a b m cd m ++-+的值即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,252a b m cd++-+=0+5×22-2×1=5×4-2=20-2=18;当m=-2时,25220221a b m cd m ++-+=0+5×(-2)2-2×1=5×4-2=20-2=18.故答案为:18.【点睛】此题主要考查了有理数的混合运算,互为相反数、互为倒数的两个数的性质和应用,以及绝对值的含义和求法,注意运算顺序.17.4【分析】设今年小明的年龄为x 岁,则妈妈为()36x -岁,根据再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,列方程为()365451,x x -+=++解方程可得答案.【详解】解:设今年小明的年龄为x 岁,则妈妈为()36x -岁,()365451,x x -+=++41421,x x ∴-=+520,x ∴=4.x ∴=所以今年小明的年龄为4岁.故答案为:4.【点睛】本题考查的是一元一次方程的应用,掌握利用一元一次方程解决年龄问题是解题的关键.18.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.19.43【分析】先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【详解】解:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦()1911324⎛⎫=--+÷+ ⎪⎝⎭341329=--⨯+2133=--+43=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.28xy -,16-【分析】先去括号,合并同类项,然后将,x y 的值代入代数式计算即可得.【详解】解:()()22225335x y xy xy x y --+,2222155315x y xy xy x y =---,28xy =-,当2x =,1y =-时,原式282(1)16=-⨯⨯-=-.21.23x =【分析】方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:43252x x x ---=去分母,得()()1024532x x x --=-,去括号,得10821510x x x -+=-移项,合并同类项,得32x =,方程两边同除以3,得23x =.因此原方程的解为23x =.22.(1)70AOC ∠=︒(2)55MOD ∠=︒【分析】(1)利用邻补角的定义计算∠AOC 的度数;(2)先根据角平分线的定义得到∠COM=35°,然后利用互余计算∠MOD 的度数.(1)∵∠AOC+∠BOC=180°,∴∠AOC=180°-110°=70°,即∠AOC 的度数为70°;(2)∵OM平分∠AOC,∴∠COM=12∠AOC=12×70°=35°,∵∠COD=90°,∴∠MOD=90°-∠COM=55°,即∠MOD的度数为55°.23.(1)200人,D部分的圆心角的度数为54(2)图见解析(3)300人【分析】(1)从两个统计图中可以得到A组的有40人,占调查人数的20%,可求出调查人数,用360°乘D部分所占比例可得D部分的圆心角的度数;(2)求出C组的人数即可补全条形统计图,(3)样本估计总体,样本中B组的占40%,因此估计总体中也有40%的学生属于B组.(1)调查人数为:40÷20%=200(人),D部分的圆心角的度数为:360°×(1-20%-25%-40%)=54°;(2)C组的人数为:200-40-80-30=50(人),补全条形统计图如图所示:(3)估计对阳光跑操活动“比较喜欢”学生共有:750×40%=300(人).所以,估计对阳光跑操活动“比较喜欢”学生共有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.(1)1n =-,3m=(2)223mn n -,-9【分析】(1)原式去括号合并得到最简结果,由题意多项式的值与字母x 的取值无关,确定出m 与n 的值即可;(2)原式去括号合并同类项化简后,把m 与n 的值代入计算即可求出值.(1)解:()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭22133212x mx y x y nx =+-+-+-+()()231322n x m x y =++-++∵多项式的值与字母x 的值无关∴10n +=,30m -=解得:1n =-,3m =;(2)解:()()2222442m mn n m mn n +--+-222244442m mn n m mn n =+---+223mn n =-当3m =,1n =-时,原式()()223131=⨯⨯--⨯-63=--9=-25.(1)3秒(2)9秒或21秒【分析】(1)设它们经过m 秒相遇,根据两点相遇时表示的数相同,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设运动的时间为t 秒,则点A 表示的数为3t-10,点B 表示的数为2t+5,根据两点相距6个单位长度,根据绝对值的性质列出关于t 的一元一次方程,解之即可得出结论.(1)解:由题意可知A ,B 两点间的距离为:()51015--=(单位长度)设它们经过m 秒后相遇,则根据等量关系,得3215m m +=解得3m =;(2)解:设经过t 秒后,A ,B 两点相距6个单位长度.经过t 秒后,点A 的位置所表示的数为:103t -+.经过t 秒后,点B 的位置所表示的数为:52t +.此时,A ,B 两点间的距离为()5210315t t t +--+=-则根据等量关系,得:156t -=则:156t -=或156t -=-解得:9t =或21【点睛】本题考查了一元一次方程的应用以及数量,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)分点A 在点B 的左侧及点A 在点B 的右侧两种情况,找出关于t 的一元一次方程.26.(1)()2,1-不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”,理由见解析(2)2a =-(3)是“共生有理数对”,理由见解析【分析】(1)先计算,然后根据题目中的新定义,可以判断(-2,1),13,2⎛⎫ ⎪⎝⎭是否为“共生有理数对”;(2)根据新定义可得关于a 的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(-n ,-m )变形即可判断.(1)因为213--=-,()2111-⨯+=-所以()21211--≠-⨯+,即()2,1-不是“共生有理数对”又因为15322-=,153122⨯+=所以1133122-=⨯+即13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”(2)由题意得:331a a -=⨯+,即331a a -=+解得:2a =-.(3)是.理由:因为()n m n m ---=-+,()()11n m mn -⨯-+=+①又因为(),m n 是“共生有理数对”,所以1m n m n -=⨯+即1m n mn -=+而m n n m -=-+所以1n m mn -+=+由①式可知:()()()1n m n m ---=-⨯-+所以(),n m --是“共生有理数对”.27.23°.【分析】根据平角的定义得到134BOC ∠=︒,在根据角平分线的定义得到,然后利用90DOE COD ∠+∠=︒,即可求出DOE ∠.【详解】解:∵46AOC ∠=︒,180BOC AOC ∠+∠=︒,∴134BOC ∠=︒,∵OD 平分BOC ∠,∴1672COD BOC ∠=∠=︒,又90DOE COD ∠+∠=︒,∴23DOE ∠=︒.。
湘教版2023-2024学年七年级下册数学期末题型专练(填空题C卷)含答案
湘教版2023-2024学年七年级下册数学期末题型专练(填空题C 卷)1.为了庆祝神舟十五号成功发射,学校组织了一次小制作展示活动,小彬计划制作一个如图所示的简易飞机模型.已知该模型是一个关于AC 对称的轴对称图形,若,30cm AB =,则__________cm.22cm AC =AD =2.已知,则代数式的值为________.1a b +=2229a b b ++-3.分解因式:_______.224ax ay -=4.若,则__________.2(2)(5)x x x mx n ++=++m n +=5.如图,将沿方向平移得到,若的周长为,则四边形ABC BC 3cm DEF ABC 16cm 的周长为_____.ABFD6.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.7.某学生记录了家中六个月的用电情况,六个月缴纳的电费依次为(单位:元):69,77,85,90,73,98,这组数据的中位数是____________,极差是____________,平均数是____________.8.如图,直线a 与的一边OA 相交,,向下平移直线a 得到直线b ,直线AOB ∠1130∠=︒b 与的另一边OB 相交,则_________.AOB ∠23∠+∠=9.已知关于的二次三项式,则分解因式的结x ()()23232x mx x x a +-=-+2441ax mx -+果为_____.10.已知关于,的二元一次方程组的解满足,则的值为x y 33521x y k x y k+=⎧⎨-=-⎩6x y -=k ______.11.已知一组数据,,,的方差,则,,的方差1x 2x 3x 20x ⋯⋯7121x -221x -20......21x -为_______.12.如图,分别为的平分线,则,,,AB CD DE BE BF DF ⊥∥,ABE CDE ∠∠______°.BFD ∠=13.如图,一副三角板的三个内角分别是,,和,,,如图,若固90︒45︒45︒90︒60︒30︒定,将绕着公共顶点B 顺时针旋转度(),当边与ABC △BDE △α0180α<<DE 的某一边平行时,相应的旋转角的值为______.ABC △α答案以及解析1.答案:30解析:因为该模型是一个关于AC 对称的轴对称图形,若,,所以30cm AB =22cm AC =.30cm AD AB ==2.答案:10解析:2229a b b ++-()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故10.3.答案:(2)(2)a x y x y +-解析:224ax ay -()224a x y =-,(2)(2)a x y x y =+-故答案为.(2)(2)a x y x y +-4.答案:17解析:因为,所以,,所以22(2)(5)710x x x x x mx n ++=++=++7m =10n =.17m n +=5.答案:22cm 解析:∵沿方向平移得到,ABC BC 3cm DEF ∴,,DF AC =3cm AD CF ==∴四边形的周长ABFD AB BF DF AD=+++AB BC CF AC AD=++++的周长ABC = AD CF++1633=++.22cm =故答案为.22cm6.答案:5解析:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,“优美矩形”ABCD 的周长为26,,a c =+,35d =故5.7.答案:,,812982解析:把这组数据从小到大排列为:69,73,77,85,90,98,所以这组数据的中位数是;7785281+÷=()极差是;986929-=平均数是;697377859098682+++++÷=()故81,29,82.8.答案:230︒解析:如图,过点O 作.//OC a 直线a 向下平移得到直线b ,,,//a b ∴//OC b ∴,,1180AOC ∴∠+∠=︒3180COB ∠+∠=︒,.123360∴∠+∠+∠=︒233601230∴∠+∠=︒-∠=︒9.答案:()221x -解析:∵,()()223233223(32)2x x a x ax x a x a x a -+=+--=+--∴,22323(32)2x mx x a x a +-=+--则,解得:,3222m a a =-⎧⎨-=-⎩11a m =⎧⎨=⎩将代入得:,11a m =⎧⎨=⎩2441ax mx -+2441x x -+∴,22441(21)x x x -+=-故()221x -解析:,33521x y k x y k +=⎧⎨-=-⎩①②①②得:-3⨯16y y ∴=①5⨯14211666316k x k y +=-=关于,的二元一次方程组的解满足, x y 33521x y k x y k+=⎧⎨-=-⎩6x y -=,∴142166361616k k +--=.32k ∴=11.答案:28解析:数据,,,的方差,1x 2x 3x 20x ⋯⋯7,()()()22212201720x x x x x x ⎡⎤∴-+-+⋯+-=⎣⎦,()12320120x x x x =⨯+++⋯+,,的平均数为121x ∴-221x -20......21x -,()()12201220212121 (211212020)x x x x x x x ++⋯+⨯-+-++-=-=-()()()2221220212121212121x x x x x x ⎡⎤--++--++⋯+--+⎣⎦ ()()()222122014420x x x x x x ⎡⎤=⨯-+-+⋯+-⎣⎦ ()()()22212201420x x x x x x ⎡⎤=⨯-+-+⋯+-⎣⎦47=⨯,28=故答案为.2812.答案:135解析:如图所示,过E 作,EG AB ∥∵,AB CD ∴,EG CD ∥∴,180180ABE BEG CDE DEG ∠+∠=︒∠+∠=︒,∴°,360ABE BED CDE ∠+∠+∠=又∵,分别为的角平分线,DE BE ⊥BF DF ,ABE CDE ∠∠,∴,()1360901352FBE FDE ABE CDE ∠+∠=∠+∠=︒-︒=︒()∴四边形中,.BEDF 36036013590135BFD FBE FDE BED ∠=︒-∠-∠-∠=︒-︒-︒=︒故135.13.答案:45°,75°,165°解析:①如图1中,当时,//DE AB ,可得旋转角;45ABD D ∴∠=∠=︒45α=︒②如图2中,当时,//DE BC,可得旋转角;75ABD ABC CBD ABC D ∴∠=∠+∠=∠+∠=︒75α=︒③如图3中,当时,作,//DE AC //BM AC 则,////AC BM DE ,,90CBM C ∴∠=∠=︒45DBM D ∠=∠=︒,可得旋转角,309045165ABD ∴∠=︒+︒+︒=︒165α=︒综上所述,满足条件的旋转角为45°,75°,165°,α故45°,75°,165°.。
湘教版数学七年级上册期末测试题附答案(共3套)
湘教版数学七年级上册期末测试题(一)(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A.甲的第三次成绩与第四次成绩相同B.第三次训练,甲、乙两人的成绩相同C.第四次训练,甲的成绩比乙的成绩少2分D.五次训练,甲的成绩都比乙的成绩高2.(3分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数,并根据调查结果绘制了如图所示的条形统计图.若将条形统计图转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.144°B.75° C.180°D.150°3.(3分)对甲、乙两户家庭全年各项支出的统计如图所示,已知甲户居民的衣着支出与乙户相同,下面根据统计,对两户家庭教育支出的费用做出判断,正确的是()A.甲比乙大 B.乙比甲大 C.甲、乙一样大 D.无法确定4.(3分)已知y1=﹣x+1,y2=﹣5,若y1+y2=20,则x=()A.﹣30 B.﹣48 C.48 D.305.(3分)小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款()A.106元B.102元C.101.6元D.111.6元6.(3分)解方程时,把分母化为整数,得()A.B.C.D.7.(3分)分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.8.(3分)从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个9.(3分)如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥10.(3分)甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题(每空3分,共30分)11.(3分)在(1)2x﹣1;(2)2x+1=3x;(3)|π﹣3|=π﹣3;(4)t+1=3中,代数式有,方程有(填入式子的序号).12.(3分)根据条件:“x的2倍与5的差等于15”列出方程为.13.(3分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为度.14.(3分)若某地区的观众中,青少年、成年人、老年人的人数比是3:4:3,要抽取容量为500的样本,则青少年应抽取人较合适.15.(3分)如图是某几何体的平面展开图,则这个几何体是.16.(3分)如图绕着中心最小旋转能与自身重合.17.(3分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.(3分)一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.(3分)已知∠A=40°,则它的补角等于.20.(3分)两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.(12分)已知关于x的方程3x﹣2m+1=0与2﹣m=2x的解互为相反数,试求这两个方程的解及m的值.22.(12分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)23.(12分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(12分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如图所示(部分信息未给出)解答下列问题:(1)计算第六次人口普查小学学历人数,并把条形图补充完整;(2)求第五次人口普查中,该市常住人口每万人中具有初中学历的人数;(3)第六次人口普查结果与第五次相比,每万人中初中学历的人数增加了多少人?25.(14分)如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.(14分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.(14分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?参考答案:一、选择题(每小题3分,共30分)1.D 2.A 3.B 4.B 5.C 6.B 7.C 8.B 9.A 10.A二、填空题(每空3分,共30分)11.(1)(3);(2)(4).12.2x﹣5=15.13.72°.14.150.15.三棱柱.16.90°.17.60.18.360.19.140°.20.1;3;1.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.解:3x﹣2m+1=0,解得:x=,2﹣m=2x,解得:x=,根据题意得:+=0,去分母得:4m﹣2+6﹣3m=0,解得:m=﹣4,两方程的解分别为﹣3,3.22.解:(1)根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),答:种植油菜每亩的种子成本是31元;(2)根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元;(3)根据题意得:340×500 000=170 000 000=1.7×108(元),答:2014年南县全县农民冬种油菜的总获利为1.7×108元.23.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.24.解:(1)450﹣36﹣55﹣180﹣49=130(万人);如图所示:(2)400×32%=128(万人).答:该市常住人口每万人中具有初中学历的人数是128万人;(3)180÷450﹣128÷400=0.4﹣0.32=0.08(万人).答:每万人中初中学历的人数增加了0.08万人.25.解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.26.解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.27.解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.湘教版数学七年级上册期末模拟题(二)(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)已知A,B两地相距30千米.小王从A地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B地,则小王骑自行车的速度为()A.13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时2.(3分)一项工程甲单独做需要x天完成,乙单独做需要y天完成,两人合做这项工程需要的天数为:A.B.+C.D.3.(3分)一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.4.(3分)如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.(3分)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.(3分)下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.(3分)下列调查中,适宜采用全面调查的是()A.了解一批炮弹的杀伤半径B.了解一批灯泡的使用寿命C.了解全国人民对政府惩治腐败的满意程度D.了解本班同学对星期天外出旅游的态度8.(3分)某班学生参加课外兴趣小组情况的统计图如图所示,则参加人数最多的课外兴趣小组是()A.书法 B.象棋 C.体育 D.美术9.(3分)如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台10.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是()A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍二、填空题(每小题4分,共24分)11.(4分)如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.(4分)如图,以图中A,B,C,D,E为端点的线段共有条.13.(4分)如果关x的方程与的解相同,那么m的值是.14.(4分)若x=0是方程2010x﹣a=2011x+3的解,那么代数式的值﹣a2+2= .15.(4分)根据2009~2014年浙江固定资产投资(单位:亿元)及增速统计图所提供的信息,下列判断正确的是.①2011年增长速度最快;②从2011年开始增长速度逐年减少;③各年固定资产投资的均数是16 035亿元.16.(4分)某校为了举办庆祝中国共产党成立94周年的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.三、解答题(共66分)17.(9分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;(2)为了了解一批空调的使用寿命,从中抽取10台做调查.18.(9分)如图所示的是某厂一、二两个车间2002年工业产值的情况,请你仔细观察统计图,并回答下列问题:(1)从统计图看,哪个车间的产值高?两个车间的总产值哪个季度最高?(2)从统计图看,哪个车间的产值增长快?第三季度哪个车间的产值是下降的?19.(11分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.20.(12分)如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.21.(12分)在某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x场,根据题意,用含x的式子填空:(1)该队平了场;(2)按比赛规则,该队胜场共得分;(3)按比赛规则,该队平场共得分.22.(13分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有名;(2)表中x,y和m所表示的数分别为:x= ,y= ,m= ;D类的扇形所对应的圆心角的度数是多少.参考答案:一、选择题(每小题3分,共30分)1.D 2.D 3.B 4.B 5.D 6.B 7.D 8.C 9.C 10.C二、填空题(每小题4分,共24分)11.圆柱、圆锥、球.12.10.13.±2.14.﹣7.15.①②③.16.100.三、解答题(共66分)17.解:(1)因为要求调查数据精确,故采用普查;(2)在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10.18.解:(1)由图可得一车间的产值高,两个车间的总产值第四季度最高,(2)由折线统计图可得,一车间的产值增长快,第三季度二车间的产值是下降的.19.解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.20.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.21.解:(1)11﹣x;(2)3x;(3)(11﹣x);根据题意可得:3x+(11﹣x)=23,解得:x=6.答:该队共胜了6场.22.解:(1)由题意可得,本次抽查的学生有:60÷30%=200(名),故答案为:200;(2)由(1)可知本次抽查的学生有200名,∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,故答案为:100,30,5%;(3)补全的条形统计图如右图所示;(4)由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,即实验成绩为D类的扇形所对应的圆心角的度数是18°.湘教版数学七年级上册期末测试题(三)(时间:120分钟分值:120分)一、单项选择题(本题共10题,共30分,每小题3分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)下列说法中,不正确的是()A.0既不是正数,也不是负数B.当a>1时,则a的倒数大于0且小于1C.a与﹣a互为相反数D.|a|表示正数2.(3分)已知A地的海拨高度为﹣50米,B地比A地高30米,则B地的海拔高度为()米.A.﹣80 B.30 C.﹣20 D.203.(3分)下列变形错误的是()A.4x﹣5=3x+2变形得4x﹣3x=2+5B.3x﹣1=2x+3变形得3x﹣2x=3+1C.x﹣1=x+3变形得4x﹣1=3x+18D.3x=2变形得x=4.(3分)对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.5.(3分)已知3a5b3和﹣4a3m﹣1b n是同类项,则代数式2m+3n的值为()A.13 B.14 C.﹣14 D.﹣136.(3分)下列运算错误的是()A.﹣7﹣(﹣3)﹣3+(﹣5)=﹣12 B.﹣4×(﹣2)×(﹣1)2014=8C.(﹣24)÷(﹣3)÷(﹣2)=﹣4 D.(﹣2)×5﹣8÷(﹣)2=﹣167.(3分)下列运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x28.(3分)用字母表示如图所示的阴影部分的面积是()A.B.C.D.9.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.两点确定一条线段10.(3分)为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.我市2014年中考数学成绩二、填空题(每小题3分,共24分)(3分)2013年5月1日,国家邮政局特别发行“万众一心”邮票,其邮票发行为12050000 11.枚,用科学记数法表示是枚.12.(3分)一张长方形的餐桌可以坐6个人,按照下图的方式摆放餐桌和椅子:请观察表中数据规律填表:a= .14.(3分)已知∠α与∠β互余,且∠α=35°18′,则∠β=°′.15.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是.16.(3分)已知,则2m﹣n的值是.17.(3分)某校女生占全体学生总数的52%,比男生多80人.若设这个学校的学生数为x 人,那么可列方程.18.(3分)已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.三、运算题(共25分)19.(4分)计算÷(﹣)+(﹣4)2×(﹣5)+(﹣2)5×(﹣﹣)20.(4分)3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2].21.(4分)解方程:2﹣=.22.(4分)已知AB=10cm,直线AB上有一点C,BC=4cm,M是线段AC的中点,求AM的长.23.(4分)如图,点A、O、B在同一条直线上,OD平分∠AOC,OE平分∠BOC,∠AOD=55°,求∠COE的度数.24.(4分)已知A=4x2+4x﹣3,B=x2﹣3x﹣2,求当x=﹣时,代数式A﹣2B的值.四、应用题(每小题7分,共21分)25.(7分)学校小卖部新进了一部分学习用品,文具盒每只定价10元,笔记本每本2元.小卖部在开展促销活动期间,向学生提供两种优惠方案:①文具盒和笔记本都按定价的90%付款;②买一只文具盒送一本笔记本.现某班开展学习竞赛要到学校小卖部购买x只文具盒(x ≥1),笔记本本数是文具盒只数的4倍多5.(1)若该班按方案①购买,需付款元:(用含x的代数式表示)若该班按方案②购买,需付款元.(用含x的代数式表示)(2)若x=10,通过计算说明此时按哪种方案购买较为合算?26.(7分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?27.(7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如图:请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?参考答案:一、单项选择题(本题共10题,共30分,每小题3分;在每小题提供的四个选项中,只有一项符合题目的要求)1.D 2.C 3.C 4.B 5.A 6.D 7.C 8.A 9.A 10.C二、填空题(每小题3分,共24分)11.1.205×107.12.2n+4.13.﹣1.14.54°42′.15.72°.16.13.17.52%x﹣48%x=80.18..三、运算题(共25分)19.解:原式=﹣×6﹣16×5﹣16+8+12=﹣10﹣80﹣16+8+12=﹣86.20.解:原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣x2y﹣3.21.解:去分母得,12﹣2(2x+1)=3(1+x),去括号得,12﹣4x﹣2=3+3x,移项得,﹣4x﹣3x=3﹣12+2,合并同类项得,﹣7x=﹣7,系数化为1得,x=1.22.解:(1)如图1,点C在线段AB上,∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵M是AC的中点,∴AM=AC=3(cm).(2)如图2,点C在线段AB的延长线上.∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵M是AC的中点,∴AM=AC=7(cm).∴AM的长为3cm或7cm.23.解:∵OD平分∠AOC,∠AOD=55°,∴∠AOC=2∠AOD=110°,∴∠BOC=180°﹣∠AOC=70°,∵OE平分∠BOC,∴∠COE=∠BOC=35°.24.解:∵A=4x2+4x﹣3,B=x2﹣3x﹣2,∴A﹣2B=4x2+4x﹣3﹣2x2+6x+4=2x2+10x+1,当x=﹣时,原式=﹣5+1=﹣3.四、应用题(每小题7分,共21分)25.解:由题意可知:(1)方案①需付款(16.2x+9);方案②需付款(16x+10);(2)把x=10分别代入(1)中二个代数式:方案①:16.2×10+9=171元;方案②:16×10+10=170元;故第②种合算.26.解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.27.解:(1)借出图书的总本数为:40÷10%=400本,其它类:400×15%=60本,漫画类:400﹣140﹣40﹣60=160本,科普类所占百分比:×100%=35%,漫画类所占百分比:×100%=40%,补全图形如图所示;(2分)(2)该校学生最喜欢借阅漫画类图书.(3分)(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).…(7分)。
湘教版七年级上册数学期末考试试卷含答案
湘教版七年级上册数学期末考试试题一、单选题1.7-的绝对值为()A .7B .17C .17-D .7-2.当4x =时,代数式1x -+的值是()A .1-B .1C .3D .3-3.如图示,数轴上点A 所表示的数的绝对值为()A .2B .﹣2C .±2D .以上均不对4.将39000000000用科学记数法表示为()A .3.9×1010B .3.9×109C .0.39×1011D .39×1095.由若干个相同的小正方体,摆成几何体的主视图和左视图均为如图所示,则最少使用小正方体的个数为()A .9B .7C .5D .36.如图,直线AB CD 、相交于点E ,EF AB ⊥于E ,若56CEF ∠=︒,则BED ∠的度数为A .24︒B .26︒C .34︒D .44︒7.下列运算正确的是()A .2325a a a +=B .333a b ab +=C .2222a bc a bc a bc -=D .523a a a -=8.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A .﹣8+4﹣5+2B .﹣8﹣4﹣5+2C .﹣8﹣4+5+2D .8﹣4﹣5+29.如图,点O 在直线AB 上,若∠AOC=60°,则∠BOC 的大小是()A .60︒B .90︒C .120︒D .150︒10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=25°,则∠2的度数是()A .55︒B .60︒C .65︒D .70︒二、填空题11.-5的相反数是_______12.温度升高1℃记为+1℃,气温下降9℃记为_____13.已知x=2,|y|=5,且x >y ,则x+y=_________.14.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数有_____个.15.有理数5.613精确到百分位的近似数为________.16.某商品原价是x 元,提价10%后的价格是__________.17.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.18.若|x+1|+(y ﹣2)2=0,则x+y=_____.19.如图是一个正方体的展开图,请问1号面的对面是_____号面.20.如图,下列条件中:①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;则一定能判定AB//CD 的条件有_________(填写所有正确的序号).三、解答题21.计算(1)()69---(2)()51112248⎛⎫-⨯-- ⎪⎝⎭(3)()()7356x x -+-(4)()()3232xy x xy xy x --+-22.解方程533523x x ++=23.如图,B 是线段AD 上一点,C 是线段BD 的中点.(1)若AD =8,BC =3,求线段CD ,AB 的长;(2)试说明:AD +AB =2AC.24.如图,已知∠BOC=2∠AOC ,OD 平分∠AOB ,且∠AOC=40°,求∠COD 的度数.25.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)26.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若一般和优秀均被视为达标成绩,则该校被抽取的学生中有多少人达标?27.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.参考答案1.A2.D3.A4.A5.D6.C7.C8.B9.C10.A11.512.﹣9℃13.-314.315.5.6116.(1+10%)x 元17.四五18.119.520.①③④21.(1)3;(2)-4;(3)21x +;(4)65xy x-【分析】(1)先运用有理数的减法变形,再进行加法运算;(2)先进行有理数的乘方,再进行乘法,最后算加减;(3)先去括号,再合并同类项即可求解.【详解】解:(1)原式=693-+=,(2)原式=11132248⎛⎫-⨯-- ⎝⎭=1684-++=4-;(3)原式7356x x =-+-21x =+;(4)原式3232xy x xy xy x =-++-65xy x =-.22.9x =【分析】左右同乘6进行去分母,再去括号,移项合并,化系数为1即可求解.【详解】解:去分母:()()353235x x +=+去括号:159610x x+=+移项,合并同类项:9x -=-化系数为1:9x =【点睛】本题考查解一元一次方程,熟练掌握求解步骤,注意变号情况是解题关键.23.(1)2;(2)详见解析.【详解】试题分析:(1)根据中点的定义即可求得CD=BC=3,根据图中相关线段间的和差关系即可求得AB 的长度;(2)根据图示可得AD+AB=AC+CD+AB ,BC=CD ,然后由等量代换即可证得结论.试题解析:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC.24.∠COD =20°.【详解】因为BOC 2AOC ∠=∠,AOC 40∠=︒,所以BOC 24080∠=⨯︒=︒,所以AOB BOC AOC 8040120∠=∠+∠=︒+︒=︒,因为OD 平分∠AOB ,所以11AOD AOB=1206022∠=∠⨯︒=︒,所以COD AOD AOC 6040∠=∠-∠=︒-︒20=︒25.(1)35元;(2)黄老师家5月份用水14吨;(3)当0<a≤10时,应交水费为2a (元),当a >10时,应交水费为2.5a-5(元)【分析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a >10时,分别进行计算即可.【详解】(1)10×2+(16-10)×2.5=35(元),答:应交水费35元;(2)设黄老师家6月份用水x 吨,由题意得10×2+2.5×(x-10)=30,解得x=14,答:黄老师家6月份用水14吨;(3)①当0<a≤10时,应交水费为2a (元),②当a>10时,应交水费为:20+2.5(a-10)=2.5a-5(元).26.(1)见解析;(2)96【分析】(1)由不合格人数及其百分比求得总人数,总人数减去不合格与一般的人数求得优秀的人数,再根据百分比之和为1可得一般对应的百分比;(2)由条形统计图可得两个等级的具体人数,据此可得.【详解】解:(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,补充图形如下所示:;(2)该校被抽取的学生中达标的人数=36+60=96(人).答:该校被抽取的学生中有96人达标.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂条形统计图及扇形统计图,能从中找到必要的数据.27.BF、DE互相平行【分析】设AB与DE相交于H,由∠3=∠4,根据内错角相等,两直线平行可证得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6,即可得∠BAF=∠6,根据同位角相等,两直线平行可得AB∥CD,根据平行线的性质可得∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断BF∥DE.【详解】BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.。
湘教版(2024)数学七年级上册第一学期期末学情评估(含答案)
第一学期期末学情评估一、选择题(每小题3分,共30分)题序12345678910答案1.若向东走2 m记为+2 m,则向西走3 m可记为( )A.+3 m B.+2 m C.-3 m D.-2 m 2.下面几何体中,为三棱锥的是( )3.下列说法错误的是( )A.两点之间,线段最短B.两点确定一条直线C.用圆规不能比较两个角的大小D.若AC+CB=AB,则点C在线段AB上4.下列各组数中,数值相等的是( )A.-|-2|与2 B.-33与(-3)3C.-3×23与-32×2 D.-(-3)2与-(-2)35.已知光速约为300 000 km/s,光经过t s(1≤t≤10)传播的距离用科学记数法表示为a×10n km,则n可能为( )A.5 B.6 C.5或6 D.5或6或7 6.若x=2是关于x的方程2x+3m-1=0 的解,则m=( )A.-1 B.0 C.1 D. 1 37.若|x|=7, |y|=5,且x+y<0,则x-y的值是( )A.-2 B.2 C.-12 D.-2或-128.已知2a7x-y b17与-13a2b2x+3y是同类项,则x和y的值分别为( )A.5和1 B.1和5 C.-1和5 D.-5和19.如图,长度为12 cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,MC ∶CB =1∶2,则线段 AC 的长度为( )(第9题)A .2 cmB .8 cmC .6 cmD .4 cm10.《九章算术》中的算筹图是竖排的,现在改为横排,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图①所示的算筹图用我们现在所熟悉的方程组形式表示出来,就是在图②所示的算筹图中有一个图形被墨水覆盖了,若图②所表示的方程组中x 的值为3,则被墨水所覆盖的图形为( )(第10题)A .B .C .D .二、填空题(每小题3分,共24分)11.-2xy 35的系数是__________.12.比较大小:-34________-45.(填“>”“<”或“=”)13.34.37°=________°________′________″.14.对于任意两个有理数a ,b ,规定a ⊗b =3a -b ,若(2x +3)⊗(3x -1)=4,则x的值为________.15.若x 2+3x -1=0,则2 022+2x 2+6x 的值为________.16.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码________g.(第16题)17.如图,OB是∠AOC的平分线,∠COD=13∠BOD,∠COD=17°,则∠AOD的度数是________.(第17题) (第18题)18.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕.若BD为∠A′BE的平分线,则∠CBD=________.三、解答题(共66分)19.(1)(4分)计算:-14-(-512)×411+(-2)3+|-32+1|.(2)(8分)解方程或解方程组:①2x+13-5x-16=1; ②320.(6分)先化简,再求值:-3(x2y-xy2+1)+12(6x2y-2xy2+4)-2的值,其中x=1,y=-1.21.(6分)某高校响应亚运会组委会号召,组织学生参加志愿者活动.第一批志愿者共26人,其中去乒乓球赛场的有10人,去羽毛球赛场的有16人.现再调10人去支援,使在羽毛球赛场的人数是在乒乓球赛场人数的2倍,问应分别调往两个赛场各多少人?22.(7分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上的数的和都相等.(第22题)【尝试】(1)求前4个台阶上的数的和是多少;(2)求第5个台阶上的数x是多少;【应用】(3)求从下到上前35个台阶上的数的和;【发现】(4)试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(8分)一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km): 第一次第二次第三次第四次x-12x x-52(9-x)(1)说出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?24.(8分)某学校复印社购进一批白色复印纸和彩色复印纸,若购进白色复印纸2箱,彩色复印纸3箱共需700元,若购进白色复印纸5箱,彩色复印纸2箱5共需760元.(1)求白色复印纸和彩色复印纸每箱各多少元;(2)该复印社计划整箱购进这两种复印纸,费用恰好为1 160元,问两种复印纸各购买几箱?25.(9分)已知数轴上A,B两点表示的数分别为a,b,记A,B两点之间的距离为AB,则AB=|a-b|.利用数形结合的思想回答下列问题:已知,数轴上A,B,C三点表示的数分别为-12,1,30.(1)直接写出AB,BC的值.(2)若点A,C同时出发,相向运动.点A以每秒2个单位长度的速度向右运动,点C以每秒6 个单位长度的速度向左运动,则①经过几秒后,点B恰好是线段AC的中点?②经过几秒后,点B恰好是线段AC的三等分点?726.(10分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB =90°,∠BOC =60°时,∠MON 的度数是多少?(2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系,并说明理由;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,请写出它们之间的数量关系并说明理由.(第26题)答案一、1.C 2.A 3.C 4.B 5.C 6.A 7.D 8.B 9.B10.C 点拨:根据题意,可知题图②中第一个方程是x+2y=11.已知x=3,代入即可解得y=4.第二个方程等号的左边是3x+y,将x=3,y=4代入,得3×3+4=13,所以被墨水所覆盖的图形为|||.故选C.二、11.-25 12.> 13.34;22;12 14.-215.2 024 16.250 17.85° 18. 90°三、19.解:(1)原式=-1-(-112)×411+(-8)+|-9+1|=-1-(-2)-8+|-8|=-1+2-8+8=1.(2)①去分母,得2(2x+1)-(5x-1)=6,去括号,得4x+2-5x+1=6,移项、合并同类项,得-x=3,系数化为1,得x=-3.②原方程可变形为{3x+2y=8,Ⅰ2x-y=3,ⅡⅡ×2+Ⅰ,得7x=14,解得x=2.把x=2代入方程Ⅱ,得2×2-y=3,解得y=1,因此,原二元一次方程组的解是{x=2,y=1.20.解:原式=-3x2y+3xy2-3+3x2y-xy2+2-2=2xy2-3.当x=1,y=-1时,原式=2×1×(-1)2-3=-1.21.解:设调往羽毛球赛场的有x人,则2[10+(10-x)]=16+x,解得x=8,所以10-x=10-8=2.答:调往羽毛球赛场的有8人,调往乒乓球赛场的有2人.22.解:(1)由题意得,前4个台阶上的数的和是-5+(-2)+1+9=3.(2)由题意得-2+1+9+x=3,解得x=-5,9则第5个台阶上的数x 是-5.(3)由题意知台阶上的数是每4个一循环,35÷4=8……3,所以3×8+(-5)+(-2)+1=18.即从下到上前35个台阶上的数的和为18.(4)数“1”所在的台阶数为4k -1.23.解:(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西.(2)x +(-12x )+(x -5)+2(9-x )=13-12x .因为9<x <26,所以13-12x >0,所以经过连续4次行驶后,这辆出租车所在的位置是向东(13-12x )km 处.(3)|x |+|-12x |+|x -5|+|2(9-x )|=92x -23,所以这辆出租车一共行驶了(92x -23)km 的路程.24.解:(1)设白色复印纸每箱x 元,彩色复印纸每箱y 元,由题意,得{2x +3y =700,5x +2y =760,解得{x =80,y =180.答:白色复印纸每箱80元,彩色复印纸每箱180元.(2)设购进白色复印纸m 箱,彩色复印纸n 箱.由题意,得80m +180n =1 160,所以m =58-9n 4.因为m ,n 都是正整数,所以58-9n 4也是正整数,当n =2时,m =10;当n =6时,m =1.答:购进白色复印纸和彩色复印纸分别为10箱、2箱或1箱、6箱.25.解:(1)AB =13,BC =29.(2)①设经过x s后,点B恰好是线段AC的中点,则|13-2x |=|29-6x|,解得x=4 或x=5.25.当x=5.25时,点A与点C重合,不符合题意.故x=4.答:经过4 s后,点B恰好是线段AC的中点.②设经过y s后,点B恰好是线段AC的三等分点,分两种情况:当AB=2BC时,13-2y=2(29-6y),解得y=4.5;当BC=2AB时,2(13-2y)=29-6y,解得y=1.5.答:经过4.5 s 或1.5 s 后,点B恰好是线段AC的三等分点.26.解:(1)因为∠AOB=90°,∠BOC=60°,所以∠AOC=90°+60°=150°.因为OM是∠AOC的平分线,ON是∠BOC的平分线,所以∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°,所以∠MON=∠MOC-∠NOC=45°.(2)∠MON=1 2α.理由:因为∠AOB=α,∠BOC=60°,所以∠AOC=α+60°.因为OM是∠AOC的平分线,ON是∠BOC的平分线,所以∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30°,所以∠MON=∠MOC-∠NOC=(12α+30°)-30°=12α.(3)∠MON=12α,与β的大小无关.理由:因为∠AOB=α,∠BOC=β,所以∠AOC=α+β.因为OM是∠AOC的平分线,ON是∠BOC的平分线,所以∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,所以∠MON=∠MOC-∠NOC=12(α+β)-12β=12α,即∠MON=12α.11。
湘教版七年级地理上册期末考试试卷版含答案
湘教版七年级地理上册期末考试试卷版含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个城市是湖南省的省会?A. 长沙B. 株洲C. 湘潭D. 岳阳2. 湖南省的气候类型属于?A. 热带季风气候B. 亚热带季风气候C. 温带季风气候D. 高原气候二、判断题(每题1分,共20分)31. 湖南省位于中国南部,东临江西,西接重庆,南界广东和广西,北靠湖北。
()32. 湘江是湖南省最长的河流。
()三、填空题(每空1分,共10分)41. 湖南省的简称是______,省会是______。
42. 湖南省的最高峰是______,位于______市。
四、简答题(每题10分,共10分)51. 简述湖南省的地理位置和气候特点。
52. 描述一下张家界的自然风光和旅游资源。
五、综合题(1和2两题7分,3和4两题8分,共30分)61. 请列举湖南省的三个主要河流,并简要介绍其中一个河流的特点。
62. 请说明湖南省的农业特点和主要农作物。
63. 描述湖南省的历史文化名人及其主要贡献。
64. 分析湖南省的经济发展现状和未来发展趋势。
答案:一、选择题1. A2. B二、判断题31. √ 32. √三、填空题41. 湘长沙 42. 武陵源张家界四、简答题51. 湖南省位于中国中南部,长江中游,东临江西,西接重庆,南界广东和广西,北靠湖北。
气候属于亚热带季风气候,四季分明,雨量充沛。
52. 张家界以其独特的石柱地貌而闻名,有着“扩大的盆景,缩小的仙境”之称。
主要景点有黄石寨、金鞭溪、袁家界等,是国内外知名的旅游胜地。
五、综合题61. 湖南省的三个主要河流是湘江、资水和沅江。
湘江是湖南省最长的河流,流经长沙、湘潭、株洲等城市,是湖南省的经济和文化中心。
62. 湖南省的农业以水稻种植为主,还有油菜、茶叶、柑橘等作物。
湖南的杂交水稻技术在全国乃至世界都有重要影响。
63. 湖南省的历史文化名人包括毛泽东、彭德怀、贺龙等。
湘教版七年级上册数学期末考试试卷及答案
湘教版七年级上册数学期末考试试题一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是34.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x-=+5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10v D .()510v +8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.10.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.15.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.16.已知13625'∠=︒,则∠1的补角是________.17.单项式12ab 的系数是____________;次数是_____________.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭19.解方程:2131163x x -+-=20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.25.某校开展了以“建功新时代”为主题的系列活动,举办了A 合唱,B 舞蹈,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?参考答案一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-【答案】C2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元【答案】B3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是3【答案】D4.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x -=+【答案】D5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥【答案】A6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个【答案】C7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10vD .()510v +【答案】B8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.【答案】410.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种【答案】B11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°【答案】C12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b【答案】A二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.【答案】615.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.【答案】1216.已知13625'∠=︒,则∠1的补角是________.【答案】143°35′17.单项式12ab 的系数是____________;次数是_____________.【答案】122.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭【答案】(1)4(2)419.解方程:2131163x x -+-=【答案】58x =20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.【答案】22,34mmn n +--【分析】根据单项式23m a b --与12n b a -是同类项,可得22m -=,11n -=,再将代数式化简,然后再代入,即可求解.【详解】解:∵单项式23m a b --与12n b a -是同类项,∴22m -=,11n -=,解得:0m =,2n =,()222222223323323m mn n n m mn n n m mn n --++=+-+=+-当0m =,2n =时,2230044m mn n +-=+-=-.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?【答案】(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【分析】(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.【答案】首先画一条射线,再用圆规再射线上依次截取线段AB=a ,BC=b ,CD=b ,再以D 为端点截取DE=c 即可得到AE=a+2b-c .【详解】如图所示:.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.【答案】自行车路段的长度为3000米,长跑路段的长度为2000米.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x-+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.【答案】(1)∠AOM =50°(2)∠AOM =2∠NOC ,见解析【分析】(1)解:(1)由题意得:∠MON=90°,∵∠BON=40°,∴∠MOB=∠MON+∠BON=130°.∴∠AOM=180°-∠MOB=50°;(2)∠AOM=2∠NOC,理由:由题意得:∠MON=90°,则:∠MOB=∠MON+∠NOB=90°+∠NOB.∵射线OC平分∠MOB,∴∠BOC=12∠MOB=45°+12∠BON,∴∠NOC=∠BOC-∠BON=45°-12∠BON=12(90°-∠BON).∵∠AOM+∠MON+∠BON=180°,∴∠AOM=180°-90°-∠BON=90°-∠BON,∴AOM=2∠NOC.25.某校开展了以“建功新时代”为主题的系列活动,举办了A合唱,B舞蹈,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?【答案】(1)200人(2)见解析,18°(3)1000人【分析】(1)解:本次调查的学生总人数是120÷60%=200(人)(2)解:选择C的有:200-120-52-8=20(人),补全的条形统计图如图所示;扇形统计图中“D”部分的圆心角度数是10200×360°=18°;(3)估计该校报名参加书法和演讲比赛的学生共有4000×1040200=1000(人).。
2023-2024学年湘教版数学七年级期末考试试题及解析培优卷1
2023-2024学年七年级上学期数学期末考试(湘教版)(培优卷一)学校:___________姓名:___________班级:___________考号:___________. . . .(本题3分)若,那么的取值可能是( .1或31或A .B 5.(本题3分)如图,数轴上点置是( )ab a b a b ++3-1-3-68A .数学小组随机调查了本校40人B .捐助50元所对应的扇形的圆心角是C .爱心捐助20元的人最少D .爱心捐助30元的人数占一半评卷人得分二、填空题(共24分)11.(本题3分)已知,A 、在数轴上对应的数分别用、表示,且,是数轴上的一个动点.动点从原点开始第一次向右移动B a b 2(150)100+++=ab b P P化简:17.(本题3分)如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是动的人数占总人数的 %.18.(本题3分)2a a b a b ++--=记表示第m 行第n 个数,如表示第2行第(1) ______;(2)若,推理______;______;mn P 23P 43P =2021mn P =m =n =(1)如图①,点C 为线段上的一点,点D ,E 分别是和求的长;(1)射线的方向是 ;(2)求的度数;(3)若射线平分,求AB AC DE OC COD ∠OE COD ∠25.(本题12分)为了改善民生,促进经济发展,提高农民收入,县政府有序推进“流动菜市”政策.某村委会志愿者随机抽取部分村民,按照A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”四个类别调查他们对该政策态度的情况,将调查结果绘制成如图两幅均不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名村民进行调查统计,扇形统计图中D类所对应的扇形圆心角的大小是______度.(2)将条形统计图和扇形统计图补充完整.(3)该村共有1200名村民,估计该村村民支持“流动菜市”政策的大约有多少人?参考答案:【详解】1所示:平分平分,所示:∵平分70,30,BOC OM =︒∠=︒,AOB ON ∠BOC ∠1122BOM BON AOB BOC =∠+∠=∠+∠(1702=⨯︒+70,30,AOB BOC OM ∠=︒∠=︒,AOB ON ∠=60°÷360°=,=×2=,﹣﹣﹣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版七年级期末测评
选择题:扎实的基础知识和娴熟的基本技能是能力提升的前提条件。
拿起笔来,用你的火
眼金睛选出最中意的一个,1、位于东十二区的轮船于2010年5月4日上午10时向东驶入西十二区,这时船上的时间可能是A.5月4日10时B.5月5日10时C.5月3日10时D.5月4日11时
2、人类是世界的创造者,没有人类就没有现在这样多姿多彩的世界,然而世界人口分布是不平衡的,你知道现在什么地方人最多吗?如果从大洲和国家来看分别是(
A.亚洲、印度B拉丁美洲、俄罗斯C.亚洲、中国D.非洲、中国
3、下列关于非洲的描述错误的是(
A气候普遍炎热,被称为“热带大陆”
B.地形以高原为主,被称为“高原大陆”
C降水量分布不均匀,是世界上干旱面积最大的洲
D.资源贫乏,经济发展水平低,人口增张缓慢。
4、“冬无严寒,夏无酷暑,降水均匀”的气候类型最典型的地区是(
A.欧洲西部
B.亚洲南部
C.亚欧大陆中部
D. 欧洲南部
5、小亮认识了来自非洲的黑人小朋友杰米,杰米告诉小亮许多地形名称,小张很仔细地在
地图上查找,属于“黑非洲”的是噶尼喀湖②东非大裂谷③波斯湾④乞力马扎罗山
A.①②③
B.②③④
C.①②④
D.①②
6、下列地理事物,属于大地形区分界线的是A.尼罗河B.安第斯山C.密西西比河D.乌拉尔山
7、有关河流和湖泊的“世界之最”,正确的是A.最深的湖泊是贝加尔湖,最大的湖泊是咸海B.最大的湖泊是里海,最咸的湖泊是死海C.径流量最大的河流是刚果河,长度最长的是尼罗河D.水能最丰富的河流是亚马孙河,流域面积最大的河流是长江
8、美国的地形与下列哪个国家相似,都分为西、中、东三部分A.澳大利亚B.俄罗斯C.印度D.日本
9、下面是四位同学对印度和日本的理解,你认为正确的是(
A.小红:日本和印度都是两个人口众多的国家
B.小鹏:日本和印度都是发展中国家
C.小刚:印度和日本都是东亚国家
D.小青:印度和日本都是安理会常任理事国
10、关于东南亚物产与与主要产出国家对应正确的是A.马来西亚、铁矿石B.印度尼西亚、石油C.菲律宾、椰枣D.越南、锡
11从莫斯科回来的小明,在描述其次见闻时,有一句话是在撒谎,请找出是下列哪一句
A我在歌剧院看到了正宗的芭蕾舞艺术B我参观了世界藏书最多的图书馆C莫斯科工业区是俄罗斯工业最发达的地区D我看到了著名的红场、克里姆林宫、泰姬陵
12、“我是南极的主人,我有流线型的躯体,人家说我像身穿白衬衫,
黑燕尾服的绅士。
我经常站立,所以,前肢已经退化成游泳的鳍状肢。
为了抵御严寒,我皮肤下有厚厚的脂肪层。
材料中的“我”是(
A.北极熊
B.袋鼠
C.大象
D.企鹅
13、下列关于美洲的叙述正确的是(
A.北美洲大部分地区通行拉丁语
B.南美洲是世界上最湿润的大洲
C.南美洲经济发展水平高,大多数是发达国家
D.南、北美洲气候上完全相同
14、到欧洲西部旅游,错误的观光组合是。