多模光纤的带宽

多模光纤的带宽
多模光纤的带宽

目前许多光缆产品的参数中,往往光纤宽带这一名词使用MHz.km为单位。理论上,光缆的带宽可以做到无穷大,为什么还要有光纤带宽一说呢?单位不是常见的MHz而是MHz与长度km的乘积?

光纤接入作为一种传输的载体,其本身具有高带宽、低重量、长距离的优点但是光纤的主要材料是二氧化硅,和常见的玻璃是同一种材料,和真空相比,不同的波长、经过不同的传输路径,到达接收端时肯定会有时间差,这个时间差带来的影响就是色散,雨后的彩虹也是同样的道理。多模光纤与单模光纤相比,具有较粗的纤芯直径,意味着光信号的传输途径较多,带来的结果便是严重的模式色散,多模光纤的光发射器光波长较宽,色散比较严重,因此传输距离较近。单模光纤的纤芯直径较小,光信号的传输途径很少,模式色散较小,激光发射器的光纯度较高,因此传输距离较远。考虑到多模光缆的传输距离和光发射器、插接件等光纤附件的低成本因素,在智能建筑的室内和短距离的室外应用中,多模光缆占据很大的比例。

光源所出射的能量耦合进入多模光纤的过程被成为光注入方式。一般有满注入和限模注入两种方式。当使用LED光源时是满注入的,即光源出射光斑大小和多模光纤的纤芯大小是匹配的,这时脉冲在光纤内传输时将完全激发多模光纤的传导模式,能量集中于中间模式群,高阶模式群和低阶模式群的影响很小。而限模注入时,由于入射光斑只覆盖了部分纤芯,当其传导时,也只是激发了部分传导模式群。当

入射光斑在纤芯的不同位置时,所激发的模式群也不同,导致模间色散的差别而使得传输光纤的带宽性能变化。因此爱达讯布线工程师认为在限模注入时,必须确定入射的位置和角度,否则光纤支持的传输距离将发生变化。

光线的带宽是一段光纤所能通过的最大调制频率脉冲的调制频率和光纤长度的乘积,是一个表征多模光纤光学特性的综合指标,比如普通光缆的光发射器一般都是LED(发光二极管),要求光缆在850nm 的至少要达到200MHz的带宽,OM3光缆的光发射器为VCSEL(垂直腔面发射激光器),要求光缆在850nm时要达到2000MHz。受到诸多因素的影响,如光源,耦合方式,波导结构,以及接收器性能等撇开其他的影响因素,对光纤本身而言,决定其带宽的本身因素是多模光纤的色散特性。考虑到单模光纤内光传输途径很少,模间色散较小,甚至可以忽略不计,与之相配的LD光发射器的激光色散较小,因此光纤的带宽目前仅限为多模光纤,单模光纤的传输带宽可以理解为是无限的,但是其本身对于插接件要求高,因此单模光缆一般作为长距离的通信的选择。

视频监控行业常用标准带宽计算

1、首先计算 720P(1280×720)单幅图像照片的数据量 每像素用24比特表示,则: 720P图像照片的原始数据量= 1280×720×24/8/1024=2700 KByte 2、计算视频会议活动图像的数据量 国内PAL活动图像是每秒传输25帧。数字动态图像是由I帧/B帧/P帧构成。 其中I帧是参考帧:可以认为是一副真实的图像照片。B帧和P帧可简单理解为预测帧,主要是图像的增量变化数据,数据量一般较小。 极限情况下,25帧均为I帧,即每帧传输的图像完全不同。则: 720P活动图像的每秒传输的极限数据量= 2700 KByte×25 = 67500 KByte/s 转换成网络传输Bit流= 67500×8 = 540000 Kbit/s,即528M的带宽。 在实际视频会议应用中,由于有固定场景,因此以传输增量数据为主(传输以B帧和P帧为主),一般在10%-40% 之间,40%为变化较多的会议场景。计算如下: 增量数据在10%的情况下, 原始数据量= 2700 KByte×10%×24 + 2700 KByte =9180 KByte/s = 72 Mbit/s 增量数据在20%的情况下, 原始数据量= 2700 KByte×20%×24+ 2700 KByte =15660 KByte/s = 123 Mbit/s 增量数据在40%的情况下, 原始数据量= 2700 KByte×40%×24+ 2700 KByte =28620 KByte/s = 224 Mbit/s 3、H.264压缩比 H.264最大的优势是具有很高的数据压缩比率,在同等图像质量的条件下,H.264的压缩比是MPEG-2的2倍以上,是MPEG-4的1.5~2倍。举个例子,原始文件为88GB,采用MPEG-2压缩后为3.5GB,压缩比为25∶1,而采用H.264压缩后为1.1GB,从88GB到1.1GB,H.264的压缩比达到惊人的80∶1。 4、采用H.264压缩后的净荷数据量 视频会议中都对原始码流进行编解码压缩。采用H.264,压缩比取80:1。计算如下:在10%的情况下,压缩后的净荷数据量= 72/80 = 0.9 Mbit/s 在20%的情况下,压缩后的净荷数据量= 123/80 = 1.6 Mbit/s 在40%的情况下,压缩后的净荷数据量= 224/80 = 2.8 Mbit/s 5、采用H.264压缩后的传输数据量 加上网络开销,传输数据量= 净荷数据量* 1.3 在10%的情况下,压缩后的传输数据量= 0.9 * 1.3 = 1.17 Mbit/s 在20%的情况下,压缩后的传输数据量= 1.6 * 1.3 = 2.08 Mbit/s 在40%的情况下,压缩后的传输数据量= 2.8 * 1.3 = 3.64 Mbit/s 6、厂商情况 部分厂商宣传的1M 720P超高清应用,有诸多使用限制。 如宝利通在其《HDX管理员指南》P56中明确指出:“在将视频质量设置为“清晰度”

单模和多模光纤的特点

单模和多模光纤的特点和应用 一、光纤结构和类型 (一)光纤的结构 光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。) 纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。 包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。 1. 纤芯 位置: 位于光纤的中心部位, 直径:在4~50μm,单模光纤的纤芯直径为4~10μm ,多模光纤的纤芯直径为50μm。纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。 2. 包层 位置: 位于纤芯的周围 直径:125μm 成分:是含有极少量掺杂剂的高纯度二氧化硅。 掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。 3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。 一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料; 缓冲层:一般为性能良好的填充油膏; 二次涂覆层:一般多用聚丙烯或尼龙等高聚物。 涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。 4. 光纤最重要的两个传输特性 损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。 (l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。 吸收损耗是因为光波在传输中有部分光能转化为热能; 散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。 当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。 (2)光纤传输色散:色散是光脉冲信号在光纤中传输,到达输出端时发生的时间上的展宽。产生的原因是光脉冲信号的不同频率成分、不同模式,在传输时因速度不同,到达终点所用的时间不同而引起的波形畸变。 色散结果:这种畸变使得通信质量下降,从而限制了通信容量和传输距离。 二、光纤通信的工作窗口 光纤损耗系数随着波长而变化,为获得低损耗特性,光纤通信选用波长范围在800 ~1800nm,

视频传输带宽换算

视频监控存储空间大小与传输带宽计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下 面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心); 监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为 1.5Mbps,10路摄像机所需的数据传输带宽为:

监控系统带宽如何计算

监控系统带宽计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以先容。# K) }- m- p+ j6 r2 Q) L 2 n) m8 V: F9 s( K+ U/ O 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 l1 R5 ]7 Y& N7 e. S! y3 s 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 ( j1 u3 _8 m+ y1 c# D' A 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。2 d1 M0 {, W- Y! |. |1 m/ _% H5 s + f5 {$ ~1 F" R D3 G* Y" w( _ 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。' f2 w5 m: ~' v6 v' J# x4 G ) H7 p4 ^' w1 ]" }; ]3 w& ~/ O" J6 c 不同的格式的比特率和码流的大小定义表: ) f) c) ^) @. g b( R 传输带宽计算: 1 c# T( g3 H7 g( O 2 m2 v 比特率大小×摄像机的路数=网络带宽至少大小; , f# r, I( w4 n, F/ e- S- ~+ y$ Y 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。2 {. H% i( L3 T# [5 y2 v 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下:9 `2 v7 c. p2 k6 E% V % @, f' ^/ |4 [6 k0 A 地方监控点:) X5 g) _0 _- N - _, ~$ x. l( b/ ~& g1 B: } CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: `# o2 H6 u9 v7 n* T+ I0 |* D8 I

多模光纤

多模光纤 多模光纤 多模光纤容许不同模式的光于一根光纤上传输,由于多模光纤的芯径较大,故可使用较为廉价的耦合器及接线器,多模光纤的纤芯直径为50μm至100μm。 目录 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场 2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场

2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 基本上有两种多模光纤,一种是梯度型(graded)另一种是阶跃型(stepped),对于梯度型(graded)光纤来说,芯的折射率(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的模式色散,而对阶跃型(Stepped Index)光缆来说,折射率基本上是平均不变,而只有在包层(cladding)表面上才会突然降低。阶跃型(stepped)光纤一般较梯度型(graded)光纤的带宽低。在网络应用上,最受欢迎的多模光纤为62.5/125,62.5/125意指光纤芯径为62.5μm而包层(cladding)直径为125μm,其他较为普通的为50/125及100/140。 对比 相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及 100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS 千兆网中,多模光纤最高可支持550米的传输距离,在10Gps万兆网中,多模光纤最高可支持100米以内的传输距离。

视频监控行业常用标准带宽计算

1、首先计算720P(1280×720)单幅图像照片的数据量 每像素用24比特表示,则: 720P图像照片的原始数据量= 1280×720×24/8/1024=2700 KByte 2、计算视频会议活动图像的数据量 国内PAL活动图像是每秒传输25帧。数字动态图像是由I帧/B帧/P帧构成。 其中I帧是参考帧:可以认为是一副真实的图像照片。B帧和P帧可简单理解为预测帧,主要是图像的增量变化数据,数据量一般较小。 极限情况下,25帧均为I帧,即每帧传输的图像完全不同。则: 720P活动图像的每秒传输的极限数据量= 2700 KByte×25 = 67500 KByte/s 转换成网络传输Bit流= 67500×8 = 540000 Kbit/s,即528M的带宽。 在实际视频会议应用中,由于有固定场景,因此以传输增量数据为主(传输以B帧和P 帧为主),一般在10%-40% 之间,40%为变化较多的会议场景。计算如下: 增量数据在10%的情况下, 原始数据量= 2700 KByte×10%×24 + 2700 KByte =9180 KByte/s = 72 Mbit/s 增量数据在20%的情况下, 原始数据量= 2700 KByte×20%×24 + 2700 KByte =15660 KByte/s = 123 Mbit/s 增量数据在40%的情况下, 原始数据量= 2700 KByte×40%×24 + 2700 KByte =28620 KByte/s = 224 Mbit/s 3、H.264压缩比 H.264最大的优势是具有很高的数据压缩比率,在同等图像质量的条件下,H.264的压缩比是MPEG-2的2倍以上,是MPEG-4的1.5~2倍。举个例子,原始文件为88GB,采用MPEG-2压缩后为3.5GB,压缩比为25∶1,而采用H.264压缩后为1.1GB,从88GB到1.1GB,H.264的压缩比达到惊人的80∶1。 4、采用H.264压缩后的净荷数据量 视频会议中都对原始码流进行编解码压缩。采用H.264,压缩比取80:1。计算如下:在10%的情况下,压缩后的净荷数据量= 72/80 = 0.9 Mbit/s 在20%的情况下,压缩后的净荷数据量= 123/80 = 1.6 Mbit/s 在40%的情况下,压缩后的净荷数据量= 224/80 = 2.8 Mbit/s 5、采用H.264压缩后的传输数据量 加上网络开销,传输数据量= 净荷数据量* 1.3 在10%的情况下,压缩后的传输数据量= 0.9 * 1.3 = 1.17 Mbit/s 在20%的情况下,压缩后的传输数据量= 1.6 * 1.3 = 2.08 Mbit/s 在40%的情况下,压缩后的传输数据量= 2.8 * 1.3 = 3.64 Mbit/s 6、厂商情况 部分厂商宣传的1M 720P超高清应用,有诸多使用限制。 如宝利通在其《HDX管理员指南》P56中明确指出:“在将视频质量设置为“清晰度”时,系

传输带宽计算方法

比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比 特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s

例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1 个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps, 10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)X 10(摄像机的路 数)?5120Kbps=5Mbps上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为,即每路摄像头所需的数据传输带宽为,10路摄像机所需的数据传输带宽为: (视频格式的比特率)X 10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps即每路摄像头所需的数据传输带宽为2Mbps 10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)X 10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 像头所需的数据传输带宽为4Mbps 10路摄像机所需的数据传输带宽为:

监控存计算公式

视频监控存储空间计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。比特率是指每秒传送的比特(bit)数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则 情况刚好相反。码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小×摄像机的路数=网络带宽至少大小; 注:监 控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监 控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄 像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下:地方监控点:CIF 视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽 为512Kbps,10路摄像机所需的数据传输带宽为:512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频 格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像 头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为 2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为:2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为:4Mbps(视频格式的比特率)×10(摄像机的路数)=40Mbps(上行带宽) 即:采用1080P的视频格式各地方监控所需的网络上行带宽至少为40Mbps;监控中心:

视频监控行业常用标准带宽计算

1、首先计算720P(1280×720)单幅图像照片的数据量 每像素用24比特表示,则: 720P图像照片的原始数据量= 1280×720×24/8/1024=2700 KByte 2、计算视频会议活动图像的数据量 国内PAL活动图像就是每秒传输25帧。数字动态图像就是由I帧/B帧/P帧构成。 其中I帧就是参考帧:可以认为就是一副真实的图像照片。B帧与P帧可简单理解为预测帧,主要就是图像的增量变化数据,数据量一般较小。 极限情况下,25帧均为I帧,即每帧传输的图像完全不同。则: 720P活动图像的每秒传输的极限数据量= 2700 KByte×25 = 67500 KByte/s 转换成网络传输Bit流= 67500×8 = 540000 Kbit/s,即528M的带宽。 在实际视频会议应用中,由于有固定场景,因此以传输增量数据为主(传输以B帧与P 帧为主),一般在10%-40% 之间,40%为变化较多的会议场景。计算如下: 增量数据在10%的情况下, 原始数据量= 2700 KByte×10%×24 + 2700 KByte =9180 KByte/s = 72 Mbit/s 增量数据在20%的情况下, 原始数据量= 2700 KByte×20%×24+ 2700 KByte =15660 KByte/s = 123 Mbit/s 增量数据在40%的情况下, 原始数据量= 2700 KByte×40%×24+ 2700 KByte =28620 KByte/s = 224 Mbit/s 3、H、264压缩比 H、264最大的优势就是具有很高的数据压缩比率,在同等图像质量的条件下,H、264的压缩比就是MPEG-2的2倍以上,就是MPEG-4的1、5~2倍。举个例子,原始文件为88GB,采用 MPEG-2压缩后为3、5GB,压缩比为25∶1,而采用H、264压缩后为1、1GB,从88GB到1、1GB, H、264的压缩比达到惊人的80∶1。 4、采用H、264压缩后的净荷数据量 视频会议中都对原始码流进行编解码压缩。采用H、264,压缩比取80:1。计算如下:在10%的情况下,压缩后的净荷数据量= 72/80 = 0、9 Mbit/s 在20%的情况下,压缩后的净荷数据量= 123/80 = 1、6 Mbit/s 在40%的情况下,压缩后的净荷数据量= 224/80 = 2、8 Mbit/s 5、采用H、264压缩后的传输数据量 加上网络开销,传输数据量= 净荷数据量* 1、3 在10%的情况下,压缩后的传输数据量= 0、9 * 1、3 = 1、17 Mbit/s 在20%的情况下,压缩后的传输数据量= 1、6 * 1、3 = 2、08 Mbit/s 在40%的情况下,压缩后的传输数据量= 2、8 * 1、3 = 3、64 Mbit/s 6、厂商情况 部分厂商宣传的1M 720P超高清应用,有诸多使用限制。 如宝利通在其《HDX管理员指南》P56中明确指出:“在将视频质量设置为“清晰度”时,系统将以1Mbps或更高速率发送HD视频。在将视频质量设置为“动作”时,系统将以2Mbps或更高速率发送HD视频。” 宝利通对于“清晰度”与“动作”的定义: ? 清晰度-图像将会很清晰,但在低呼叫速率下有中到大量动作时,可能导致丢失某些帧。清晰度只能用于点对点H、263与H、264 呼叫。 ? 动作-该设置用来显示人物或其它带有动作的视频。

单模和多模光纤的特点和应用

单模和多模光纤的特点和应用 一、光纤结构 光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。)纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。 1. 纤芯 位置: 位于光纤的中心部位, 直径:在4-50μm,单模光纤的纤芯直径为4-10μm ,多模光纤的纤芯直径为50μm。 纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。 2. 包层 位置: 位于纤芯的周围 直径:125μm 成分:是含有极少量掺杂剂的高纯度二氧化硅。 掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。 3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。 一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料; 缓冲层:一般为性能良好的填充油膏; 二次涂覆层:一般多用聚丙烯或尼龙等高聚物。 涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。 4. 光纤最重要的两个传输特性 损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。 (l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。吸收损耗是因为光波在传输中有部分光能转化为热能;散射损耗是因

第三章 单模光纤传输特性及光纤中非线性效应培训资料

第三章单模光纤传输特性及光纤中非线 性效应

第三章 单模光纤的传输特性及光纤中的非线性效应 3.1.2 单模工作模特性及光功率分布 (3) 3.1.3单模光纤中LP 01模的高斯近似 (4) 3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (5) 3.2.1双折射概念 (5) 3.2.2 偏振模色散概念 (6) 3.2.3 单模光纤中偏振状态的演化 (7) 3.2.4 单模单偏振光纤 (8) 3.3单模光纤色散 (9) 3.3.1 色散概述 (9) 3.3.2 单模光纤的色散系数 (10) 3.4 单模光纤中的非线性效应 (12) 3.4.1 受激拉曼散射(SRS ) (12) 3.4.2 受激布里渊散射(SBS ) (14) 3.5 非线性折射率及相关非线性现象 (15) 3.5.1 光纤的非线性折射率 (15) 3.5.2 与非线性折射率有关的非线性现象 (16) 3.5.3 自相位调制 (17) 第三章 单模光纤的传输特性及光纤中的非线性效应 3.1 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃 型光纤只传播HE 11模(或LP 01)的光纤。 由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤 要小的多,因而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的 采用单模光纤作为传输介质。由于单模光纤已经成为光纤通信系统中最主要的 传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。单模光纤 的纤芯折射率分布可以是均匀的,也可以是渐变的。 3.1.1 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化 截止频率为2.405。单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及 其它高次模都被截止,这就意味着归一化工作频率应满足条件:0

(完整版)视频监控存储空间大小和传输带宽计算.doc

视频监控存储空间大小和传输带宽计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特 (bit) 数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码 (压缩 )后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二 进制里面最小的单位,要么是 0,要么是 1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大 ;如果比特率越少则情况刚好相反。 码流 (DataRate) 是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的 数据传输速率,比如用 FTP 上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数 据传输速率,比如从FTP 服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算:

比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心); 监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps 的 ADSL 宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20 路 )1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF 视频格式每路摄像头的比特率为 512Kbps,即每路摄像头所需的数据传输带宽为 512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps( 视频格式的比特率) ×10(摄像机的路数 ) ≈ 5120Kbps=5Mbps(上行带宽 ) 即:采用CIF 视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1 视频格式每路摄像头的比特率为 1.5Mbps ,即每路摄像头所需的数据传输带宽为 1.5Mbps, 10路摄像机所需的数据传输带宽为: 1.5Mbps( 视频格式的比特率) ×10(摄像机的路数 )=15Mbps( 上行带宽 ) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素 )的视频格式每路摄像头的比特率为 2Mbps ,即每路摄像头所需的数据 传输带宽为 2Mbps ,10路摄像机所需的数据传输带宽为:

监控带宽计算方法

视频监控存储空间大小计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下 面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心); 监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1(4CIF)视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输 带宽为1.5Mbps,10路摄像机所需的数据传输带宽为:

光纤特性及传输试验

光纤特性及传输实验 在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。 与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信息社会。 实验目的 1.了解光纤通信的原理及基本特性。 2.测量半导体激光器的伏安特性,电光转换特性。 3.测量光电二极管的伏安特性。 4.基带(幅度)调制传输实验。 5.频率调制传输实验。 6.音频信号传输实验。 7.数字信号传输实验。 实验原理 1.光纤 光纤是由纤芯、包层、防护层组成的同心圆柱体,横Array截面如图1所示。纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤;若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。若纤芯直径小于 10μm,只有一种模式的光波能在光纤中传播,称为单模光纤。若纤芯直径50μm左右,有多个模式的光波能在光纤中传播,称为多模光纤。防护层由缓冲涂层、加强材料涂覆层及套塑层组成。通常将若干根光纤与其它保护材料组合起来构成光缆,便于工程上敷设和使用。 光纤与光纤之间固定连接时,用光纤熔接机进行熔接。光纤与光纤之间可拆卸(活动)连接,使用光纤连接器。光纤连接器把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去。各种光纤连接器结构大同小异,比较常见的有FC、SC、LC、ST等。一端装有连接器插头的光纤称为尾纤,两端都装上连接器插头的光纤称为光纤跳线。 光在光纤中传输时,由于材料的散射、吸收,使光信号衰减,当信号衰减到一定程度时,就必 需对信号进行整形放大处理,再进行传输,才能保证信号在传输过程中不失真,这段传输的距离叫

Linux服务器上监控网络带宽的18个常用命令

Linux服务器上监控网络带宽的18个常用命令本文介绍了一些可以用来监控网络使用情况的Linux命令行工具。这些工具可以监控通过网络接口传输的数据,并测量目前哪些数据所传输的速度。入站流量和出站流量分开来显示。 一些命令可以显示单个进程所使用的带宽。这样一来,用户很容易发现过度使用网络带宽的某个进程。 这些工具使用不同的机制来制作流量报告。nload等一些工具可以读取"proc/net/dev"文件,以获得流量统计信息;而一些工具使用pcap库来捕获所有数据包,然后计算总数据量,从而估计流量负载。 下面是按功能划分的命令名称。 ?监控总体带宽使用――nload、bmon、slurm、bwm-ng、cbm、speedometer和netload ?监控总体带宽使用(批量式输出)――vnstat、ifstat、dstat和collectl ?每个套接字连接的带宽使用――iftop、iptraf、tcptrack、pktstat、netwatch和trafshow ?每个进程的带宽使用――nethogs 1. nload nload是一个命令行工具,让用户可以分开来监控入站流量和出站流量。它还可以绘制图表以显示入站流量和出站流量,视图比例可以调整。用起来很简单,不支持许多选项。

所以,如果你只需要快速查看总带宽使用情况,无需每个进程的详细情况,那么nload 用起来很方便。 1.$ nload 安装nload:Fedora和Ubuntu在默认软件库里面就有nload。CentOS用户则需要从Epel 软件库获得nload。 1.# fedora或centos 2.$ yum install nload -y 3.# ubuntu/debian 4.$ sudo apt-get install nload 2. iftop iftop可测量通过每一个套接字连接传输的数据;它采用的工作方式有别于nload。iftop使用pcap库来捕获进出网络适配器的数据包,然后汇总数据包大小和数量,搞清楚总的带宽使用情况。 虽然iftop报告每个连接所使用的带宽,但它无法报告参与某个套按字连接的进程名称/编号(ID)。不过由于基于pcap库,iftop能够过滤流量,并报告由过滤器指定的所选定主机连接的带宽使用情况。 1.$ sudo iftop -n n选项可以防止iftop将IP地址解析成主机名,解析本身就会带来额外的网络流量。

单模光纤传输特性及光纤中非线性效应

第三章 单模光纤的传输特性及光纤中的非线性效应 单模工作模特性及光功率分布 .............................. 错误!未定义书签。 单模光纤中LP 01模的高斯近似 ............................... 错误!未定义书签。 单模光纤的双折射(单模光纤中的偏振态传输特性) .............. 错误!未定义书签。 双折射概念 ............................................... 错误!未定义书签。 偏振模色散概念 .......................................... 错误!未定义书签。 单模光纤中偏振状态的演化 ................................ 错误!未定义书签。 单模单偏振光纤 .......................................... 错误!未定义书签。 单模光纤色散 ................................................. 错误!未定义书签。 色散概述 ................................................ 错误!未定义书签。 单模光纤的色散系数 ...................................... 错误!未定义书签。 单模光纤中的非线性效应 ...................................... 错误!未定义书签。 受激拉曼散射(SRS ) ..................................... 错误!未定义书签。 受激布里渊散射(SBS ) ................................... 错误!未定义书签。 非线性折射率及相关非线性现象 ................................ 错误!未定义书签。 光纤的非线性折射率 ...................................... 错误!未定义书签。 与非线性折射率有关的非线性现象 .......................... 错误!未定义书签。 自相位调制 .............................................. 错误!未定义书签。 第三章 单模光纤的传输特性及光纤中的非线性效应 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃型光纤只传播 HE 11模(或LP 01)的光纤。 由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因 而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的采用单模光纤作为传输介 质。由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握 其传输特性就显得尤为重要。单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为。 单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味 着归一化工作频率应满足条件:0

相关文档
最新文档