2016-2017学年山东省济南市长清区八年级(上)期末数学试卷

合集下载

山东省济南市八年级上学期数学期末考试试卷

山东省济南市八年级上学期数学期末考试试卷

山东省济南市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·浦城期中) 下列说法中,正确是()A . 16的算术平方根是﹣4B . 25的平方根是5C . ﹣27的立方根是﹣3D . 1的立方根是±12. (2分)下列各组数中,能构成直角三角形的一组是()A . 2,2,B . 1,,2C . 4,5,6D . 6,8,123. (2分) (2019八上·金堂期中) 在平面直角坐标系中,点P(-2,-3)关于x轴对称的点的坐标是()A . (-2,3)B . (3,-2)C . (-2,-3)D . (2,3)4. (2分)如图,△APB与△CDP均为等边三角形,且PA⊥PD,PA=PD.有下列三个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有()A . 0个B . 1个C . 2个D . 3个5. (2分)(2020·岳阳) 下列命题是真命题的是()A . 一个角的补角一定大于这个角B . 平行于同一条直线的两条直线平行C . 等边三角形是中心对称图形D . 旋转改变图形的形状和大小6. (2分)下面有4个正整数的集合:(1)1~97中3的倍数;(2)1~97中4的倍数;(3)1~97中5的倍数;(4)l~97中6的倍数.其中平均数最大的集合是()A . (1)B . (2)C . (3)D . (4)7. (2分)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是()A . y≥﹣7B . y≥9C . y>9D . y≤98. (2分)(2019·常德) 下列运算正确的是()A .B .C .D .9. (2分)(2018·覃塘模拟) 在–1,1,2这三个数中任意抽取两个数,,则一次函数的图象不经过第二象限的概率为()A .B .C .D .10. (2分) (2019九上·孝义期中) 《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019九下·东台月考) 甲、乙、丙三台机床生产直径为的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽取了 20 个,测量其直径,进行数据处理后,发现三组数据的平均数都是,它们的方差依次为,,,根据以上提供的信息,你认为生产螺丝的质量最好的是________机床.12. (1分) (2017八上·辽阳期中) 当m=________时,函数y=(2m-1)X 是正比例函数。

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.(4分)下列说法正确的是()A.﹣3是﹣9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是﹣23.(4分)下列从左到右的变形属于因式分解的是()A.2a(a+1)=2a2+2a B.a2﹣6a+9=a(a﹣6)+9C.a2+3a+2=(a+1)(a+2)D.a2﹣1=a(a﹣)4.(4分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()5.(4分)分式,,﹣的最简公分母为()A.2xy2B.5xy C.10xy2D.10x2y26.(4分)下列二次根式中,最简二次根式是()A.B.C.D.7.(4分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,808.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3249.(4分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°10.(4分)如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60°,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60°;③∠ADE=∠BDC;④∠AED=∠ABD,其中正确结论的序号是()A.①②B.①③C.②③D.①②④11.(4分)将一组数,2,,2,,…,2,按下列方式进行排列:①,2,,2,②2,,4,3,2…若的位置记为(1,3),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)12.(4分)如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)计算:()3=.14.(4分)将多项式x2﹣2在实数范围内分解因式的结果为.15.(4分)如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=°.16.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.17.(4分)已知a,b是两个连续整数,且a<﹣1<b,则a b=.18.(4分)把两块同样大小的含45°角的三角尺按如图所示的方式放置,其中一块三角尺的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B、C、D在同一直线上,若AB=3,则CD=.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.(6分)计算:(1)+(2﹣)0;(2)﹣3﹣20.(6分)解分式方程:=2﹣.21.(6分)分解因式:(a2+1)2﹣4a2.22.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?23.(8分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(Ⅰ)求∠ODC的度数;(Ⅱ)若OB=2,OC=3,求AO的长.26.(12分)常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2一16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.27.(12分)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC 绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B=.(2)(问题解决)如图2,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;(3)(灵活运用)如图3,在正方形ABCD内有一点P,且P A=,BP=,PC=1,求∠BPC的度数.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.2.【解答】解:A.﹣9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是﹣2,此选项正确;故选:D.3.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.4.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.5.【解答】解:分式,,﹣的最简公分母为10xy2,故选:C.6.【解答】解:A、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.7.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.8.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.9.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.10.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=∠ACB=60°,∠AEB=∠BDC∵将△BCD绕着点B逆时针旋转60°,得到△BAE,∴BE=BD,∠DBE=60°,∠EAB=∠ACB=60°∴∠EAB=∠ABC=60°,△BED是等边三角形∴AE∥BC∵△BED是等边三角形∴∠DEB=60°故①②正确∵∠AEB=∠BDC,∠AEB=∠AED+∠BED,∠BDC=∠BAC+∠ABD∴∠AED=∠ABD故④正确∵∠BDC>60°,∠ADE<60°∴∠BDC≠∠ADE故③错误.故选:D.11.【解答】解:这组数据可表示为:①,,,,,②,,,,;…∵19×2=38,∴19÷5=3…4,∴为第4行,第4个数字.故选:B.12.【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠CBH+∠∠ABM+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.【解答】解:()3=﹣.故答案为:﹣.14.【解答】解:x2﹣2=,故答案为:,15.【解答】解:由题意可得:m∥n,则∠CAD+∠1=180°,可得:∠3=∠4,故∠4+∠CAD=∠2,则∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.16.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.17.【解答】解:∵3<<4,∴2<﹣1<3,∴a=2,b=3,∴a b=23=8,故答案为:8.18.【解答】解:过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=6,BF=AF=FC=AB=3,∵两个同样大小的含45°角的三角尺,∴AD=BC=6,在Rt△ADF中,根据勾股定理得,DF==3,∴CD=DF﹣FC=3﹣3,故答案为:3﹣3.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.【解答】解:(1)+(2﹣)0=3+1=4;(2)﹣3﹣=4﹣3×﹣=.20.【解答】解:去分母得:y﹣2=2y﹣6+1,移项合并得:y=3,经检验y=3是增根,分式方程无解.21.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.22.【解答】解:(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:+=1,解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要10天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为4000×=1600(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.23.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.24.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.【解答】解:(Ⅰ)由旋转的性质得,CD=CO,∠ACD=∠BCO,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(Ⅱ)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°,在Rt△AOD中,由勾股定理得:AO==.26.【解答】(1)解:9a2+4b2﹣25m2﹣n2+12ab+10mn=(9a2+12ab+4b2)﹣(25m2﹣10mn+n2)=(3a+2b)2﹣(5m﹣n)2=(3a+2b+5m﹣n)(3a+2b﹣5m+n)(2)解:由2a2+b2+c2﹣2a(b+c)=0可分解得2a2+b2+c2﹣2ab﹣2ac=0利用拆项得(a2﹣2ab+b2)+(a2﹣2ac+c2)=0(a﹣b)2+(a﹣c)2=0根据两个非负数互为相反数,只能都同时等于0才成立,于是a﹣b=0,a﹣c=0所以可以得到a=b=c即:△ABC的形状是等边三角形.27.【解答】解:(1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;(2)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴PP′=,∠BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM=,由勾股定理得:P′M=,∴AM=1+=,由勾股定理得:AB==.(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=(180°﹣90°)=45°,由勾股定理得:EP=2,∵AE=1,AP=,EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;。

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣2,6,,上中,无理数是()A.﹣2B.6C.D.2.下列各组数中,能作为直角三角形三边长的是()A.1,2,3B.C.6,8,10D.3.下列各点中,位于第二象限的是()A.(4,3)B.(﹣3,5)C.(3,﹣4)D.(﹣4,﹣3)4.下列各点中,在正比例函数y=3x的图象上的是()A.(1,3)B.(﹣1,3)C.(3,1)D.(3,﹣1)5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是S甲2=0.43,S乙2=0.51,则关于甲、乙两人在这次射击训练中成绩稳定性的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法比较6.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x7.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=35°,则∠BAE的度数为()A.20°B.30°C.40°D.50°8.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.39.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)10.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C 的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(﹣2,﹣1)11.对于平面直角坐标系中任意两点M(x1,y1),N(x2,y2),称|x1﹣x2|+|y1﹣y2|为M,N两点的直角距离,记作:d(M,N).如:M(2,﹣3),N(1,4),则d(M,N)=|2﹣1|+|﹣3﹣4|=8.若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的直角距离.则P(﹣1,﹣3)到y轴的直角距离d为()A.4B.3C.2D.112.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD 交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题4分,共24分.)13.9的算术平方根是.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作.15.如图,已知AB∥CD,BC平分∠ABE,∠C=32°,则∠BED的度数是.16.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是.17.如图,四边形OABC为长方形,OA=1,则点P表示的数为.18.如图,连接在一起的两个等边三角形的边长都为1cm,一个微型机器人由点A开始按A→B→C →D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm后,它停在了点上.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).20.(6分)解方程组:.21.(6分)如图,点D在△ABC边AB的延长线上,BE平分∠CBD,若∠ACB=60°,∠CAB=80°.求∠DBE的度数.22.(8分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB ∥CD.23.(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.24.(10分)某校八年级全体同学参加了“爱心一日捐ˆ捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:(1)求出本次抽查的学生人数;(2)求出捐款10元的学生人数,并将条形图补充完整;(3)捐款金额的众数是元,中位数是.(4)请估计全校八年级1000名学生,捐款20元的有多少人?25.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?26.(12分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.27.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣2,6,,上中,无理数是()A.﹣2B.6C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.6是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列各组数中,能作为直角三角形三边长的是()A.1,2,3B.C.6,8,10D.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22≠32,∴此组数据能不作为直角三角形的三边长,故本选项不合题意;B、∵()2+()2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项不合题意;C、∵62+82=102,∴此组数据能作为直角三角形的三边长,故本选项符合题意;D、∵()2+()2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项不合题意;故选:C.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.下列各点中,位于第二象限的是()A.(4,3)B.(﹣3,5)C.(3,﹣4)D.(﹣4,﹣3)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣3,5)故选:B.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.4.下列各点中,在正比例函数y=3x的图象上的是()A.(1,3)B.(﹣1,3)C.(3,1)D.(3,﹣1)【分析】利用一次函数图象上点的坐标特征验证四个选项中的点是否在正比例函数图象上,此题得解.【解答】解:A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上;B、当x=﹣1时,y=3x=﹣3,∴点(﹣1,3)不在正比例函数y=3x的图象上;C、D、当x=3时,y=3x=9,∴点(3,1)和(3,﹣1)不在正比例函数y=3x的图象上.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是S甲2=0.43,S乙2=0.51,则关于甲、乙两人在这次射击训练中成绩稳定性的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法比较【分析】根据方差的定义,方差越小数据越稳定即可求解.【解答】解:因为S甲2=0.43<S乙2=0.51,方差小的为甲,所以关于甲、乙两人在这次射击训练中成绩稳定是甲,故选:A.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x【分析】将x看做常数移项求出y即可得.【解答】解:由2x﹣y=3知2x﹣3=y,即y=2x﹣3,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.7.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=35°,则∠BAE的度数为()A.20°B.30°C.40°D.50°【分析】由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=35°,然后由在Rt △ABC中,∠B=90°,即可求得∠BAC的度数,继而求得答案.【解答】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=35°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°﹣∠C=55°,∴∠BAE=∠BAC﹣∠EAC=20°.故选:A.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.8.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.3【分析】过E作EF⊥BC于F,根据角平分线性质得出EF=DE=3,根据三角形的面积公式求出即可.【解答】解:过E作EF⊥BC于F,∵CD是AB边上的高线,BE平分∠ABC,DE=3,∴EF=DE=3,∴△BCE的面积S==,故选:C.【点评】本题考查了角平分线性质的应用,能求出BC边上的高是解此题的关键,注意:角平分线上的点到角的两边的距离相等.9.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C 的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(﹣2,﹣1)【分析】根据题意得出C,B关于直线m对称,即关于直线x=1对称,进而得出答案.【解答】解:∵△ABC关于直线m(直线m上各点的横坐标都为1)对称,∴C,B关于直线m对称,即关于直线x=1对称,∵点C的坐标为(4,1),∴=1,解得:x=﹣2,则点B的坐标为:(﹣2,1).故选:A.【点评】此题主要考查了坐标与图形的变化,得出C,B关于直线m对称是解题关键.11.对于平面直角坐标系中任意两点M(x1,y1),N(x2,y2),称|x1﹣x2|+|y1﹣y2|为M,N两点的直角距离,记作:d(M,N).如:M(2,﹣3),N(1,4),则d(M,N)=|2﹣1|+|﹣3﹣4|=8.若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的直角距离.则P(﹣1,﹣3)到y轴的直角距离d为()A.4B.3C.2D.1【分析】先找出P(﹣1,﹣3)到y轴最近的点的坐标,再根据直角距离公式即可得出结论.【解答】解:∵垂线段最短,∴P(﹣1,﹣3)到y轴最近的点的坐标为(0,﹣3),∴|﹣1﹣0|+|﹣3+3|=1.故选:D.【点评】本题考查的是一次函数图象上上点的坐标特点,正确理解直角距离的定义是解答此题的关键.12.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD 交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.【解答】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.【点评】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分.)13.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作(3,5).【分析】由于将“8排4号”记作(8,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“8排4号”记作(8,4),∴3排5号记作(3,5).故答案为:(3,5).【点评】此题主要考查了根据坐标确定点的位置,解题的关键是理解题目的规定,知道坐标与位置的对应关系.15.如图,已知AB∥CD,BC平分∠ABE,∠C=32°,则∠BED的度数是64°.【分析】根据平行线的性质得到∠ABC=∠C=32°,再根据角平分线的定义得到∠ABC=∠EBC =32°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=32°,又∵BC平分∠ABE,∴∠ABC=∠EBC=32°,∴∠BED=∠C+∠EBC=32°+32°=64°.故答案为:64°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.16.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是.【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【解答】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故答案为:.【点评】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.17.如图,四边形OABC为长方形,OA=1,则点P表示的数为.【分析】根据勾股定理即可得到结论.【解答】解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故答案为:.【点评】本题考查了实数与数轴,勾股定理,熟练掌握勾股定理是解题的关键.18.如图,连接在一起的两个等边三角形的边长都为1cm,一个微型机器人由点A开始按A→B→C →D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm后,它停在了点D上.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1cm,2019=6×336+3,行走了336圈又多3cm,即落到D点.【解答】解:∵两个全等的等边三角形的边长为1cm,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6cm,∵2019=6×336+3,即行走了336圈又3cm,∴行走2016cm后,则这个微型机器人停在A点,再走3cm,则停在D点,故答案为:D.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2019为6的倍数余数是几.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).【分析】首先利用二次根式的乘法运算得出=×,进而化简约分得出即可.【解答】解:=×=3.【点评】此题主要考查了二次根式的乘法运算,正确把握运算公式是解题关键.20.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②+①得:2x=12,解得:x=6,把x=6代入①得:y+6=10,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(6分)如图,点D在△ABC边AB的延长线上,BE平分∠CBD,若∠ACB=60°,∠CAB=80°.求∠DBE的度数.【分析】利用三角形外角的性质求出∠DBC即可解决问题;【解答】解:∵∠CBD=∠ACB+∠CAB,∠ACB=60°,∠CAB=80°,∴∠CBD=60°+80°=140°,∵BE平分∠CBD∴.【点评】本题考查三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB ∥CD.【分析】要证AB∥CD,可通过证∠A=∠C,那么就需证明这两个角所在的三角形全等即可.【解答】解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.【点评】本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.【分析】(1)设需购买笔记本x件,水笔y件,根据从友谊超市购买笔记本和水笔共40件需花费90元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出在网店购买这些奖品所需费用,用90减去该值即可得出结论.【解答】解:(1)设需购买笔记本x件,水笔y件,根据题意得:,解得:.答:需购买笔记本25件,水笔15件.(2)在网店购买这些奖品所需费用为25×2+15×1.8=77(元),节省的钱数为90﹣77=13(元).答:从网店购买这些奖品可节省13元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据总价=单价×数量求出在网店购买这些奖品所需费用.24.(10分)某校八年级全体同学参加了“爱心一日捐ˆ捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:(1)求出本次抽查的学生人数;(2)求出捐款10元的学生人数,并将条形图补充完整;(3)捐款金额的众数是10元,中位数是12.5.(4)请估计全校八年级1000名学生,捐款20元的有多少人?【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数;(2)将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(3)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;(4)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.【解答】解:(1)14÷28%=50(人)∴本次测试共调查了50名学生,(2)50﹣(9+14+7+4)=16(人)∴捐款10元的学生人数为16人,补全条形统计图图形如下:(3)由条形图可知,捐款10元人数最多,故众数是10元;中位数是=12.5(元),故答案为:10、12.5;(4)1000×=140(人)∴全校八年级1000名学生,捐款20元的有140人.【点评】本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.25.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?【分析】(1)由当t=0时,y1=5,y2=0,二者做差后即可得出结论;(2)利用速度=路程÷时间,可分别求出走私船与公安艇的速度;(3)观察函数图象,找出点的坐标,利用待定系数法即可求出l1,l2的解析式;(4)利用一次函数图象上点的坐标特征,求出x=6时,y1,y2的值,做差后即可得出结论.【解答】解:(1)当t=0时,y1=5,y2=0,∴5﹣0=5,∴在刚出发时,我公安快艇距走私船5海里.(2)(9﹣5)÷4=1(海里/分钟),6÷4=1.5(海里/分钟).∴走私船的速度是1海里/分钟,公安艇的速度为1.5海里/分钟.(3)设图象l1的解析式为y1=kt+b(k≠0),将(0,5),(4,9)代入y1=kt+b,得:,解得:,∴图象l1的解析式为y1=t+5;设图象l2的解析式为y2=mt(m≠0),将(4,6)代入y2=mt,得:4m=6,解得:m=1.5,∴图象l2的解析式为y2=1.5t.(4)当t=6时,y1=6+5=11,y2=1.5×6=9,∵11﹣9=2(海里),∴6分钟时,走私船与我公安快艇相距2海里.【点评】本题考查了待定系数法求一次函数解析式、函数图象以及一次函数图象上点的坐标特征,解题的关键是:(1)观察函数图象,找出当t=0时y的值;(2)利用速度=路程÷时间求出两船的速度;(3)根据点的坐标,利用待定系数法求出一次函数解析式;(4)利用一次函数图象上点的坐标特征求出当t=6时y1,y2的值.26.(12分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=OQ=1,进而求出直线PR的解析式,即可得出结论.【解答】(1)证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.【分析】(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入即可求解;(2)点B(6,0)关于y轴的对称点B',∴B'(﹣6,0),连接AB'交y轴于M,此时MA+MB 最小,即可求解;(3)分AO=AN、AO=ON、AN=ON三种情况,分别求解即可.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入得:,解得:,∴直线AB的表达式为y=﹣x+6;(2)作点B(6,0)关于y轴的对称点B',∴B'(﹣6,0),连接AB'交y轴于M,此时MA+MB最小,设直线AB'的解析式为y=mx+n,将A(4,2),B'(﹣6,0)代入得:,解得:,∴直线AB'的解析式为:y=x+,当x=0时,y=,∴M(0,);(3)存在,理由:设:点N(m,0),点A(4,2),点O(0,0),则AO2=20,AN2=(m﹣4)2+4,ON2=m2,①当AO=AN时,20=(m﹣4)2+4,解得:m=8或0(舍去0);②当AO=ON时,同理可得:m=;③当AN=ON时,同理可得:m=;故符合条件的点N坐标为:(﹣2,0)或(2,0)或(8,0)或(,0).【点评】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、点的对称性等,其中(3),要注意分类求解,避免遗漏.。

2016-2017学年山东初二上学期期末数学测试题Word版含解析

2016-2017学年山东初二上学期期末数学测试题Word版含解析

2016-2017学年山东初二上学期期末数学测试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

的相反数是( ) A .5B .5-C .5±D .252. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4 3. 下列运算正确的是( ) A .222()a b a b +=+ B .325a a a =C .632a a a ÷=D .235a b ab +=4.下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 4. 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点5. 对于数据组2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别为 ( ) A. 4,4,6 B. 4,6,4,5 C. 4,4,4,6 D. 5,6,4,56.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥17. 下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个8.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°9.已知等腰△ABC 的底边BC=8cm ,且|AC-BC |=2cm ,则腰AC 的长为( ).A. 10cm 或6cmB. 10cmC. 6cmD. 8cm 或6cm10.如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC、△BCD 的角平分线,则图中的等腰三角形有( ) A .5个 B .4个 C .3个 D .2个C(第10题)(第14题)EDCBA二、填空题(每小题3分,共27分) 11. 计算:234(2)a a = .12. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13. 10. 因式分解:2242x x ++= .14. 若2x +kx+9是一个完全平方式,则k= _____________ 15. 已知63x y xy +==-,,则22x y xy +=______________.16 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .17. 如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE=18. 若数据10,12,9,-1,4,8,10,12,x 的众数是12,则x=__________.19.下列图形中,轴对称图形有 (填编号)20.已知522=+y x ,2=xy 则22y x +=__________三、解答题(本大题7个小题,共60分)21.(8)3(1)22--.22. (8分) ) 已知:如图,Rt △ABC 中,∠C=90°,沿过点B 的一条直线BE 折叠△ABC ,•使点C 恰好落在AB 边的中点D 处,则∠A=23. (8分) (1) 解不等式223125+<-+x x(2) 先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.24.(8分) 在△ABC 中,∠B =2∠C ,AD 是∠BAC 的平分线.求证:AC =AB +BD .25.(10分) 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.ACDB26. (8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁参赛人数 5 19 12 141)求全体参赛选手年龄的众数、中位数;2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%。

【真卷】2016-2017年山东省济南市高新区八年级上学期数学期末试卷及答案

【真卷】2016-2017年山东省济南市高新区八年级上学期数学期末试卷及答案

2016-2017学年山东省济南市高新区八年级(上)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在数字,3.33,,,0,,,2.121121112…(相邻两个2之间1的个数逐次多1)中,无理数的个数是()A.2个B.3个C.4个D.5个2.(3分)下列几组数据能作为直角三角形的三边长的是()A.2,3,4B.5,3,4C.4,6,9D.5,11,13 3.(3分)下列各式中,正确的是()A.B.=1C.D.=±0.54.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间5.(3分)下列函数中,y随x的增大而减小的函数是()A.y=2x+8B.y=﹣2+4x C.y=﹣2x+8D.y=4x6.(3分)点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)7.(3分)已知是方程mx﹣2y=2解,则m的值为()A.B.C.4D.8.(3分)根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.﹣1C.3D.﹣39.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°11.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.加权平均数12.(3分)点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点.若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定13.(3分)某校有两种类型的学生宿舍30间,大宿舍每间可住8人,小宿舍每间可住5人.该校198个住宿生恰好住满30间宿舍.设大宿舍有x间,小宿舍有y间,得方程组()A.B.C.D.14.(3分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.7615.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共18分)16.(3分)9的平方根是.17.(3分)的相反数是.18.(3分)在平面直角坐标系中,函数y=﹣x﹣2的图象经过第象限.19.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.20.(3分)如图,直线a∥b,则∠A的度数是.21.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.三、解答题(共57分)22.(1)计算:﹣﹣(2)解方程组:.23.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.24.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)25.某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.26.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?27.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B 旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?28.Rt△ABC中,∠C=90°,点D、E是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1),∠α=50°,则∠1+∠2=°(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4),则∠α、∠1、∠2之间的关系为:.29.一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO 的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2016-2017学年山东省济南市高新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在数字,3.33,,,0,,,2.121121112…(相邻两个2之间1的个数逐次多1)中,无理数的个数是()A.2个B.3个C.4个D.5个【解答】解:无理数有:,﹣,2.121121112…(相邻两个2之间1的个数逐次多1),共3个,故选:B.2.(3分)下列几组数据能作为直角三角形的三边长的是()A.2,3,4B.5,3,4C.4,6,9D.5,11,13【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故错误;B、32+42=52,根据勾股定理的逆定理是直角三角形,故正确;C、42+62≠92,根据勾股定理的逆定理不是直角三角形,故错误;D、52+112≠132,根据勾股定理的逆定理不是直角三角形,故错误.故选:B.3.(3分)下列各式中,正确的是()A.B.=1C.D.=±0.5【解答】解:A、没意义,所以A选项错误;B、==,所以B选项正确;C、==,所以C选项错误;D、=0.5,所以D选项错误.故选:B.4.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间【解答】解:∵9<11<16,∴3<<4,即的值在3与4之间.故选:C.5.(3分)下列函数中,y随x的增大而减小的函数是()A.y=2x+8B.y=﹣2+4x C.y=﹣2x+8D.y=4x【解答】解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选:C.6.(3分)点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【解答】解:根据轴对称的性质,得点P(3,﹣5)关于y轴对称的点的坐标为(3,5).故选:D.7.(3分)已知是方程mx﹣2y=2解,则m的值为()A.B.C.4D.【解答】解:把代入方程得:3m﹣10=2,解得:m=4,故选:C.8.(3分)根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.﹣1C.3D.﹣3【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选:A.9.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°【解答】解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选:C.11.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.加权平均数【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:A.12.(3分)点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点.若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【解答】解:∵点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点,∴y1=﹣3x1+4,y2=﹣3x2+4,而x1<x2,∴y1>y2.故选:A.13.(3分)某校有两种类型的学生宿舍30间,大宿舍每间可住8人,小宿舍每间可住5人.该校198个住宿生恰好住满30间宿舍.设大宿舍有x间,小宿舍有y间,得方程组()A.B.C.D.【解答】解:由题意可得,,故选:B.14.(3分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.76【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.15.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.4【解答】解:如图:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确;②∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确;④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2,∴2AB2=BD2+CD2,∴BD2=2AB2﹣CD2,∴BE2=BD2+DE2=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2,∴④正确.故选:D.二、填空题(每小题3分,共18分)16.(3分)9的平方根是±3.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.17.(3分)的相反数是﹣2.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.18.(3分)在平面直角坐标系中,函数y=﹣x﹣2的图象经过第二、三、四象限.【解答】解:∵k=﹣1,b=﹣2,∴一次函数y=﹣x﹣2的图象经过第二、三、四象限,故答案为:二、三、四19.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.【解答】解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.20.(3分)如图,直线a∥b,则∠A的度数是44°.【解答】解:∵a∥b,∴∠ABE=∠ACF=75°,∵∠D=31°,∴∠A=75°﹣31°=44°,故答案为:44°.21.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是(2n﹣1,2n﹣1).【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,的横坐标,纵坐标为An的纵坐标∴Bn的横坐标为A n+1又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).三、解答题(共57分)22.(1)计算:﹣﹣(2)解方程组:.【解答】解:(1)﹣﹣=3﹣×3﹣2=﹣(2)由(2),可得x=13﹣4y(3),把(3)代入(1),可得2(13﹣4y)+3y=16,整理,可得﹣5y+26=16,解得y=2,∴x=13﹣4y=13﹣4×2=13﹣8=5∴原方程组的解是.23.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.【解答】解:∵DF⊥AB于点F,∴∠EFA=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°,又∵∠D=30°,∴∠ACB=∠CED+∠D=45°+30°=75°.24.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.25.某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有120人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.【解答】解:(1)在家学习的所占的比例是60%,因而在家学习的人数是:200×60%=120(人);故答案为:120;(2)根据在图书馆学习的人数占30%,∴在图书馆学习的人数为:200×30%=60人,∴在图书馆学习4小时的有60﹣13﹣16﹣6=25人,∴在图书馆等场所学习的居民学习时间的平均数为:(13×2+16×6+25×4+6×8)÷60=4.5,∴平均数为4.5小时,众数为4小时;(3)在家学习时间不少于4小时的频率是:=0.715,2000×0.715=1430(人).估计该社区2000名居民双休日学习时间不少于4小时的人数为1430人.26.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?【解答】解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则50×8+40×2=480(元),答:打折前需要的钱数是480元.27.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B 旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【解答】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.28.Rt△ABC中,∠C=90°,点D、E是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1),∠α=50°,则∠1+∠2=140°(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4),则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为:140;(2)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:如图3,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α;(4)如图4,∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α,故答案为:∠2=90°+∠1﹣α.29.一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO 的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)y=﹣x+1与x轴、y轴交于A、B两点,∴A(,0),B(0,1).∵△AOB为直角三角形,∴AB=2.=×2×sin60°=.∴S△ABC∵A(,0),B(0,1).∴OA=,OB=1,∴tan∠OAB==,∴∠OAB=30°,∵∠BAC=60°,∴∠OAC=90°,∴C(,2);(2)如图1,S四边形ABPO=S△ABO+S△BOP=×OA×OB+×OB×h=××1+×1×|a|=+|a|.∵P在第二象限,∴a<0∴S=﹣=,四边形ABPO(3)如图2,设点M(m,0),∵A(,0),B(0,1).∴AM2=(m﹣)2,MB2=m2+1,AB=2,∵△MAB为等腰三角形,∴①MA=MB,∴MA2=MB2,∴(m﹣)2=m2+1,∴m=,∴M(,0)②MA=AB,∴MA2=AB2,∴(m﹣)2=4,∴m=±2,∴M(+2,0)或(﹣2,0)③MB=AB,∴MB2=AB2,∴m2+1=4,∴m=(舍)或m=﹣.∴M(﹣,0).∴满足条件的M的坐标为(,0)、(+2,0)、(﹣2,0)、(﹣,0).附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)点M(﹣2019,2019)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)已知m>n,则下列不等式中不正确的是()A.5m>5n B.m+7>n+7C.﹣4m<﹣4n D.m﹣6<n﹣6 3.(4分)如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°4.(4分)不等式6﹣3x>0的解集在数轴上表示为()A.B.C.D.5.(4分)满足下列条件的△ABC,不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.a:b:c=3:4:5D.∠A:∠B:∠C=3:4:56.(4分)下列算式中,正确的是()A.3﹣=3B.=C.D.=47.(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间/小时5678人数10102010则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.5小时C.6.6小时D.7小时8.(4分)函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b >0的解集是()A.x>4B.x<0C.x<3D.x>39.(4分)在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD =4,则点D到AB的距离是()A.2B.3C.4D.510.(4分)如图,已知等腰△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A.AD=CD B.AD=BD C.∠DBC=∠BAC D.∠DBC=∠ABD 11.(4分)已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是()A.B.C.D.12.(4分)如图,已知:∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则B2018B2019的长为()A.2017B.2018C.D.二、填空题(每小题4分,共24分)13.(4分)已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=.14.(4分)在平面直角坐标系中,点(﹣7,2m+1)在第三象限,则m的取值范围是.15.(4分)如图,在△ABC中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若∠A=34°,∠ACB=76°,则∠BCE=.16.(4分)省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是.甲乙丙丁平均数9.29.09.09.2方差 2.0 1.8 1.5 1.317.(4分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.18.(4分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号)____________.三、解答题(共78分)19.(6分)解二元一次方程组.20.(6分)解不等式组,并把它的解集表示在数轴上.21.(6分)在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE =DF.求证:△ABC是等腰三角形.22.(8分)为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:(1)被抽查学生阅读时间的中位数为小时,众数为小时,平均数为小时(2)已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?23.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?24.(10分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.25.(10分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.26.(12分)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC =∠BAC=α(其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是∠BAC角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点(D、E、A互不重合),在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.27.(12分)如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,﹣3)过点A的直线AD与y轴正半轴交于点D,∠DAB=45°(1)求直线AD和BC的解析式;(2)如图2,点E在直线x=2上且在直线BC上方,当△BCE的面积为6时,求E点坐标;(3)在(2)的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当△MNE周长最小时,求△MNE周长的最小值.28.(5分)如图,∠ABC=90°,P为射线BC上任意一点(点P和点B不重合),分别以AB,AP为边在∠ABC内部作等边△ABE和等边△APQ,连结QE并延长交BP于点F,连接EP,若FQ=11,AE=4,则EP=.29.(5分)如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)点M(﹣2019,2019)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.【解答】解:∵点M(﹣2019,2019),∴M点所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(4分)已知m>n,则下列不等式中不正确的是()A.5m>5n B.m+7>n+7C.﹣4m<﹣4n D.m﹣6<n﹣6【分析】根据不等式的性质解答.【解答】解:A、在不等式m>n的两边同时乘以5,不等式仍成立,即5m>5n,故本选项不符合题意;B、在不等式m>n的两边同时加7,不等式仍成立,即m+7>n+7,故本选项不符合题意;C、在不等式m>n的两边同时乘以﹣4,不等号方向改变,即﹣4m<﹣4n,故本选项不符合题意;D、在不等式m>n的两边同时减去6,不等式仍成立,即m﹣6>n﹣6,故本选项符合题意;故选:D.【点评】考查了不等式的性质:(1)不等式两边加(或减)同一个数(或整式),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(4分)如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°【分析】根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,∵∠1=35°,∴∠3=180°﹣35°﹣90°=55°,∵a∥b,∴∠2=∠3=55°.故选:B.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.4.(4分)不等式6﹣3x>0的解集在数轴上表示为()A.B.C.D.【分析】依次移项,系数化为1,即可求得一元一次不等式的解集,再将解集在数轴上表示出来即可.【解答】解:移项得:﹣3x>﹣6,系数化为1得:x<2,即不等式的解集为:x<2,不等式的解集在数轴上表示如下:故选:A.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确掌握解一元一次不等式和在数轴上表示不等式解集的方法是解题的关键.5.(4分)满足下列条件的△ABC,不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.a:b:c=3:4:5D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.【解答】解:A、∵∠C=∠A+∠B==90°,是直角三角形,故此选项不合题意;B、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;C、∵32+42=52,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.【点评】此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.(4分)下列算式中,正确的是()A.3﹣=3B.=C.D.=4【分析】根据二次根式的混合运算法则逐一计算可得.【解答】解:A.3﹣=2,此选项错误;B.+=2+3=5,此选项错误;C.,此选项正确;D.==2,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.7.(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间/小时5678人数10102010则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.5小时C.6.6小时D.7小时【分析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.【解答】解:(5×10+6×10+7×20+8×10)÷50=(50+60+140+80)÷50=330÷50=6.6(小时).故这50名学生这一周在校的平均体育锻炼时间是6.6小时.故选:C.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.8.(4分)函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b >0的解集是()A.x>4B.x<0C.x<3D.x>3【分析】利用函数图象,写出直线y=ax+b在x轴上方所对应的自变量的范围即可.【解答】解:关于x的不等式ax+b>0的解集为x<3.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.(4分)在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD =4,则点D到AB的距离是()A.2B.3C.4D.5【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD.【解答】解:∵BC=7,BD=4,∴CD=7﹣4=3,由角平分线的性质,得点D到AB的距离=CD=3,故选:B.【点评】本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.10.(4分)如图,已知等腰△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A.AD=CD B.AD=BD C.∠DBC=∠BAC D.∠DBC=∠ABD 【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点D,∴BD=BC,∴∠ACB=∠BDC,∴∠BDC=∠ABC=∠ACB,∴∠BAC=∠DBC,故选:C.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.(4分)已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是()A.B.C.D.【分析】根据三角形的周长公式即可写出y与x的函数关系式,结合x和y的取值范围,即可得出答案.【解答】解:∵等腰三角形的周长为40,其中腰长为y,底边长为x,∴x+2y=40,∴y=20﹣x,∵20<2y<40,∴自变量x的取值范围是0<x<20,y的取值范围是10<y<20.故选:D.【点评】此题主要考查动点问题的函数图象、一次函数关系式,掌握等腰三角形的周长公式是解题的关键.12.(4分)如图,已知:∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则B2018B2019的长为()A.2017B.2018C.D.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2=,B2B3=2,B3B4=4,以此类推,B n B n+1的长为2n﹣1,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2=,∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3=2,∵A4B4=8B1A2=8,∴B3B4=4,以此类推,B n B n+1的长为2n﹣1,∴B2018B2019的长为22017,故选:C.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(每小题4分,共24分)13.(4分)已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=﹣5.【分析】把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a的值.【解答】解:∵点P(﹣2,a)在一次函数y=3x+1的图象上,∴a=3×(﹣2)+1=﹣5.故答案是:﹣5.【点评】本题考查了一次函数图象上点的坐标特征.此题利用代入法求得未知数a的值.14.(4分)在平面直角坐标系中,点(﹣7,2m+1)在第三象限,则m的取值范围是m <.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得2m+1<0,求不等式的解即可.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即2m+1<0,解得m<,故答案为:m<,【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.(4分)如图,在△ABC中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若∠A=34°,∠ACB=76°,则∠BCE=42°.【分析】根据线段垂直平分线性质求出∠ACE=∠A,即可得出∠BCE的度数.【解答】解:∵AC的垂直平分线DE,∴AE=CE,∴∠ACE=∠A=34°,∴∠BCE=∠ACB﹣∠ACE=76°﹣34°=42°,故答案为:42°.【点评】此题考查线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.(4分)省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是丁.甲乙丙丁平均数9.29.09.09.2方差 2.0 1.8 1.5 1.3【分析】根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.【解答】解:∵甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,∴综合平均数和方差两个方面说明丁成绩既高又稳定,∴丁是最佳人选.故答案为:丁.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为9.【分析】先根据角平分线的性质和平行线判断出OM=BM、ON=CN,也就得到三角形的周长就等于AB与AC的长度之和.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.【点评】本题考查了等腰三角形的性质;解答此题的关键是熟知平行线的性质,等腰三角形的性质及角平分线的性质及利用线段的等量代换.18.(4分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是①③④(只填序号).【分析】连接CD .证明△ADE ≌△CDF ,利用全等三角形的性质即可一一判断.【解答】解:连接CD ,∵△ABC 是等腰直角三角形,∴∠DCB =∠A =45°,CD =AD =DB ;在△ADE 和△CDF 中,,∴△ADE ≌△CDF (SAS ),∴ED =DF ,故①正确;∴S △ADE =S △CDF ,∴S 四边形CEDF =S △ADC =S △ABC =定值,故②错误,∵△ADE ≌△CDF ,∴AE =CF ,∴CE +CF =CE +AE =AC =AB ,故③正确,∵AE =CF ,AC =BC ,∴EC =BF ,∴AE 2+BF 2=CF 2+CE 2=EF 2,∵EF 2=2DE 2,∴AE 2+BF 2=2ED 2,故④正确.故答案为①③④.【点评】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形想的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(共78分)19.(6分)解二元一次方程组.【分析】利用加减消元法求解可得.【解答】解:,①+②,得4x=12,∴x=3,把x=3代入②,得3+2y=3,解得y=0,所以原方程组的解为.【点评】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.20.(6分)解不等式组,并把它的解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①,得x>2,解不等式②,得x≤3,∴不等式组的解集是2<x≤3,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.21.(6分)在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE =DF.求证:△ABC是等腰三角形.【分析】根据中点的定义可得到BD=DC,再根据HL即可判定△BDE≌△CDF,从而可得到∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.【解答】证明:∵D是BC的中点,∴BD=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵BD=DC,DE=DF,∴△BDE≌△CDF,∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.【点评】此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.22.(8分)为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:(1)被抽查学生阅读时间的中位数为2小时,众数为2小时,平均数为 2.34小时(2)已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?【分析】(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;(2)根据总人数×阅读时间不少于三小时的百分比可得结果.【解答】解:(1)12+20+10+5+3=50,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数=2,众数为2,平均数==2.34,故答案为:2,2,2.34;(2)1500×=540,答:估算该校学生一周内阅读时间不少于三小时的有540人.【点评】此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.23.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?【分析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y =26000,由这两个方程构成方程组求出其解就可以得出结论;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【解答】解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得:,解得:.答:购买A型学习用品400件,B型学习用品600件;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a)+30a≤28000,解得:a≤800,答:最多购买B型学习用品800件.【点评】本题考查了列二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.24.(10分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.【分析】(1)先根据题意判断出△ABC是等腰直角三角形,故∠B=45°,再由DE⊥AB可知△BDE是等腰直角三角形,故DE=BE,再根据角平分线的性质即可得出结论;(2)由(1)知,△BDE是等腰直角三角形,DE=BE=CD,再根据勾股定理求出BD 的长,进而可得出结论;(3)先根据HL定理得出Rt△ACD≌Rt△AED,故AE=AC,再由CD=BE可得出结论.【解答】(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.(10分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.【分析】(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A 的坐标;(2)先根据函数解析式求得B、C两点的坐标,可得BC的长,再利用三角形的面积公式可得结果;(3)根据函数图象以及点A坐标即可求解.【解答】解:(1)解方程组,得,所以点A坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);当y2=时,x﹣4=0,x=4,则C点坐标为(4,0);∴BC=4﹣(﹣2)=6,∴△ABC的面积=×6×3=9;(3)根据图象可知,y1≥y2时x的取值范围是x≤1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了两直线相交时交点坐标的求法以及三角形的面积.26.(12分)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出DE=BD+CE;(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC =∠BAC=α(其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是∠BAC角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点(D、E、A互不重合),在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【分析】(1)先利用同角的余角相等,判断出∠ABD=∠CAE,进而判断出△ADB≌△CEA,得出BD=AE,AD=CE,即可得出结论;(2)先利用等式的性质,判断出∠ABD=∠CAE,进而判断出△ADB≌△CEA,得出BD =AE,AD=CE,即可得出结论;(3)由(2)得,△BAD≌△ACE,得出BD=AE,再判断出△FBD≌△FAE(SAS),得出∠BFD=∠AFE,进而得出∠DFE=60°,即可得出结论.【解答】解:(1)DE=BD+CE,理由:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠BDA =∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由:由(2)得,△BAD≌△ACE,∴BD=AE,∵∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+FAC,即∠FBD=∠FAE,在△FBD和△FAE中,,∴△FBD≌△FAE(SAS),∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DFE为等边三角形.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,判断出∠ABD=∠CAE是解本题的关键.27.(12分)如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,﹣3)过点A的直线AD与y轴正半轴交于点D,∠DAB=45°(1)求直线AD和BC的解析式;(2)如图2,点E在直线x=2上且在直线BC上方,当△BCE的面积为6时,求E点坐标;(3)在(2)的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当△MNE周长最小时,求△MNE周长的最小值.【分析】(1)∠DAB=45°,OA=OD=1,即点D的坐标为(0,1),将点A、D的坐标代入一次函数表达式,即可求解;=×EF×OB=×4×(m+)=6,即可求解;(2)由S△BCE(3)作点E关于直线AD对称点E′;找到点E关于x轴的对称点E″,连接E′E″交AD于M点、交x轴于点N,则△MNE周长最小,即可求解.【解答】解:(1)∵∠DAB=45°,∴OA=OD=1,即点D的坐标为(0,1),将点A、D的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线AD的表达式为:y=x+1,同理可得直线BC的表达式为:y=x﹣3;(2)设直线x=2与BC交于点F,点E坐标为(2,m),则点F坐标为(2,﹣),则S=×EF×OB=×4×(m+)=6,解得:m=,△BCE即点E的坐标为(2,);(3)过点E点作EE′⊥AD,点E和E′关于直线AD对称,设直线x=2与直线AD交于点H(2,3),连接E′H,找到点E关于x轴的对称点E″(2,﹣),连接E′E″交AD于M点、交x轴于点N,此时,△MNE周长最小,∵∠DAB=45°,∴E′H=EH=3﹣=,则点E′的坐标为(,3),则:△MNE周长的最小值=E′E″==.【点评】本题考查的是一次函数综合运用,主要考查对称点的性质与用途,此类题目正确确定对称点的位置解题的关键.28.(5分)如图,∠ABC=90°,P为射线BC上任意一点(点P和点B不重合),分别以AB,AP为边在∠ABC内部作等边△ABE和等边△APQ,连结QE并延长交BP于点F,连接EP,若FQ=11,AE=4,则EP=.【分析】连接EP,过点E作EM⊥BC,由题意可得△AQE≌△ABP,可得QE=BP,∠AEQ=∠ABC=90°,可求∠EBF=∠BEF=30°,根据勾股定理可求BE=2EM=4,BM=EM,EF=BF=2FM,EM=FM,可求BF=EF=4,EM=2,FM=2,由QF=11,EF=4,可得BP=EQ=7,可求MP的长,根据勾股定理可求EP的长.【解答】解:如图:连接EP,过点E作EM⊥BC∵△AEB,△APQ是等边三角形∴AB=AE=BE=4,AQ=AP,∠ABE=∠BAE=∠QAP=60°=∠AEB∴∠BAP=∠QAE且AQ=AP,AB=AE∴△ABP≌△QAE∴QE=BP,∠AEQ=∠ABC=90°∵∠AEQ=∠ABC=90°,∠ABE=∠AEB=60°∴∠BEF=∠EBF=30°∴BF=EF,∠EFM=60°∵EM⊥BC∴∠FEM=30°∴EF=2FM=BF,EM=FM∵∠EBM=30°,EM⊥BC∴BE=2EM,BM=EM∵EB=4∴EM=2,BM=6∵BF+FM=BM∴FM=2,BF=EF=4∵QF=EQ+EF∴EQ=11﹣4=7∴BP=7∴MP=BP﹣BM=1在Rt△EMP中,EP==故答案为【点评】本题考查了三角形综合题,全等三角形的判定和性质,勾股定理,构造直角三角形用勾股定理求线段的长度是本题的关键.29.(5分)如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为(,).。

山东省济南市八年级上学期期末数学试卷

山东省济南市八年级上学期期末数学试卷

山东省济南市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)分解因式x2﹣4x﹣5的结果应是()A . (x﹣1)(x+5)B . (x+1)(x﹣5)C . (x+1)(x+5)D . (x﹣1)(x﹣5)2. (2分)(2019·高台模拟) 下列计算正确的是()A . x2+x2=x4B . x8÷x2=x4C . x2•x3=x6D . (-x)2-x2=03. (2分)下列各分式中,最简分式是()A .B .C .D .4. (2分) (2018八上·定西期末) 下列结论正确的是()A . 两直线被第三条直线所截,同位角相等B . 三角形的一个外角等于两个内角的和C . 多边形最多有三个外角是钝角D . 连接平面上三点构成的图形是三角形5. (2分)若m是有理数,则|m|﹣m一定是()A . 零B . 非负数C . 正数D . 非正数6. (2分)对于任何整数m,多项式(4m-5)2-9都能()A . 被8整除B . 被m整除C . 被(m-1)整除D . 被(2m-1)整除7. (2分)(2017·河南模拟) 从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A . ﹣2B . ﹣3C .D .8. (2分)使两个直角三角形全等的条件()A . 一锐角对应相等B . 两锐角对应相等C . 一条边对应相等D . 两条边对应相等9. (2分)有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为,,的三角形为直角三角形;③等腰三角形的两条边长为2,4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A . 4个B . 3个C . 2个D . 1个10. (2分)如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A . 25B . 30C . 45D . 60二、填空题 (共6题;共6分)11. (1分)(2017·潮南模拟) 因式分解:a2b﹣ab+ b=________.12. (1分) (2019七下·丹阳月考) 比较大小: ________ .13. (1分)(2016·济宁) 已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.14. (1分)在△ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:________.15. (1分)(2016·高邮模拟) 若等腰三角形的一个外角的度数为40°,则这个等腰三角形顶角的度数是________.16. (1分) (2018八上·嵊州期末) 已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于 AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=________.三、解答题 (共9题;共80分)17. (5分)计算:x•xy•x﹣y•x•x2+ x•x2•y.18. (5分)(2018·长春) 先化简,再求值:,其中x= ﹣1.19. (5分)(2018·重庆模拟) 已知△ABC的三边长a,b,c满足a2﹣2ab+b2=ac﹣bc,试判断△ABC的形状,并说明理由.20. (10分) (2016七上·工业园期末) 如图,每个小方格都是边长为1个单位的小正方形,A,B,C三点都是格点(每个小方格的顶点叫格点).(1)找出格点D,画AB的平行线CD;找出格点E,画AB的垂线AE;(2)计算格点△ABC的面积.21. (5分) (2015九上·句容竞赛) 甲、乙两辆公共汽车分别自A、B两地同时出发,相向而行。

20162017学第一学期期末测试卷

20162017学第一学期期末测试卷

2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷一、选择题(每题4分,共48分)1.(4分)下列实数中的无理数是()A.B.C.D.2.(4分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.(4分)289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=174.(4分)下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等5.(4分)已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案6.(4分)对于函数y=k2x(k是常数,k≠0),下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(,k)C.该函数图象经过二、四象限D.y随着x的增大而增大7.(4分)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.(4分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为()A.4和6B.6和4C.2和8D.8和﹣29.(4分)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是()进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一周二周三周四周五周六周日销售量30403530506050 A.该商品周一的利润最小B.该商品周日的利润最大C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D.由一周中的该商品每天进价组成的这组数据的中位数是3(元/斤)10.(4分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.11.(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km.正确的是()A.①②B.①③C.①④D.①③④12.(4分)如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.B.C.D.二、填空题(每题4分,共24分)13.(4分)计算=.14.(4分)如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为.15.(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是.16.(4分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ=.17.(4分)现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是.18.(4分)如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P 的运动时间为t秒.则当t=秒时,△ODP是腰长为5的等腰三角形?三.解答题(共78分)19.(6分)(1)计算:﹣5(2)计算:620.(6分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.(8分)阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1,根据以上结论解答下列各题:(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值.(2)若一条直线经过A(2,3),且与y=x+3垂直,求这条直线的函数关系式.23.(8分)如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.24.(10分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.25.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?26.(12分)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.27.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A 关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S,若存在,请求出对应的点Q坐标;若不存在,请说明理由.△DPQ山东省济南市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.【解答】解:A、=2,不是无理数,故此选项错误;B、=2,是无理数,故此选项正确;C、,不是无理数,故此选项错误;D、=3,不是无理数,故此选项错误;故选:B.2.【解答】解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.3.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.4.【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.5.【解答】解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.6.【解答】解:对于函数y=k2x(k是常数,k≠0)的图象,∵k2>0,∴直线y=k2x经过第一、三象限,y随x的增大而增大,∵当x=时,y=k,∴直线y=k2x经过点(,k).故选:C.7.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.8.【解答】解:∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选:D.9.【解答】解:A.该商品周一的利润45元,最小,正确;B.该商品周日的利润85元,最大,正确;C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤),正确;D.一周中的该商品每天进价组成的这组数据的中位数是(2.8元/斤),错误;故选:D.10.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.11.【解答】解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.故选:B.12.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,,∴AB==3,∵AB×CE=BC×AC,∴CE==,又∵A1C=AC=4,∴A1E=4﹣=,故选:B.二、填空题(每题4分,共24分)13.【解答】解:==2,故答案为:2.14.【解答】解:∵∠1+∠EDC=180°,∠1=153°,∴∠EDC=27°,∵DE∥BC,∴∠EDC=∠C=27°,∵∠A=90°,∴∠B=90°﹣∠C=63°,故答案为63°.15.【解答】解:由题意得,(2+a+4+6+8)=5,解得:x=5,这组数据按照从小到大的顺序排列为:2,4,5,6,8,则中位数为5;故答案为:5.16.【解答】解:依题意得:AP2+BQ2=PQ2,即82+BQ2=122,解得BQ=4(舍去负值).故答案是:4.17.【解答】解:设小矩形的宽是x,长是y,,解得:.小矩形的面积为:6×10=60.故答案为:60.18.【解答】解:当OD=OP=5时,在直角△OPC中,CP==3,则t=4+3=7;当PD=OD=5时,作DE⊥BC于点E,同理,在直角△PED中,得到PE=3,则当P在E的左边时,CP=5﹣3=2,则t=4+2=6;当P在E的右边时CP=5+3=8,则t=4+8=12;或AP=3,则t=4+9+4﹣3=14;当OP=PD,CP=2.5,t=4+2.5=6.5(舍去)总之,t=7或6或12或14.故答案为:6或7或12或14.三.解答题(共78分)19.【解答】解:(1)原式=﹣﹣5=2﹣2﹣5=﹣2﹣3;(2)原式=2﹣+9﹣=9.20.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.21.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.22.【解答】解:(1)∵直线y=2x+1与直线y=kx﹣1垂直,∴2•k=﹣1,∴k=(2)∵过点A的直线与y=x+3垂直,∴可设过点A的直线解析式为y=﹣3x+b将点A(2,3)代入,得:﹣6+b=3,解得:b=9,所以过点A的直线解析式为y=﹣3x+923.【解答】解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.24.【解答】解:(1)A校平均数为:(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.25.【解答】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利=40×(40﹣30)+60×(50﹣35)=1300(元),答:商场获利1300元.26.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.27.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).。

长清区 2016-2017 八上 2017、1

长清区 2016-2017     八上 2017、1

八 年 级 质 量 检 测 数 学 试 题一、选择题(共15题,每题4分,共60分) 1.4的平方根是( )A.2B.4C.2±D.2± 2.2-的相反数是( )A .2-B .22 C . 2 D .22- 3.点P (-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 4.如图,在边长为1的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长是( )A.5B.6C.7D.25 5.下列语句是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO 到C ,使OC=OAD.两直线平行,内错角相等. 6.一次函数y =-2x -1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.如果yx b a 321与12+-x y b a 是同类项,则 A.⎩⎨⎧=-=32y x B.⎩⎨⎧-==32y x C.⎩⎨⎧-=-=32y x D ⎩⎨⎧==32y x 8.如图,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( ) A. 50° B. 40° C. 45° D. 25°9.为了了解某班同学一周的课外阅读量,任选班上15名10.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M , 交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9第4题图第8题图11.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m. 为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为()A.0.5mB.1mC.1.5 mD.2 m12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立()A. AB=AD.B. AC平分∠BCD.C. AB=BD. D.△BEC≌△DEC.13.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差14.在平面直角坐标系中,已知 A(2,-2),原点 O(0,0),在 y 轴上确定点 P,使△AOP 为等腰三角形,则符合条件的点 P 共有()A.2个 B.3个 C.4个 D.5个15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A B C D二、填空题(共6题,每题4分,共24分.把答案填在题中的横线上.)16.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:甲x=乙x=80,2甲s=230,2乙s=190,则成绩较为稳定的班级是班.17. 若⎩⎨⎧==23yx是方程2x-ay=4的一个解,则a= .第11题图1 第11题图2 (第10题图)EDCBA第12题图19.如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合, 折痕为MN ,则线段BN 的长为 .20.如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是 . 21.如图,OP 平分∠AOB ,∠AOP=15°,PC ∥OA ,PD ⊥OA 于点D ,PC=4,则PD=_____. 三、解答题(本大题共7题,共66分) 22.(本题共2小题,共8分)化简计算 (1)327236-⨯ (2) 解方程组⎩⎨⎧=-=+8372y x y x23. (本题满分8分,每小题4分)(1)已知:如图,在锐角三角形ABC 中,高BD 与CE 相交于点O ,且BD=CE.求证:OB=OC (2) 如图,在△ABC 中,CD 平分∠ACB ,DE ∥AC ,∠B=50°,∠EDC=30°,求∠ADC 的度数.第19题图第20题图第21题图第23题图1 第23题图2B24.(本题8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如条形统计图所示.(1)根据图示填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.25.(本小题满分9分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg , 了解到这些蔬菜的种植成本共42元,还了解到如下信息: (1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?26. (10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 内部,∠B=50°,∠D=30°,求∠BPD . (2)如图2,在AB ∥CD 的前提下,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间 有何数量关系?并证明你的结论.(3)在图1中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q , 如图3,写出∠BPD 、∠B 、∠D 、∠BQD 之间的数量关系27.(本小题满分11分)下图中的折线ABC 表示某汽车的耗油量y(单位:L/km)与速度x (单 位:km/h )之间的函数关系(30≤x ≤120),已知线段BC 表示的函数关系中,该汽车的速 度每增加1km/h ,耗油量增加0.002L/km.(1) 当速度为30km/h 、90km/h 时,该汽车的耗油量分别为_____L/km 、____L/km. (2) 求线段AB 所表示的y 与x 之间的函数表达式.(3) 速度是多少时,该汽车的耗油量最低?最低是多少?28.(12分)如图,直线1l :21+-=x y 与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线1l 上一点,另一直线2l :b x y +=212过点P ,与x 轴交与点C (1)直接写出m 和b 的值及点A 、点C 的坐标;(2)若动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒. ①当点Q 在运动过程中,请直接写出△APQ 的面积S 与t 的函数关系式;②求出当t 为多少时,△APQ 的面积等于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请直接写出t 的值;若不存在,说明理由.B22(1)原式=0 (2)⎩⎨⎧==13yx23. 证明:∵BD与CE是△ABC的高∴∠BEC=∠CDB=090………1分在Rt△BEC和Rt△CDB中 BC=BC , EC = BD∴Rt△BEC≌Rt△CDB(HL)………2分∴∠ECB=∠DBC ………3分∴OB=OC ………4分(2)解:∵DE∥AC,∠EDC=30°∴∠DCA=∠EDC30°………1分∵CD平分∠ACB∴∠DCE∠DCA=30°………2分∵∠B=50°,∠DCE=30°∴∠ADC=50°+30°=80°………4分(3)2一班s=])8580()8575()85100()8585()8575[(5122222-+-+-+-+-=70………6分]8580857585100851008570[51222222)()()()()(二班-+-+-+-+-=s=160……7分∵<∴一班稳定……………………………8分25.解:(1)设采摘黄瓜x千克,采摘茄子y千克,根据题意,得…………1分⎩⎨⎧x+y=40x+1.2y=42………5分解得⎩⎨⎧x=30y=10…… 7分答:采摘黄瓜30千克,采摘茄子10千克.…………………………8分(2)30×(1.5-1)+10×(2-1.2)=23(元).…………………………9分26.(1)解:过点P 作直线EF ∥AB ,………1分 ∵AB ∥CD ∴EF ∥CD ………2分∴∠BPF=∠B=50°, ∠DPF=∠D=30°………3分 ∴∠BPD=50°+30°=80°………4分 (2) ∠B=∠BPD+∠D ………6分证明:∵AB ∥CD ∴∠B=∠BOD ………7分∵∠BOD=∠BPD+∠D ∴∠B=∠BPD+∠D ………8分 (3) ∠BPD=∠B+∠D+∠BQD ………10分 27.解:(1)0.15,0.12.…………2分(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b . 因为y =kx +b 的图像过点(30,0.15)与(60,0.12),所以⎩⎨⎧=+=+12.06015.030b k b k …3分 解方程组,得k =-0.001,b =0.18.……5分 所以线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18.······6 分 (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06……8分 由图像可知,B 是折线ABC 的最低点.解方程组⎩⎨⎧-=+-=06.0002.018.0001.0x y x y 得⎩⎨⎧==1.080y x …………10分 因此,速度是80 km/h 时,该汽车的耗油量最低,最低是0.1 L / km .·······11分28. (1)m=-1 ……1分 b=7……2分 A(2,0) ……3分 C(-7,0) ……4分 (5分当 ②,71=……7分 112=t ……8分③,61=t ……9分,32=t ……10分,2393+=t ……11分,2394-=t ……12分。

八年级上册济南数学期末试卷综合测试(Word版 含答案)

八年级上册济南数学期末试卷综合测试(Word版 含答案)

八年级上册济南数学期末试卷综合测试(Word 版 含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM∠∠=,22224590 BMD BCM ACM BCA∠∠∠∠∴=+==⨯= BMD∴是等腰直角三角形.()2解:如图2,BDM是等腰直角三角形,理由是:延长ED交AC于F,ADE和ABC△是等腰直角三角形,45BAC EAD∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE ≌MFC ,DM FM ∴=,DE FC =,AD ED FC ∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=,//CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.2.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下列长度的三条线段能组成直角三角形的是()A.5,11,12B.2,3,4C.4,6,7D.3,4,52.(4分)下列说法不正确的是()A.0.04的平方根是士0.2B.﹣9是81的一个平方根C.9的立方根是3D.﹣=33.(4分)一组数据3,1,4,2,﹣1,则这组数据的极差是()A.5B.4C.3D.24.(4分)点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)5.(4分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.6.(4分)下列各点中,在函数y=2x﹣1的图象上的点是()A.(l,3)B.(2.5,4)C.(﹣2.5,﹣4)D.(0,1)7.(4分)下列各式中正确的是()A.=±9B.=×=C.=+=3+4D.(3.14﹣π)0=18.(4分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,59.(4分)若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣210.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=35°,以C为旋转中心,将∠ABC 旋转到△A′B′C的位置,点B在斜边A′B′上,则∠BDC为()A.70°B.90°C.100°D.105°11.(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.12.(4分)如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3B.C.2D.4二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算的结果是.14.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则方程组的解是.15.(4分)在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.16.(4分)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为.17.(4分)如图,在直角坐标系中,已知点A(﹣,0)、B(0,1),对△OAB连续作旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……则三角形(2020)的直角顶点的横坐标为.18.(4分)在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx﹣3(k >0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是.三、解答题(本大题共9小题,共50分)19.(6分)(1)计算:2+﹣.(2)解方程组.20.(6分)△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A1,点B1、C1分别是B、C的对应点.(1)请画出平移后的△A1B1C1(不写画法);(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1(不写画法)21.(6分)已知直线l1:y=x+2与x轴交于点A,与y轴交于点B,直线l2:y=﹣2x+b 经过点B且与x轴交于点C.(1)b=;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.23.(8分)现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=,=;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上)24.(10分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?25.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.26.(12分)如图1,直角三角形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.27.(12分)如图,A(﹣2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(﹣2,1)为AB 的中点,直线CD交x轴于点F.(1)求直线CD的函数关系式;(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB+PF的最小值.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下列长度的三条线段能组成直角三角形的是()A.5,11,12B.2,3,4C.4,6,7D.3,4,5【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、52+112≠122,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、42+62≠72,不能组成直角三角形,故此选项错误;D、32+42=52,能组成直角三角形,故此选项正确.故选:D.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.(4分)下列说法不正确的是()A.0.04的平方根是士0.2B.﹣9是81的一个平方根C.9的立方根是3D.﹣=3【分析】依据平方根、算术平方根、立方根的性质解答即可.【解答】解:A、0.04的平方根是±0.2,选项A正确,故不符合题意;B、﹣9是81的一个平方根,选项B正确,故不符合题意;C、9的算术平方根是3,选项C错误,故符合题意;D、﹣=3,选项D正确,故不符合题意.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键.3.(4分)一组数据3,1,4,2,﹣1,则这组数据的极差是()A.5B.4C.3D.2【分析】极差是指一组数据中最大数据与最小数据的差,由此计算即可.【解答】解:这组数据的极差=4﹣(﹣1)=5.故选:A.【点评】本题考查了极差的知识,属于基础题,掌握极差的定义是关键.4.(4分)点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【解答】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.【点评】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.(4分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.6.(4分)下列各点中,在函数y=2x﹣1的图象上的点是()A.(l,3)B.(2.5,4)C.(﹣2.5,﹣4)D.(0,1)【分析】分别代入各点的横坐标求出y值,与该点纵坐标比较后即可得出结论.【解答】解:当x=1时,y=2x﹣1=3;当x=2.5时,y=2x﹣1=4;当x=﹣2.5时,y=2x﹣1=﹣6;当x=0时,y=2x﹣1=﹣1.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(4分)下列各式中正确的是()A.=±9B.=×=C.=+=3+4D.(3.14﹣π)0=1【分析】本题涉及零指数幂、二次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:A、=9,故选项错误;B、==,故选项错误;C、==5,故选项错误;D、(3.14﹣π)0=1,故选项正确.故选:D.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式等知识点的运算.8.(4分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,5【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,故选:A.【点评】主要考查了平均数,众数,中位数的概念.要掌握这些基本概念才能熟练解题.9.(4分)若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣2【分析】把x、y值代入方程组得到关于a和b的方程组,然后①+②即可求解a+b的值.【解答】解:把代入方程组中,得到,①+②,得3a+3b=9,所以a+b=3.故选:A.【点评】本题主要考查了二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.10.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=35°,以C为旋转中心,将∠ABC 旋转到△A′B′C的位置,点B在斜边A′B′上,则∠BDC为()A.70°B.90°C.100°D.105°【分析】利用三角形内角和定理得出∠ABC=55°,再利用旋转的性质结合等腰三角形的性质得出∠CB′B=∠B′BC,进而求出答案.【解答】解:∵∠ACB=90°,∠A=35°,∴∠ABC=55°,∵以直角顶点C为旋转中心,将△ABC旋转到△A′B′C′的位置,∴∠B′=∠CBA=55°,BC=B′C,∴∠CB′B=∠B′BC=55°,∴∠A′BD=180°﹣55°﹣55°=70°,∴∠BDC=∠A′+∠A′BD=35°+70°=105°.故选:D.【点评】此题主要考查了旋转的性质以及三角形内角和定理,正确得出∠CB′B=∠B′BC=55°是解题关键.11.(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.12.(4分)如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3B.C.2D.4【分析】如图,过点A作AE⊥AD交CD于E,连接BE.证明△BAE≌△CAD(SAS),∠BED=90°,利用勾股定理求出BD即可.【解答】解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故选:B.【点评】本题考查等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算的结果是﹣.【分析】直接化简二次根式,进而计算得出答案.【解答】解:原式=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.14.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则方程组的解是.【分析】一个一次函数解析式可以看做是一个二元一次方程,两个一次函数解析式可以组合成一个二元一次方程组,方程组的解就是两函数图象的交点.【解答】解:∵直线y=x+b与直线y=kx+6交于点P(3,5),∴方程组的解是:.故答案为:.【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.15.(4分)在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.【点评】本题考查了勾股定理的知识,难度不大,注意细心运算即可.16.(4分)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为2.【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:根据题意:A、B两点的坐标分别为A(2,0),B(0,1),若A1的坐标为(3,b),B1(a,2)即线段AB向上平移1个单位,向右平移1个单位得到线段A1B1;则:a=0+1=1,b=0+1=1,a+b=2.故答案为:2.【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(4分)如图,在直角坐标系中,已知点A(﹣,0)、B(0,1),对△OAB连续作旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……则三角形(2020)的直角顶点的横坐标为2019.【分析】先利用勾股定理计算出AB,从而得到△ABC的周长为3,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2020=3×673+1,于是可判断三角形2019与三角形(3)的状态一样,然后计算673×3即可得到三角形2020的直角顶点坐标.【解答】解:解:∵A(﹣,0),B(0,1),∴OA=,OB=1,∴AB==,∴△ABC的周长=+1+=3,∵△OAB每连续3次后与原来的状态一样,∵2020=3×673+1,∴三角形2019与三角形(3)的状态一样,∴三角形2020的直角顶点的横坐标=三角形2019的直角顶点的横坐标=673×3=2019,∴三角形2020的直角顶点坐标为(2019,0).故答案为2019.【点评】本题考查了坐标与图形变化﹣旋转,规律型问题,解决本题的关键是确定循环的次数.18.(4分)在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx﹣3(k >0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是<k<1.【分析】直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则这三个点是(1,﹣1),(1,﹣2),(2,﹣1),因此此时的k的取值范围应介于直线l1和直线l2的两个k值之间.【解答】解:如图:直线y=kx﹣3(k>0),一定过点(0,﹣3),把(3,0)代入y=kx﹣3得,k=1;把(3,﹣1)代入y=kx﹣3得,k=;直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围为<k<1,故答案为:<k<1.【点评】考查一次函数的图象与系数之间的关系,利用图象确定k的取值范围介在直线l1和直线l2的两个k值之间是解决问题的关键.三、解答题(本大题共9小题,共50分)19.(6分)(1)计算:2+﹣.(2)解方程组.【分析】(1)根据二次根式的运算法则即可求出答案;(2)根据二元一次方程组的解法即可求出答案;【解答】解:(1)原式=2+3﹣=5﹣=;(2),①﹣3×②得:y=﹣3,将y=﹣3代入②中得:x=6,∴该方程组的解为【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(6分)△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A1,点B1、C1分别是B、C的对应点.(1)请画出平移后的△A1B1C1(不写画法);(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1(不写画法)【分析】(1)利用点A和点A1的位置确定平移的方向和距离,然后利用此平移规律画出B、C的对应点B1、C1即可;(2)利用网格特点和旋转的性质画出A1、B1的对应点A2、B2即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C1为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21.(6分)已知直线l1:y=x+2与x轴交于点A,与y轴交于点B,直线l2:y=﹣2x+b 经过点B且与x轴交于点C.(1)b=2;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.【分析】(1)利用一次函数图象上点的坐标特征可求出点B的坐标,由直线l2经过点B,利用一次函数图象上点的坐标特征即可求出b值;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,连接BC即可得出结论;(3)利用一次函数图象上点的坐标特征可求出点A的坐标,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:(1)当x=0时,y=x+2=2,∴点B的坐标为(0,2).∵直线l2:y=﹣2x+b经过点B,∴b=2.故答案为:2.(2)由(1)可知直线l2的解析式为y=﹣2x+2.当y=0时,﹣2x+2=0,解得:x=1,∴点C的坐标为(1,0).连接BC,则直线BC即为直线l2,如图所示.(3)当y=0时,x+2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).S=AC•OB,△ABC=(OA+OC)•OB,=×(4+1)×2,=5.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点B的坐标;(2)利用一次函数图象上点的坐标特征,求出点C的坐标;(3)利用三角形的面积公式,求出△ABC的面积.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.【点评】本题考查的是勾股定理,角平分线的性质,线段垂直平分线的概念,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.(8分)现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=80,=80;(2)请在图中完成表示乙成绩变化情况的折线;(3)S甲2=200,请你计算乙的方差;(4)可看出乙将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上)【分析】(1)根据甲乙两人的5次测试总成绩相同,求出a的值,再根据平均数的计算公式求出乙的平均数即可;(2)根据求出的a的值,完成图中表示乙成绩变化情况的折线;(3)根据方差公式直接解答即可;(4)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)∵甲乙两人的5次测试总成绩相同,∴90+70+80+100+60=70+9090+a+70,解得:a=80,=(70+90+90+80+70)=80,故答案为:80;80;(2)根据图表给出的数据画图如下:(3)S2乙=[(70﹣80)2+(90﹣80)2+(90﹣80)2+(80﹣80)2+(70﹣80)2]=80.(4)∵S2乙<S甲2,∴乙的成绩稳定,∴乙将被选中参加比赛.故答案为:乙.【点评】本题考查的是条形统计图、方差的计算和性质,读懂条形统计图、获取正确的信息、掌握方差的计算公式是解题的关键.24.(10分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.【分析】(1)利用待定系数法解答即可;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【解答】解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;3)当x=2.5时,y=150,两车相距=150﹣80=70>20,货由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.【点评】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.26.(12分)如图1,直角三角形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.【分析】(1)先判得出△BCO是等边三角形,得出OC=OB,∠BCO=60°,再判断出OC=OA,进而得出AB=2BC,最后用勾股定理求出AC,即可得出结论(也可以用30度角所对的直角边是斜边的一半直接求出AB);(2)①由旋转判断出AE=AB,AD=AC,∠CAE=∠CAD=60°,进而得出∠CAE=∠DAB,判断出△CAE≌△DAB,即可得出结论;②先判断出∠DAF=30°,再借助(1)的结论求出DF,再用勾股定理求出AF,最后用勾股定理计算即可得出结论.【解答】解:(1)如图1,在BA上取一点O,使BO=BC,在Rt△ABC中,∠BCA=30°,∴∠B=90°﹣∠BCA=60°,∴△BCO是等边三角形,∴OC=BO=BC,∠BCO=60°,∴∠ACO=90°﹣∠BCO=90°﹣60°=30°=∠CAB,∴OA=OC=BC,∴AB=BO+OA=2BC=2,(注:如果学习了“30度角所对的直角边是斜边的一半”这个性质,直接求出AB=2),在Rt△ABC中,根据勾股定理得,AC===;(2)①如图2,连接BD,AE是由AB顺时针旋转60°所得,∴AB=AE,∠BAE=60°,∴∠CAE=∠CAB+∠BAE=90°,AD是由AC逆时针旋转60°所得,∴AC=AD,∠CAD=60°,∴∠BAD=∠CAB+∠CAD=90°=∠EAC,∴△CAE≌△DAB(SAS),∴BD=CE;D作DF⊥AE交EA的延长线于F,由①知,∠CAE=90°,∠CAD=60°,∴∠DAE=∠CAD+∠CAE=150°,∴∠DAF=30°,由(1)知,AC=,由旋转知,AD=AC=,在Rt△ADF中,∠DAF=30°,借助(1)的结论得,AD=2DF=,∴DF=,根据勾股定理得,AF==,由①知,AE=AB=2,∴EF=AE+AF=2+=,在R△DFE中,DE===.【点评】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定,等腰三角形的判定,勾股定理,求出DF是解本题的关键.27.(12分)如图,A(﹣2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(﹣2,1)为AB 的中点,直线CD交x轴于点F.(1)求直线CD的函数关系式;(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB+PF的最小值.【分析】(1)首先求出D、C两点坐标,再利用待定系数法即可解决问题;(2)利用全等三角形的性质证明CD=CF,由EC⊥DF推出ED=EF,推出∠CDE=∠EFD=∠ADC即可;(3)利用相似三角形的性质求出BE的长即可解决问题;(4)如图,连接BD交直线CE于点P.由(2)可知点D与点F关于直线CE对称,推出PD=PF,因为PB+PF=PB+PD≥BD,可得PB+PF的最小值为BD的长.【解答】解:(1)∵四边形ABOD为正方形,A(﹣2,2)、∴AB=BO=OD=AD=2,∴D(0,2),∵C为AB的中点,∴BC=1,∴C(﹣2,1),设直线CD解析式为y=kx+b(k≠0),则有,解得∴直线CD的函数关系式为y=x+2;(2)∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,∵CE⊥DF,∴CE垂直平分DF,∴DE=FE,∴∠EDC=∠EFC,∵AD∥BF,∴∠EFC=∠ADC,∴∠ADC=∠EDC;(3)由(2)可BF=AD=2,且BC=1,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴△BCF∽△BEC,=,∴=,∴BE=∴OE=OB﹣BE=2﹣=∴E点坐标为(﹣,0);(4)如图,连接BD交直线CE于点P.由(2)可知点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,∴PB+PF的最小值为BD的长,∵B(﹣2,0),D(0,2),∴BD=2,∴PB+PF的最小值为2.【点评】本题考查一次函数综合题、正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称﹣最短问题等知识,解题的关键是灵活运用所学知识解决问题,正确寻找全等三角形或相似三角形解决问题,学会利用对称解决最短问题,属于中考压轴题.。

[首发]山东省济南市长清区2016-2017学年八年级上学期期末考试数学试题(图片版)

[首发]山东省济南市长清区2016-2017学年八年级上学期期末考试数学试题(图片版)

= 9 ﹣3 =3﹣3 =0
(2)
2 x y 7 3x y 8
解:①+②得:5x=15 把 x=3 代入①得: ∴原方程组的解为 x=3 y=1 ………2 分 ………3 分 ………4 分
x 3 y 1
法二:由①得:y=7-2x ③ ………1 分 把③代入②得:x=3 ………2 分 把 x=3 代入①得: y=1 ………3 分 ∴原方程组的解为
解得 t1 7, ……7 分
t 2 11 ……8 分
③ t1 6, ……9 分
t 2 3, ……10 分 t 3 9 3 2 , ……11 分 t 4 9 3 2 , ……12 分
(2) 解:∵DE∥AC,∠EDC=30° ∴∠DCA=∠EDC30°………1 分 ∵CD 平分∠ACB ∴∠DCE∠DCA=30°………2 分 ∵∠B=50°,∠DCE=30°
∴∠ADC=50°+30°=80°………4 分 (注:其它思路正确适当给分)
24.解:(1)………3 分 班级 九(1) 九(2) 平均数(分) 85 85 中位数(分) 85 80 众数(分) 85 100
(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可 给分)…………5 分 (3) s一班 = [(75 85) (85 85) (100 85) (75 85) (80 85) ] =70………………6 分
2 s二班
2
1 2 2 2 2 2 5 1 2 2 2 2 2 ( [ 70 85) (100 85) (100 85) (75 85) (80 85) ] =160……………7 分 5

2017~2018学年山东济南长清区初二上学期期末数学试卷(解析)

2017~2018学年山东济南长清区初二上学期期末数学试卷(解析)

∵直线l与直线a,b相交,且a//b,∠1
=
, ∘
70
∴ , ∘ ∠1 = ∠3 = 70
∵ , ∠2 = ∠3
∴ . ∘ ∠1 = ∠2 = 70
故选:B.
编辑
D. 6,7,8
D.
∘ 90
3. 如图,小手盖住的点的坐标可能是( ).
A. (1, 2)
B. (−2, 3)
C. (−3, −1)
答案 D
=
米, 4
∠M AD
=
, ∘
45
∴DM = 4 米,
∵ , 米 ∘
∠M BC = 30
BM = 6√3
∴ (米), ∘ C M = BM ⋅ tan 30 = 6
∴ (米), C M − DM = 6 − 4 = 2
故答案为2.
解答题
19. 解方程组{ 2x + y = 5 .
x − y = −2
8/12/11 答 案
+
2 5

2 5
,不能组成直角三角形,故此选项错误.
、2
D6
+
2 7

2 8
,不能组成直角三角形,故此选项错误.
故选:B. 2. 如图,已知直线a//b,若∠1 = 70∘,则∠2的度数( ).
2018/12/11
A.
∘ 60
B.
j7i0a∘C.
∘ 80
答案 B
解析
=
, ∘
35
∠EBC
=
25∘,则∠BDE的度数等于(
).
A. ∘ 100 答案 解析
B. ∘ 110
C.210210∘8/12/11

山东省济南市长清区八年级数学上学期期末考试试题-人教版初中八年级全册数学试题

山东省济南市长清区八年级数学上学期期末考试试题-人教版初中八年级全册数学试题

某某省某某市长清区2014-2015学年八年级数学上学期期末考试试题注意事项:1.本卷共三大题,28小题。

全卷满分为120分,考试时间为90分钟。

,将选择题答案用2B铅笔涂在答题卡中卷I部分(选择题共45分)一、选择题:(本大题共15个小题,每题3分,共45分)1.9的平方根是()A.3B.3C.±3D.3±2.下列实数中是无理数的是()B.4C.227-D.π3.下列计算正确的是( )A.16- =-4 B.16 =±4 C.2(4)-=-4 D.33(4)-=-44.下列各组数,能够作为直角三角形的三边长的是()A.2,3,4B.4,5,7C.0.5,1.2,1.3D.12, 36, 395.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()°°°°6.点M( 2 ,-3)关于y轴对称的点坐标为( )A. (-2 ,3)B. (-2 ,-3)C. (-3 ,-2)D. (2 ,3)7.已知点(-6,y1),( 3,y2)都在直线531+-=xy上,则y1 与y2 的大小关系是()A.y1 >y2B.y1 =y2C.y1 <y2D.不能比较△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()°°°°(5题图)9.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7, 7(9题图)10.已知下列语句:①内错角相等;②画两个相等的角.③两直线平行,同位角相等.④有两边和其中一边的对角对应相等的两个三角形全等;⑤邻补角的平分线互相垂直.⑥等腰三角形的两个底角相等.其中是真命题的有( )⎩⎨⎧=-=+872y cx by ax 时,甲正确解得⎩⎨⎧-==23y x ,乙因抄错c 而得⎩⎨⎧=-=22y x ,则a 、c 的值是() A. ⎩⎨⎧-==24c a B. ⎩⎨⎧==54c a C. ⎩⎨⎧-=-=24c a D. ⎩⎨⎧-==114c a 初二(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人数67x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ).A.2732100x y x y +=⎧⎨+=⎩B.2723100x y x y +=⎧⎨+=⎩ C.273266x y x y +=⎧⎨+=⎩ D.272366x y x y +=⎧⎨+=⎩13.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则 ∠A 的度数为 ( ) °°°°14.如图,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB , 点D 到AB 的距离DE=3.8cm ,则线段BC 的长为( ) cm B.7.6cm C.11.4cm D.11.2cm一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、 B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形 是等腰三角形,则这样的点M 有() A.3个B.4个 C.5个D.7个D CBEA(13题图)BAOyx(14题图)卷Ⅱ部分(共75分)二、填空题:(本大题共6个小题,每题3分,共18分)16.“等腰三角形的两个底角相等”的逆命题是 . 17.3-2的相反数是 .18.若 ⎩⎨⎧-==12y x 是方程2x -ay=5的一个解,则a = .19.如图,在Rt △ABC 中,∠ABC=90°,DE 是AC 的垂直平分线, 交AC 于点D ,交BC 于点E ,∠BAE=20°,则∠C= ______ . 20.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于()x y ,的二元一次方程组y ax b y kx =+⎧⎨=⎩,的解是 .21.如图,以等腰直角△ABC 的斜边AB 为边作等边△ABD ,连结DC , 以DC 当边作等边△DCE ,B 、E 在C 、D 的同侧,若AB=2,则 BE = .三、解答题:(本大题共7个题,共57分) 22.计算:(每题4分,共8分)(1)()5-13721-⨯ (2)101252403--Pxy2-4-y kx=y ax b=+(20题图)(21题图)word23.解下列方程组:(每题4分,共8分)(1)⎩⎨⎧=+=-82573y x y x (2) ⎪⎩⎪⎨⎧=++=+153y -x 2y x 3153x )()(y24. (1) (3分)已知:如图,直线a ,b 被直线c 所截, 且∠1+∠2=180°.求证:a ∥b .题 号 得 分 一二三 22232425262728总分核 分 人座 号word(2) (4分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.25.(8分)如图,已知CD=BE,DG⊥BC于点G,EF⊥BC于点F,且DG = EF.(1)求证:△DGC≌△EFB (2)OB=OC吗?请说明理由;(3)若∠B=30°,△ADO是什么三角形?OEFDG C BA26. ( 8分) 王大伯几年前承包了甲、乙两片荒山,各栽了100棵桃树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的桃子,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山桃子的产量总和;(2)试通过计算说明,哪个山上的桃子产量较稳定?27.(9分)某文具商店销售功能完全相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,请分别写出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?28. (9分)如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点 A (4,2),动点M 沿路线O →A →C 运动. (1)求直线AB 的解析式. (2)求△OAC 的面积.(3)当△OMC 的面积是△OAC 面积的41时,求出这时点M 的坐标.2014年八年级数学期末试题参考答案与评分标准 一、选择题二、填空题:(16)有两个角相等的三角形是等腰三角形; (17)2-3; (18) 1 ;(19) 35° ;(20)⎩⎨⎧-=-=24y x ;(21) BE=1 三、解答题: 22.解:(1)()5-1-3721⨯=1-7 7⨯…………………………………………………2分=7-1 ………………………………………………… 3分 =6 ……………………………………………… 4分(2)101252403--5102810102-510- 106=⨯=…………………………………………………3分…………………………………………………4分23.解: (1)⎩⎨⎧=+=-②①82573y x y x ①×2+②得:11x=22∴x=2……………………………………………………………………2分把x=2代入①得:6-y=7∴y=-1…………………………………………………………………3分∴原方程组的解为⎩⎨⎧-==121x y …………………………………………4分(2)⎪⎩⎪⎨⎧=-++⨯=+②①15)3(2)(3153y x y x yx①化简为5x+3y=15 ③………………………………………………1分②化简为5x-3y=15 ④………………………………………………2分③+④得10x=30 x=3③-④得6y=0 y=0∴原方程组的解为:⎩⎨⎧-==03x y ………………………………………4分24.解:(1)如图,证明:∵∠1+∠2=180°∠1=∠3 ………………1分∴∠2+∠3=180°………………2分∴a ∥b ………………3分(2) ∵EF ∥BC ,∴∠BAF+∠B =180°…………………………………………1分∵∠B =80°∴∠BAF =100°………………………………………………2分3∵AC平分∠BAF,∴∠CAF==∠BAF2150°………………………………………………3分∵EF∥BC∴∠C=∠CAF=50°.…………………………………………… 4分25.(1)证明:∵DG⊥BC,EF⊥BG∴∠DGC=∠EFB=90°………………………………… 1分在Rt△DGC和Rt△EFB中∵CD=BE,DG=EF,∴Rt△DGC≌Rt△EFB(HL).………………………………… 3分(2)答:OB=OC,……………………………………………4分理由:∵Rt△DGC≌Rt△EFB∴∠B=∠C∴OB=OC …………………………………………… 6分(3)等边三角形……………………………………………8分26. (1)(千克)(千克)总产量为:(千克)……………………3分(2)∵(千克2)(千克2)……7分∴∴乙山上的桃子产量较稳定。

济南市八年级上学期期末数学试卷

济南市八年级上学期期末数学试卷

济南市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七下·玉州期末) 在平面直角坐标系中,点(﹣3,3)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)下列命题中,正确的是()A . 菱形的对角线相等B . 平行四边形既是轴对称图形,又是中心对称图形C . 正方形的对角线相等且互相垂直D . 矩形的对角线不能相等3. (2分)如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于S,①AS=AR,②QP∥AR,③△BRP≌△QSP.其中正确的是()A . 全部正确B . ①和②C . ①D . ②4. (2分) (2017七上·吉林期末) 钟表在8:25时,时针与分针的夹角度数是()A . 101.5°B . 102.5°C . 120°D . 125°5. (2分)如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE的值是().A . +1B . -1C . +2D . -26. (2分)已知y1=x﹣5,y2=2x+1.当y1>y2时,x的取值范围是()A . x>5B . x<C . x<﹣6D . x>﹣67. (2分)(2018·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:①作线段 ,分别以为圆心,以长为半径作弧,两弧的交点为;②以为圆心,仍以长为半径作弧交的延长线于点;③连接下列说法不正确的是()A .B .C . 点是的外心D .8. (2分)若点A(2,4)在函数y=kx-2的图象上,则下列各点也在此函数图象上的是()A . (0,-2)B . (1.5,0)C . (8,20)D . (0.5,0.5)9. (2分) (2017九上·河东开学考) 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A .B .C .D .10. (2分)如图,已知∠A=30°,∠BEF=105°,∠B=20°,则∠D=()A . 25°B . 35°C . 45°D . 30°二、填空题 (共8题;共8分)11. (1分) (2020八上·柳州期末) 若三角形的三边长分别为,,,则的取值范围是________.12. (1分)(2017·个旧模拟) 函数:中,自变量x的取值范围是________.13. (1分)(2019·朝阳模拟) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣ x上,则点B与其对应点B′间的距离为________.14. (1分)将一次函数y=﹣2x+6的图象向左平移________ 个单位长度,所得图象的函数表达式为y=﹣2x.15. (1分) (2016八上·余杭期中) 如图,在正方形中,,延长到点,使,连接,动点从点出发以每秒个单位的速度沿向终点运动,设点的运动时间为秒,当和全等时,的值为________.16. (1分)(2012·绍兴) 小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号).17. (1分) (2016八上·鄱阳期中) 如图,在矩形ABCD中,点P在AB上,且PC平分∠ACB.若PB=3,AC=10,则△PAC的面积为________.18. (1分)(2016八上·绍兴期中) 如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是________.三、解答题 (共6题;共48分)19. (5分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足为F,求∠BAC的度数.20. (5分)(2017·无棣模拟) 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.判断△APQ的形状,并说明理由.21. (10分) (2018八上·深圳期中) 如图,已知直线c和直线b相较于点,直线c过点平行于y轴的动直线a的解析式为,且动直线a分别交直线b、c于点D、E(E在D的上方.(1)求直线b和直线c的解析式;(2)若P是y轴上一个动点,且满足是等腰直角三角形,求点P的坐标.22. (5分) (2017八下·揭西期末) 如图,△ABC中,AB=AC,线段BC的垂直平分线AD交BC于点D,过点B 作BE∥AC,交AD的延长线于点E,求证:AB=BE23. (13分) (2019八下·卫辉期中) 如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1) B出发时与A相距________千米.(2) B走了一段路后,自行车发生故障,进行修理,用时是________小时.(3) B出发后________小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式.(5)若B的自行车不发生故障,保持出发时的速度前进,多少小时与A相遇?相遇点离B的出发点多少千米?24. (10分)(2017·张家界) 在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共48分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、23-4、23-5、24-1、24-2、。

济南市八年级上学期期末数学试卷

济南市八年级上学期期末数学试卷

济南市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020九下·兰州月考) 将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A .B .C .D .2. (2分) (2017八上·梁子湖期末) 若分式有意义,则x满足的条件是()A . x=1B . x=﹣1C . x≠1D . x≠﹣13. (2分) (2017八上·梁子湖期末) 下列运算中正确的是()A . a3+a3=2a6B . a2•a3=a6C . (a2)3=a5D . a2÷a5=a﹣34. (2分) (2017八上·梁子湖期末) 分式与的最简公分母是()A . abB . 3abC . 3a2b2D . 3a2b65. (2分) (2017八上·梁子湖期末) 如图,点B,F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A . BF=ECB . AC=DFC . ∠B=∠ED . BF=FC6. (2分) (2017八上·梁子湖期末) 若等腰三角形的两边长分别是4和9,则它的周长是()A . 17B . 22C . 17或22D . 137. (2分) (2017八上·梁子湖期末) 若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A . ﹣2B . 2C . 0D . 18. (2分) (2017八上·梁子湖期末) 从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A . a2﹣b2=(a﹣b)2B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab+b2D . a2﹣b2=(a+b)(a﹣b)9. (2分) (2017八上·梁子湖期末) 三角形中,三个内角的比为1:3:6,它的三个外角的比为()A . 1:3:6B . 6:3:1C . 9:7:4D . 3:5:210. (2分) (2017八上·梁子湖期末) 如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A . BM+CN=MNB . BM﹣CN=MNC . CN﹣BM=MND . BM﹣CN=2MN二、填空题 (共6题;共6分)11. (1分)计算:(﹣a2)3+(﹣a3)2=________12. (1分) (2017八上·梁子湖期末) 一个n边形的内角和是1260°,那么n=________.13. (1分) (2017八上·梁子湖期末) 如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?________.14. (1分) (2017八上·梁子湖期末) 已知4y2+my+1是完全平方式,则常数m的值是________.15. (1分) (2017八上·梁子湖期末) 若分式方程:3 无解,则k=________.16. (1分) (2017八上·梁子湖期末) 如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为________.三、解答题 (共8题;共74分)17. (7分)已知:a是-2的相反数,b是-2的倒数,则(1) a=________,b=________;(2)求代数式a2b+ab的值.18. (5分) (2017八上·梁子湖期末) 先化简,再求值:(+ )• ÷(+ ),其中x2+y2=17,(x﹣y)2=9.19. (5分) (2017八上·梁子湖期末) 如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.20. (15分) (2017八上·梁子湖期末) 如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2 ,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.21. (10分) (2017八上·梁子湖期末) 甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1) 1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2) 1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)22. (10分) (2017八上·梁子湖期末) 如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG 分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,求证:(1)∠BGC=90°+ ∠BAC;(2)∠1=∠2.23. (7分) (2017八上·梁子湖期末) 如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为________(直接写出结果).24. (15分) (2017八上·梁子湖期末) △ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共74分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-3、。

山东省济南市八年级上学期期末数学试卷

山东省济南市八年级上学期期末数学试卷

山东省济南市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果a2=25,,且a<b那么 a+b 的值为()A . -2或8B . 8或-8C . 2或8D . -2或-82. (2分) (2017八上·普陀开学考) 在实数、、、0. 、π、2.1234567891011121314…(自然数依次排列)、中,无理数有()A . 2个B . 3个C . 4个D . 5个3. (2分)若式子有意义,则x的取值范围为()A . x≤2B . x≤2且x≠1C . x≥2D . x≥14. (2分)已知锐角三角形的两边长分别3、4,则第三边长x的取值范围是()A . 1<x<7B . 1<x<5C . <x<5D . 1<x<5. (2分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A . -1B . 0C . 2D . 任意实数6. (2分)下列命题中:①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.其中是真命题的有()A . 3个B . 4个C . 5个D . 6个7. (2分)(2018·抚顺) 抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A . 中位数B . 众数C . 平均数D . 方差8. (2分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A . x>﹣2B . x>0C . x>1D . x<19. (2分) (2016七上·岱岳期末) 下列四个图象中,不表示某一函数图象的是()A .B .C .D .10. (2分) (2016八下·夏津期中) 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A .B .C .D .二、填空题 (共4题;共11分)11. (1分)方程=2的解是________ .12. (1分)点P(x,y)在第四象限,且x2=4,|y|=1,点P关于y轴对称的点P1的坐标是________.13. (1分)(2017·东城模拟) 已知一次函数y1=k1x+5和y2=k2x+7,若k1>0,且k2<0,则这两个一次函数的图象的交点在第________象限.14. (8分) (2017七下·防城港期中) 如图,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE与DE相交于点E,求证∠E=90°证明:∵AB∥CD(________)∴∠ABD+∠BDC=180°(________)∵BE平分∠ABD(________)∴∠EBD= ________(________)又∵DE平分∠BDC∴∠BDE= ________(________)∴∠EBD+∠EDB= ∠ABD+ ∠BDC(________)= (∠ABD+∠BDC)=90°∴∠E=90°.三、解答题 (共14题;共106分)15. (10分)(2012·南通) 计算:(1) |﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1(2)÷ ﹣× + .16. (10分) (2018八上·启东开学考) 已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.17. (5分) (2017八上·济南期末) 如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.18. (16分)(2018·岳池模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;(2)将条形统计图补充完整;(3)若某校有1000名学生,试估计最喜欢用“微信”沟通的人数;(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省济南市长清区八年级(上)期末数学试卷一、选择题(共15题,每题4分,共60分)1.4的平方根是()A.2 B.4 C.±2 D.±2.﹣的相反数是()A.﹣B.C.D.﹣3.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.255.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.6.一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.8.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A .50°B .40°C .45°D .25°9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是( )A .中位数是2B .平均数是2C .众数是2D .极差是210.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN=9,则线段MN 的长为( )A.6 B .7 C .8 D .911.如图1,某温室屋顶结构外框为△ABC ,立柱AD 垂直平分横梁BC ,∠B=30°,斜梁AC=4m .为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC (点E 在BA 的延长线上),立柱EF ⊥BC ,如图2所示,若EF=3m ,则斜梁增加部分AE 的长为( )A .0.5mB .1mC .1.5mD .2m12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC13.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差14.在平面直角坐标系中,已知A(2,﹣2),原点O(0,0),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个 B.3个 C.4个 D.5个15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.二、填空题(共6题,每题4分,共24分)16.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:==80,S甲2=230,S乙2=190,则成绩较为稳定的班级是班.17.若是方程2x﹣ay=4的一个解,则a=.18.若y=(m﹣1)x|m|是正比例函数,则m的值为.19.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.20.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.21.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=.三、解答题(本大题共7小题,共66分)22.化简计算:(1)(2)解方程组.23.(1)已知:如图1,在锐角三角形ABC中,高BD与CE相交于点O,且BD=CE,求证:OB=OC;(2)如图2,在△ABC中,CD平分∠ACB,DE∥AC,∠B=50°,∠EDC=30°,求∠ADC的度数.24.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写上表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.25.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?26.平面内的两条直线有相交和平行两种位置关系.(1)如图2,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图1,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?并证明你的结论.(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.27.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?28.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P,与x轴交于点C.(1)直接写出m和b的值及点A、点C的坐标;(2)若动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①当点Q在运动过程中,请直接写出△APQ的面积S与t的函数关系式;②求出当t为多少时,△APQ的面积等于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.2016-2017学年山东省济南市长清区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共15题,每题4分,共60分)1.4的平方根是()A.2 B.4 C.±2 D.±【考点】平方根.【分析】根据平方根的概念即可求出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2故选(C)2.﹣的相反数是()A.﹣B.C.D.﹣【考点】实数的性质.【分析】利用相反数的定义计算即可得到结果.【解答】解:﹣的相反数是,故选C3.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.4.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.5.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.【考点】命题与定理.【分析】根据命题的定义解答,命题是对事情做出正确或不正确的判断的句子叫做命题,分别判断得出答案即可.【解答】解:根据命题的定义:只有答案D、两直线平行,内错角相等.对事情做出正确或不正确的判断,故此选项正确;故选:D.6.一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】因为k=﹣2<0,b=﹣1<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣2x﹣1的图象不经过第一象限.【解答】解:对于一次函数y=﹣2x﹣1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=﹣1<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣2x﹣1的图象不经过第一象限.故选A.7.如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.【考点】解二元一次方程组;同类项.【分析】根据同类项的定义列出方程组,然后利用代入消元法求解即可.【解答】解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.8.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【考点】平行线的性质;三角形内角和定理.【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【解答】解:在△DEF中,∠1=∠F=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选B.9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()A.中位数是2 B.平均数是2 C.众数是2 D.极差是2【考点】极差;加权平均数;中位数;众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.9【考点】等腰三角形的判定与性质;平行线的性质.【分析】由∠ABC、∠ACB的平分线相交于点E,∠MBE=∠EBC,∠ECN=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得结论.【解答】解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9,故选:D.11.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为()A.0.5m B.1m C.1.5m D.2m【考点】含30度角的直角三角形;相似三角形的判定.【分析】直接利用∠B=30°,可得2EF=BE=6m,再利用垂直平分线的性质进而得出AB的长,即可得出答案.【解答】解:∵立柱AD垂直平分横梁BC,∴AB=AC=4m,∵∠B=30°,∴BE=2EF=6m,∴AE=EB﹣AB=6﹣4=2(m).故选:D.12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.13.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差【考点】统计量的选择.【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.14.在平面直角坐标系中,已知A(2,﹣2),原点O(0,0),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个 B.3个 C.4个 D.5个【考点】等腰三角形的判定;坐标与图形性质.【分析】由点A的坐标可得,OA与y轴的夹角为45°,若点P在y轴上,△AOP 构成的等腰三角形,应分OA是腰和是底,以及是等腰直角三角形还是普通等腰三角形来讨论.【解答】解:∵A(2,﹣2)∴OA=2,OA与y轴的夹角为45°①当点P在y轴的正半轴上时,OP=OA=2,则点P的坐标为(0,2);②当△AOP为等腰直角三角形时,且OA是斜边时,OP=PA=2,则点P的坐标为(0,﹣2);③当△AOP为等腰直角三角形时,且OA是直角边时,OA=PA=2,OP=4,则点P的坐标为(0,﹣4);④当点P在y轴的负半轴上时,且OA=OP=2,则点P的坐标为(0,﹣2).故选C15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的图象.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.二、填空题(共6题,每题4分,共24分)16.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:==80,S甲2=230,S乙2=190,则成绩较为稳定的班级是乙班.【考点】方差.【分析】根据方差的意义判断,方差越小数据越稳定.【解答】解:因为S2甲=230,S2乙=190,则乙的方差小于甲的方差,故成绩较为整齐的是乙班.故答案为:乙.17.若是方程2x﹣ay=4的一个解,则a=1.【考点】二元一次方程的解.【分析】将解代入二元一次方程,再解一个一元一次方程即可.【解答】解:将代入方程2x﹣ay=4,得:6﹣2a=4,解得:a=1,故答案为:1.18.若y=(m﹣1)x|m|是正比例函数,则m的值为﹣1.【考点】正比例函数的定义.【分析】根据正比例函数的定义,令m﹣1≠0,|m|=1即可.【解答】解:由题意得:m﹣1≠0,|m|=1,解得:m=﹣1.故答案为:﹣1.19.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.【考点】翻折变换(折叠问题).【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.20.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.21.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= 2.【考点】角平分线的性质;含30度角的直角三角形.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.三、解答题(本大题共7小题,共66分)22.化简计算:(1)(2)解方程组.【考点】实数的运算;解二元一次方程组.【分析】(1)直接利用二次根式的性质以及立方根的定义化简,进而得出答案;(2)直接利用加减消元法解方程得出答案.【解答】解:(1)=×﹣3=3﹣3=0;(2),①+②得:3x=15,解得:x=5,则2×5+y=7,解得:y=﹣3,故方程组的解为:.23.(1)已知:如图1,在锐角三角形ABC中,高BD与CE相交于点O,且BD=CE,求证:OB=OC;(2)如图2,在△ABC中,CD平分∠ACB,DE∥AC,∠B=50°,∠EDC=30°,求∠ADC的度数.【考点】全等三角形的判定与性质.【分析】(1)欲证OB=OC,可证∠OBC=∠OCB,只要证明△BEC≌△CDB即可;由已知可得∠BEC=∠CDB=90°,BD=CE,BC是公共边,即可证得;(2)根据两直线平行,内错角相等求出∠ACD,再根据角平分线的定义求出∠ACB,根据三角形内角和定理求出∠A,再利用三角形内角和定理解答即可.【解答】(1)证明:∵CE⊥AB,BD⊥AC,∴△EBC和△DCB都是直角三角形,在Rt△EBC与Rt△DCB中,∴Rt△EBC≌Rt△DCB(HL),∴∠BCE=∠CBD,∴OB=OC;(2)解:∵DE∥AC,∠EDC=30°,∴∠ACD=∠EDC=30°,∵CD平分∠ACB,∴∠ACB=2∠ACD=2×30°=60°,在△ABC中,∠A=180°﹣∠B﹣∠ACB=180°﹣50°﹣60°=70°,在△ACD中,∠ADC=180°﹣∠ACD﹣∠A=180°﹣30°﹣70°=80.24.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写上表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.【考点】方差;条形统计图;算术平均数;中位数;众数.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,九(2)班的中位数是80;九(2)班的众数是100;九(2)的平均数为(70+75+80+100+100)÷5=85,(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3)= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+2]=70,= [(70﹣85)2+2+2+(75﹣85)2+(80﹣85)2]=160.25.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【考点】二元一次方程组的应用.【分析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【解答】解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.26.平面内的两条直线有相交和平行两种位置关系.(1)如图2,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图1,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?并证明你的结论.(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.【考点】平行线的性质.【分析】(1)过点P作直线EF∥AB,由平行线的性质即可得出结论;(2)根据平行线的性质及三角形外角的性质即可得出结论;(3)连接QP并延长,由三角形外角的性质即可得出结论.【解答】(1)解:如图2,过点P作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠BPF=∠B=50°,∠DPF=∠D=30°,∴∠BPD=50°+30°=80°;(2)∠B=∠BPD+∠D.证明:∵AB∥CD,∴∠B=∠BOD.∵∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D.(3)∠BPD=∠B+∠D+∠BQD.证明:如图3,连接QP并延长,∵∠BPE=∠B+∠CQE,∠DPE=∠D+∠DQE,∴∠BPE+DPE=∠B+∠CQE+∠D+∠DQE,即∠BPD=∠B+∠D+∠BQD.27.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【考点】一次函数的应用.【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+×0.002=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.28.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P,与x轴交于点C.(1)直接写出m和b的值及点A、点C的坐标;(2)若动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①当点Q在运动过程中,请直接写出△APQ的面积S与t的函数关系式;②求出当t为多少时,△APQ的面积等于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把点P坐标代入直线l1解析式可求得m,可求得P点坐标,代入直线l2可求得b,可求得直线l2的解析式,在y1=0可求得A点坐标,令y2=0可求得相应x的值,可求得C点坐标;(2)①分点Q在A、C之间和点Q在A的右边两种情况,分别用t可表示出AQ,则可表示出S;②令S=3可求得t的值;③可设出Q坐标为(x,0),用x可分别表示出PQ、AQ和AP的长,分PQ=AQ、PQ=AP和AQ=AP三种情况可得到关于的方程,可求得相应的x的值,则可求得Q 点的坐标,则可求得CQ的长,可求得t的值.【解答】解:(1)∵点P在直线l1上,∴3=﹣m+2,解得m=﹣1,∴P(﹣1,3),∵y2=x+b过点P,∴3=×(﹣1)+b,解得b=,∴直线y2=x+,令y2=0可得0=x+,解得x=﹣7,∴点C坐标为(﹣7,0),在y1=﹣x+2中,令y1=0可得﹣x+2=0,解得x=2,∴A点坐标为(2,0);(2)①由题意可知CQ=t,P到x轴的距离为3,∵A(2,0),C(﹣7,0),∴AC=2﹣(﹣7)=9,当Q在A、C之间时,则AQ=AC﹣CQ=9﹣t,∴S=×3×(9﹣t)=﹣t+;当Q在A的右边时,则AQ=CQ﹣AC=t﹣9,∴S=×3×(t﹣9)=t﹣;②令S=3可得﹣t+=3或t﹣=3,解得t=6或t=11,即当t的值为6秒或11秒时△APQ的面积等于3;③设Q(x,0)(x≥﹣7),∵A(2,0),P(﹣1,3),∴PQ2=(x+1)2+32=x2+2x+10,AQ2=(x﹣2)2=x2﹣4x+4,AP2=(2+1)2+32=18,∵△APQ为等腰三角形,∴有PQ=AQ、PQ=AP和AQ=AP三种情况,当PQ=AQ时,则PQ2=AQ2,即x2+2x+10=x2﹣4x+4,解得x=﹣1,则Q点坐标为(﹣1,0),∴CQ=﹣1﹣(﹣7)=6,即t=6;当PQ=AP时,则PQ2=AP2,即x2+2x+10=18,解得x=﹣4或x=2,则Q点坐标为(﹣4,0)或(2,0)(与A点重合,舍去),∴CQ=﹣4﹣(﹣7)=3,即t=3;当AQ=AP时,则AQ2=AP2,即x2﹣4x+4=18,解得x=2±3,则Q点坐标为(2+3,0)或(2﹣3,0),∴CQ=2+3﹣(﹣7)=9+3或CQ=2﹣3﹣(﹣7)=9﹣3,即t=9+3或t=9﹣3;综上可知存在满足条件的t,其值为6或3或t=9+3或t=9﹣3.2017年2月21日。

相关文档
最新文档