2016_2017年八年级上学期数学期中复习A卷(5)

合集下载

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学模拟试卷及答案一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是()2.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 4.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()5.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)6.十二边形的外角和是()A.180°B.360°C.1800°D.2160°7.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2 B.3 C.4 D.510.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠BDC的度数是()A.110°B.70° C.80° D.75°二、填空题(每题4分,共24分)11.三角形的两边长分别是3和7,则其第三边x的范围为.12.如果一个正多边形的内角和是720°,则这个正多边形是正边形.13.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B= ,∠C= .14.如图,Rt△ABC中,∠A=30°,AB=12cm,则BC= cm.15.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.16.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则DC= .(写等于哪条线段)三、解答题(一)(每题6分,共18分)17.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标.18.已知AB=CD,BE=CF,AE=DF.求证:AB∥CD.19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?四、解答题(二)(每题7分,共21分)20.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.21.某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)22.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.五、解答题(三)(每题9分,共27分)23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、选择题(每题3分,共30分)1.A.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.2.C.解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.3.D.解:A、∵2+3=5,∴不能构成三角形,故本选项错误;B、∵3+3=6,∴不能构成三角形,故本选项错误C、∵5+2=7<8,∴不能构成三角形,故本选项错误;D、∵6﹣4<5<6+4,∴能构成三角形,故本选项正确.4.B.解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.5.A.解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).6.B.解:十二边形的外角和是360°.7.解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.8.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选B.9.解:∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB,∴∠BAC=∠CDB.同理得△ABD≌△DCA.又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO.故选B.10.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠BDC=180°﹣70°=110°.故选A.二、填空题(每题4分,共24分)11.解:根据三角形的三边关系定理可得:7﹣3<x<7+3,故4<x<10,故答案为:4<x<10.12.解:设此多边形边数为n,由题意得:180(n﹣2)=720,解得:n=6,故答案为:六.13.解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.14解:∵Rt△ABC中,∠A=30°,AB=12cm,∴BC=AB=6cm,故答案为:6.15.解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.16.解:DC=BE,∵△ABD和△ACE都是等边三角形,∴AD=AB,AE=AC,∠BAD=∠EAC=60°,∴∠BAD+∠BAC=∠EAC+∠BAC∴∠DAC=∠BAE,∵在△DAC和△BAE中,,∴△DAC≌△BAE,(SAS)∴BE=CD.故答案为:BE.三、解答题(一)(每题6分,共18分)17.解:如图所示:A′(3,2),B′(4,﹣3),C′(1,﹣1).18.证明:由AB=CD,BE=CF,AE=DF得△ABE≌△DCF;即∠B=∠C,∴AB∥CD.19.解:∵∠BAD=20°,AB=AD=DC,∴∠ABD=∠ADB=80°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°,又∵AD=DC,∴∠C=∠ADB=40°,∴∠C=40°.四、解答题(二)(每题7分,共21分)20.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.21.解:点P为线段MN的垂直平分线与∠AOB的平分线的交点,则点P到点M、N的距离相等,到AO、BO的距离也相等,作图如下:22.解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.五、解答题(三)(每题9分,共27分)23.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BE D=90°∴∠BDE=30°,∴BE=12 BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.24.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.25.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.。

人教版2016-2017年八年级上期中数学试卷含答案

人教版2016-2017年八年级上期中数学试卷含答案

八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。

2016-2017学年人教版初二上册数学期中考试试卷含答案

2016-2017学年人教版初二上册数学期中考试试卷含答案

初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。

0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。

2016-2017学年深圳XX学校八年级上数学期中测试卷及答案

2016-2017学年深圳XX学校八年级上数学期中测试卷及答案

2016-2017学年第一学期八年级期中测试卷班级__________ 姓名___________一.选择题(共12小题)1.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,92.下列根式中,不是最简二次根式的是()A. B. C. D.3.图中字母所代表的正方形的面积为144的选项为()A.B. C. D.4、在-1.414,2,π,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A.3个 B.4个 C. 5个 D. 2个5.如图1,小手盖住的点的坐标可能是()A.(1,﹣1)B.(2,2)C.(﹣3,﹣3)D.(﹣3,4)6.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限图17.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P 的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)8.一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定9. 下列说法错误的是()A.5是25的算术平方根 B.1是1的一个平方根C.(-4)2的平方根是-4 D.0的平方根与算术平方根都是010.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5 11.已知一次函数y=kx+b的图象如图2所示,当x<2时,y的取值范围是()图2 A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<012、正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.二.填空题(共4小题)13. 在直角坐标系中,点P(﹣3,2)关于x轴对称的点Q的坐标是.14.81的平方根是15.若函数23y x b=+-是正比例函数,则b= 。

山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)

山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)

2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a﹣3)2(a+3)25.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°6.下列分式约分,正确的是()A.=a2B.=C.=D.=07.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1 D.=9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或710.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第象限.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=(度)13.计算:=.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为cm.16.化简+的结果是.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【解答】解:∵2x2+1>1,∴不论字母取何值都有意义,故选:D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a ﹣3)2(a+3)2【考点】最简公分母;通分.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是4(a﹣3)(a+3)2,故选A.5.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【考点】等腰三角形的判定.【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.【解答】解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B==35°.故选B.6.下列分式约分,正确的是()A.=a2B.=C.=D.=0【考点】约分.【分析】根据分式的基本性质分别进行化简,即可得出答案.【解答】解:A、=a3,故本选项错误;B、=,故本选项错误;C、=,故本选项正确;D、=1,故本选项错误;故选C.7.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1D.=【考点】分式的基本性质.【分析】根据分子、分母、分式的值改变其中的两个的符号,分式的值不变,可得答案.【解答】解:=,故D符合题意;故选:D.9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】矩形的性质;全等三角形的判定.【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16﹣2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:AF=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选C.10.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°【考点】平行线的性质;轴对称的性质;翻折变换(折叠问题).【分析】先根据折叠的性质以及对顶角相等,得出∠A'FG=90°﹣40°=50°,再根据∠1+∠EFG=180°,可得∠1+∠1﹣50°=180°,进而得出∠1=115°.【解答】解:∵∠2=40°,∴∠FGA'=40°,又∵∠A'=∠A=90°,∴Rt△A'FG中,∠A'FG=90°﹣40°=50°,∴∠EFG=∠EFA'﹣50°,又∵∠1=∠EFA',∴∠EFG=∠1﹣50°,又∵∠1+∠EFG=180°,∴∠1+∠1﹣50°=180°,解得∠1=115°,故选:B.二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第四象限.【考点】关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由题意,得2﹣a=1,b+5=3,解得a=1,b=﹣2,点C(a,b)在第四象限,故答案为:四.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=60(度)【考点】等边三角形的判定与性质.【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.13.计算:=2.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减求解即可.【解答】解:原式===2.故答案为2.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为3cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=DE.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴CE=DE,∵AE=3ED,如果AC=12cm,∴AE=3EC,∴CE=DE=3cm,∵故答案为:3.16.化简+的结果是.【考点】分式的加减法.【分析】先通分、再根据分式的加法法则计算即可.【解答】解:原式=+=,故答案为:.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为68°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AE=AC,∠DAE=∠BAC,根据三角形内角和定理求出∠DAB,根据垂直的定义计算即可.【解答】解:∵△ABC≌△ADE,∴AE=AC,∠DAE=∠BAC,∴∠EAC=180°﹣79°﹣79°=22°,∴∠DAB=22°,∵DE⊥AB,∴∠D=90°﹣22°=68°,故答案为:68°.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.【考点】轴对称﹣最短路线问题;矩形的性质.【分析】根据图形和题意,作点P关于直线CD的对称点P′,然后根据两点之间线段最短,可以解答本题.【解答】解:作点P关于直线CD的对称点P′,如右图所示,∵长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,∴AE=a+0.5a=1.5a,EP′=0.5b,tan30°=,∴b=,∵两点之间线段最短,∴AQ+QP的最小值就是线段AP′的长度,∵∠AEP′=90°,EP′=0.5b,AE=1.a,∴AP′====,故答案为:.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)根据两角和其中的一角的对边对应相等的两个三角形全等即可判定.(2)根据全等三角形的性质可知BC=EF,推出BE=CF,由此即可解决问题.【解答】(1)证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),(2)∵△ABC≌△DEF,∴BC=EF,即BE+EC=EC+CF,∴BF=CF,∵BF=13,EC=7,∴BE+CF=BF﹣EC=6,∴BE=CF=3,∴BC=BE+EC=3+7=10.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.【考点】分式的混合运算.【分析】(1)根据分式乘除法法则即可化简运算.(2)根据因式分解以及分式的基本性质即可化简运算.【解答】解:(1)原式=•=(2)原式=(+)•=﹣•=1﹣x21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.【考点】等腰三角形的性质.【分析】首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.【解答】解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.【考点】分式的化简求值;相反数.【分析】先把除法变成乘法,算乘法,再算加法,最后代入求出即可.【解答】解:÷+=•+=+=,∵x的值满足x+1与x+6互为相反数,∴x+1+x+6=0,x+1=﹣(x+6),∴原式=﹣1.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的性质.【分析】(1)由△ABC和△ECD为含45°的直角三角形,由此即可得出EC=DC、BC=AC,结合∠ECB=∠DCA=90°即可利用全等三角形的判定定理SAS证出△BCE≌△ACD,再根据全等三角形的性质即可得出结论;(2)由△BCE≌△ACD即可得出∠EBC=∠DAC,根据∠EBC+∠BEC=90°即可得出∠DAC+∠BEC=90°,结合三角形内角和定理即可得出∠APE=90°,再利用等腰三角形的三线合一即可证出AD平分∠BAE.【解答】证明:(1)∵两个含有45°的三角尺如图放置,∠ECD=ACB=90°,∴EC=DC,BC=A C.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DA C.∵∠EBC+∠BEC=90°,∴∠DAC+∠BEC=90°,∴∠APE=90°,即AP⊥BE.又∵AB=AE,∴AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【解答】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.2017年4月1日。

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。

这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。

为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。

2016-2017学年第一学期八年级期中联考数学试题

2016-2017学年第一学期八年级期中联考数学试题

2016-2017学年八年级第一学期期中联考数学试卷(考试时间100分钟,满分120分)一、选择题(每题3分,共30分)1.如图所示,图中不是轴对称图形的是( )A.B.C.D.2.下列各组数中,能构成三角形的是( )A.1,2,4;B.4,5,9;C.4,6,8;D.12,5,53.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是( ) A.①②B.②③C.③④D.①④4.一个多边形的内角和与外角和相等,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形5.在△ABC中,∠C=90°,∠A=30°,AB=10,则BC的长是( )A.5 B.6 C.8 D.106.在平面直角坐标系中,点(5,6)关于x轴的对称点是( )A.(6,5)B.(﹣5,6)C.(5,﹣6)D.(﹣5,﹣6)7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C;B.AD=CB ;C.BE=DF;D.AD∥BC8.下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5(a≠0)9.若3x=15,3y=5,则3x+y等于()A.75;B.3;C.20 ;D.1010.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( ) A.5 B.4 C.3 D.2二.填空题(每题4分,共24分)11.如图,若AC⊥BC,∠A=58°,D是CB延长线上的一点.则∠ABD=__________°.12.计算:(-2ab2)3 =-⨯-=.(0.25)(4)13.计算111214.等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是__________cm.15.如图,在平面平角坐标系中,将直角三角形顶点放在P(4,4)处,两直角边与坐标轴交点分别为A,B.则OA+OB的长是15题 16题16.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是__________度.三、解答题(本大题共18分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)先化简,再求值:(x+1)(x﹣1)﹣x(1﹣x)-2x2,其中x=2.18.(6分)如图,AC=BD且∠A=∠B,求证:AO=BO.19.(6分)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:(要求保留作图痕迹,不必写出作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)直接写出P点坐标四、解答题(本大题共21分.解答应写出文字说明、证明过程或演算步骤.)20.(7分)如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3cm,求CD的长度.21.(7分)如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=8,求AC的长.22.(7分.如图,已知在△ABC中,AB=AC,∠BAC=120o,CF=3cm,AC的垂直平分线EF交AC于点E,交BC于点F.求:BF的长度.五、解答题(本大题共27分.解答应写出文字说明、证明过程或演算步骤.)23.(9分)在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.24(9分)如图,已知AD ∥BC ,AE,BE 分别平分∠DAB, ∠CBA.交DC 于E(1) 求证:AE ⊥BE;(2) 求证:DE=CE;(3)若AE=6,BE=8,则四边形ABCD 的面积=25(9分)在△ABC 中,∠ACB=90°,AC=BC ,AB=8cm ,CD ⊥AB ,垂足为D ,M 为边AB 上任意一点,点N 在射线CB 上(点N 与点C 不重合),且MC=MN ,NE ⊥AB ,垂足为E .(1)如图1,直接求出CD= cm ;(2)如图1,当∠MCD=30°时,直接求出ME= cm ;(3)如图2,当点M 在边线段AB 上运动,同时点N 在射线CB 上运动(点N 与点C 不重合)时,试探索ME 的长是否会改变?说明你的理由?E D C B A。

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

2016-2017 人教版第一學期 八年級數學期中試卷一.用心選一選:(每小題3分,共30分)1.下列各式是因式分解且完全正確の是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x x C .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.醫學研究發現一種新病毒の直徑約為0.000043毫米,這個數用科學記數法表 示為( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )個。

A .2 B. 3 C. 4 D. 5 4. 多項式 2233449-18-36a x a x a x 各項の公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如圖,用三角尺可按下面方法畫角平分線:在已知の∠AOBの兩邊上分別取點M 、N ,使OM =ON ,再分別過點M 、N 作OA 、OB の垂線,交點為P ,畫射線OP .可證得△POM ≌△PON ,OP 平分∠AOB .以上依畫法證明 △POM ≌△PON 根據の是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某種機械零件,已知甲每小時比乙多做6個,甲做90個所用の時間與乙做60個所用の時間相等。

如果設甲每小時做x 個零件,那麼下面所列方程中正確の是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x=7. 如圖,已知△ABC ,則甲、乙、丙三個三角形中和△ABC 全等の是( )baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正確の是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a bc c++= D .222-4-2(-2)a a a a += 9.如圖,正方形ABCD の邊長為4,將一個足夠大の直角三角板の直角頂點放於點A 處,該三角板の兩條直角邊與CD 交於點F ,與CB 延長線交於點E .四邊形AECF の面積是( )A. 16 B .4 C .8 D. 1210.在數學活動課上,小明提出這樣一個問題:如右圖, ∠B =∠C = 90︒, E 是BC の中點, DE 平分∠ADC, ∠CED = 35︒, 則∠EAB の度數 是 ( )A .65︒B .55︒C .45︒D .35︒二.細心填一填:(每小題3分,共24分) . 11.計算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ の值是零,那麼x の值是 _________________ .14. 將一張長方形紙片按如圖所示の方式折疊,BC BD ,為折痕, 則CBD ∠の度數為_ _.15. 計算: 2422x x x --- = __________________. 16. 如圖,AC 、BD 相交於點O ,∠A =∠D ,請你再補充一個條件, 使得△AOB ≌△DOC ,你補充の條件是 .17. 如圖,點P 是∠BAC の平分線AD 上一點,PE ⊥AC 於點E . 已知PE =3,則點P 到AB の距離是_________________.18. 在平面直角坐標系中,已知點A (1,2),B (5,5),C (5,2),存在點E , 使△ACE 和△ACB 全等,寫出所有滿足條件のE 點の坐標 .三.用心做一做(19、20題每題3分,21、22、23題每題4分,共26分)19.因式分解: 24a -32a +64 20.計算:3222)()(---⋅a ab (結果寫成分式)21.計算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化簡: 21x +21+x +1x -1⎛⎫÷ ⎪⎝⎭,再選擇一個恰當の數代入求值.四.應用題(本題5分)24. 甲乙兩站相距1200千米,貨車與客車同時從甲站出發開往乙站,已知客車の速度是貨車速度の2倍,結果客車比貨車早6小時到達乙站,求客車與貨車の速度分別是多少?解:DCB五、作圖題(本題2分)25.畫圖 (不用寫作法,要保留作圖痕跡......)尺規作圖:求作AOB∠の角平分線OC.六、解答題:(28題5分,其他每題4分,共17分)26.已知,如圖,在△AFD和△CEB中,點A,E,F,C在同一直線上,AE=CF,DF=BE,AD=CB. 求證:AD∥BC.27.已知:如圖,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求證:(1)∠B=∠D (2) AM=AN.28.如圖,已知∠1=∠2,P為BN上の一點,PF⊥BC於F,PA=PC,求證:∠PCB+∠BAP=180º.29. 已知:在平面直角坐標系中,△ABCの頂點A、C別在y軸、x軸上,且∠ACB=90°,AC=BC.(1)如圖1,當(0,2),(1,0)A C-,點B則點Bの坐標為;(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸於點D,試判斷OABDOC+與OABDOC-哪一個是定值,並說明定值是多少?請證明你の結論.F CFDCBAEO附加題1.選擇題:以右圖方格紙中の3個格點為頂點,有多少個不全等の三角形( ) A .6 B .7 C .8 D .92.填空題:考察下列命題:(1)全等三角形の對應邊上の中線、高線、角平分線對應相等;(2)兩邊和其中一邊上の中線對應相等の兩個三角形全等;(3)兩邊和第三邊上の中線對應相等の兩個三角形全等;(4)兩角和其中一角の角平分線對應相等の兩個三角形全等;(5)兩角和第三角の角平分線對應相等の兩個三角形全等;(6)兩邊和其中一邊上の高線對應相等の兩個三角形全等;(7)兩邊和第三邊上の高線對應相等の兩個三角形全等;其中正確の命題是 (填寫序號).3.解答題:我們知道,假分數可以化為帶分數. 例如: 83=223+=223. 在分式中,對於只含有一個字母の分式,當分子の次數大於或等於分母の次數時,我們稱之為“假分式”;當分子の次數小於分母の次數時,我們稱之為“真分式”. 例如:11x x -+,21x x -這樣の分式就是假分式;31x + ,221xx + 這樣の分式就是真分式 . 類似の,假分式也可以化為帶分式(即:整式與真分式和の形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)將分式12x x -+化為帶分式; (2)若分式211x x -+の值為整數,求x の整數值;解:參考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m 22. (1) x=1 (2)無解 23. -1 24. x=625.略 26. SSS 證全等 27.(1)SAS 證全等 (2)ASA 證全等 28. 過點P 作PE 垂直BA 於點E ,HL 證全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加題1.選擇題: C2.填空題: 正確の命題是 1,2,3,4 ,5 3.解答題:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 當211x x -+為整數時,31x +也為整數.1x ∴+可取得の整數值為1±、3±.x ∴の可能整數值為0,-2,2,-4.。

2016-2017学年八年级(上)期中数学试卷...

2016-2017学年八年级(上)期中数学试卷...

2016-2017学年八年级(上)期中数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()5题图4题图A.1个B.2个C.3个D.4个6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()6题图9题图A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°8.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()10题图11题图A.15 B.30 C.45 D.6011.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()13题图14题图12题图A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()15题图 A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.2016-2017学年八年级(上)期中数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.若一个三角形的两边长分别为3和7,则第三边长可能是( C )A.2 B.3 C.5 D.112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( D )A.B.C.D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( A )A.B.C.D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是( B )A.110°B.120°C.130°D.140°5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( C )A.108°B.90° C.72° D.60°8.一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( D )A.0个B.1个C.2个D.3个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( B )A.15 B.30 C.45 D.6011.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是(B)A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( B )A.13 B.15 C.17 D.1913.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( B )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.如图,AD是△ABC的角平分线,则AB:AC等于( A )A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( D )A.1个B.2个C.3个D.4个二.解答题(共9小题)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:∠CAD,∠CBN ;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.【解答】解:(1)①∵CM∥BN,BN⊥AN,∴∠CMD=∠N=90°,∠MCD=∠CBN,∵∠ACB=90°,∴∠ACM+∠CAD=90°,∠MCD+∠ACM=90°,∴∠MCD=∠CAD,故答案为∠CAD、∠CBN.②在图1中画出图形,如图所示,结论:AM=CG+BN,证明:在△ACM和△BCG中,,∴△ACM≌△BCG,∴CM=CG,AM=BG,∵∠CMN=∠MNG=∠G=90°,∴四边形MNGC是矩形,∴CM=GN=CG,∴AM=BG=BN+GN=BN+CG.(2)过点C作CE平分∠ACB,交AD于点E.∵在△ACD和△BDN中,∠ACB=90°,AN⊥ND ∴∠4+∠ADC=90°=∠5+∠BDN又∵∠ADC=∠BDN∴∠4=∠5,∵∠ACB=90°,AC=BC,CE平分∠ACB,∴∠6=45°,∠2=∠3=45°又∵CM∥AB,∴∠1=∠6=45°=∠2=∠3,在△ACE和△BCM中,,∴△ACE≌△BCM(ASA)∴CE=CM又∵∠1=∠2,CD=CD∴∠CDE=∠CDM又∵∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°∴∠MDN+2∠BDN=180°.。

【中学数学试题】2016-2017学年八年级上学期期中考试数学试题

【中学数学试题】2016-2017学年八年级上学期期中考试数学试题

第6题一.填空题(本题共10小题,每小题3分,共30分)
1.下列四个图形中,是轴对称图形的是()
A .
B .
C .[来源学科网Z.X.X.K]
D .
2.把三角形的面积分为相等的两部分的是()
A .三角形的中线
B .三角形的角平分线
C .三角形的高
D .以上都不对
3.下列命题是真命题的是()
A .经过三角形一边中点的线段是三角形的中线
B .三角形的角平分线是一条射线
C .三角形的高线一定在三角形的内部
D .三角形同一边上的中线、高和这边所对角的角平分线,最短的线段一定是高
4..如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且
CD 、BE 相交于一点P ,
若∠A=50°,则∠BPC=(
) A 、150°
B 、130°
C 、120°
D 、100°5.直角三角形纸片的两直角边长分别为
6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,则折
痕DE 的长是( ) A .425
B .415
C .225
D .2
156.如图,已知在△ABC 中,BD 是AC 边上的高线,CE 平分∠ACB ,交
BD 于点E ,BC=5,DE =2,则△BCE 的面积等于(
)A .10;B .7;C .5;D .3. A
B
C D
E
P 第4题第5题。

05 【人教版】八年级上期中数学试卷(含答案)

05 【人教版】八年级上期中数学试卷(含答案)

.... 如果只添加一个 上学期八年级数学期中考试本试卷共 6 页,分为两卷,第Ⅰ卷 100 分,第Ⅱ卷 50 分。

共 25 小题,满分 150 分。

考试用时 120 分钟。

注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的班级、姓名、 学号,再用 2B 铅笔把对应这两个号码的标号涂黑.2.选择题目每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动, 用橡皮擦擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题目必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答 案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然 后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不 按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试过程中不能使用计算器。

第Ⅰ卷(本卷满分 100 分)一、选择题目 (10 小题,每小题 3 分,共 30 分)1.下面所给的交通标志图中是轴对称图形的是()ABC D2.下列长度的三条线段中,能组成三角形的是( )A.3cm ,5cm ,8cmB.8cm ,8cm ,18cmC.0.1cm ,0.1cm ,0.1cmD.3cm ,40cm ,8cm3.已知实数 x ,y 满足,则以 x ,y 的值为两边长的等腰三角 形的周长是( ) A .20 或 16 B .20 C .16 D .以上答案均不对 4.已知三角形的三个外角的度数比为 2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120°5.如图,在△ABC 中,AB=AC ,点 D 、E 在 BC 上,连接 AD 、AE ,条件使∠DAB=∠EAC ,则添加的条件不能为( ) A .BD=CE B .AD=AE C .DA=DE D .BE=CD第 5 题图O6.如图,将△ABC 沿直线 DE 折叠后,使得点 B 与点 A 重合. 已知 AC=5cm ,△ADC 的周长为 17cm ,则 BC 的长为( )A .7cmB .10cmC .12cmD .22cm7.如果两个三角形中两条边和其中一边上的高对应相等,那 么这两个三角形的第三条边所对的角的关系是( )A.相等B.不相等C.互余或相等D.互补或相等8、如图,AD 是△ABC 的角平分线,点 O 在 AD 上,且 OE ⊥BC 于点 E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( ) B第 6 题图AD E CA .20°B .30°C .10°D .15°9.如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同 侧分别作正三角形 ABC 和正三角形 CDE ,AD 与 BE 交与点 O ,AD 与 BC 交与点 P ,BE 与 CD 交与点 Q ,连接 PQ .有下列结论: ①AD=BE ;②AP=BQ ;③∠AOB=60°;④DE=DP ;⑤△CPQ 为 正三角形。

2017年八年级上学期期中数学试卷两套合集十三附答案解析

2017年八年级上学期期中数学试卷两套合集十三附答案解析

2017年八年级上学期期中数学试卷两套合集十三附答案解析八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣13.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′.12.五边形的内角和为.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是.14.如图,已知AD=BC,根据“SSS”,还需要一个条件,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件,可证明△ABC≌△BAD.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是cm.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是.(填上一个条件即可)三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE ≠90°,方案(Ⅱ)是否成立?.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念分别分析求解.【解答】解:A、轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣1【考点】关于x轴、y轴对称的点的坐标.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与y轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,﹣2)对称,∴AB平行与y轴,∴对称轴是直线y=(﹣2+2)=0.故选A.3.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°【考点】三角形内角和定理.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故选:D.4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能组成三角形;D、3+2<6,不能够组成三角形.故选B.6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°【考点】全等三角形的判定与性质.【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时易得∠A=90°﹣40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°﹣40°=50°,∴∠A=130°,故选D.10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B 选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1),故答案为:(1,1).12.五边形的内角和为540°.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是16:25:08.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为:16:25:08.14.如图,已知AD=BC,根据“SSS”,还需要一个条件BD=AC,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件∠DAB=∠CBA,可证明△ABC≌△BAD.【考点】全等三角形的判定.【分析】图形中隐含条件BC=BC,找出第三边BD和AC即可,找出∠DAB和∠CBA即可.【解答】解:BD=AC,∠DAB=∠CBA,理由是:在△ABC和△BAD中,∴△ABC≌△BAD(SSS),在△ABC和△BAD中,∴△ABC≌△BAD(SAS).故答案为:BD=AC,∠DAB=∠CBA.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是18 cm.【考点】线段垂直平分线的性质.【分析】由于CD垂直平分AB,所以AC=BC,AD=BD,而AC=4cm,AD=5cm,由此即可求出四边形ADBC的周长.【解答】解:∵CD垂直平分AB,若AC=4cm,AD=5cm,∴AC=BC=4cm,AD=BD=5cm,∴四边形ADBC的周长为AD+AC+BD+BC=18cm.故填空答案:18.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(填上一个条件即可)【考点】直角三角形全等的判定.【分析】要证明△ABC与△ADC全等,现有一角一边分别对应相等,还缺少一个条件,可选边,也可选角.【解答】解:添加AB=AD或BC=CD,依据HL,可证明△ABC与△ADC全等;∠BAC=∠DAC或∠ACB=∠ADC,依据AAS,可证明△ABC与△ADC全等.故需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(答案不唯一)故填AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)【考点】作图-轴对称变换.【分析】①根据角平分线的做法作图即可;②分别找出A、B、C关于l的对称点,再顺次连接即可.【解答】解:①以O为圆心,任意长为半径画弧分别交OA、OB于E、F两点,分别于E、F为圆心,大于EF为半径画弧交于点C分,连接OC:②过点A、B、C作直线l的对称点A1、B1、C1,连接AB、BC、AC.18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】作点A关于L的对称点A′,连接A′B交L于点P,则点P即为所求点.【解答】解:如图所示.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.【解答】(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【分析】需证两次三角形全等,△PDB≌△PCB和△ADB≌△ACB,分别利用ASA,SAS证明.【解答】解:解法一、∵∠1=∠2,∴∠DPB=∠CPB,又∵PB是公共边,∠3=∠4,∴△PDB≌△PCB,∴DB=CB,∵∠3=∠4,AB是公共边,∴△ADB≌△ACB(SAS),∴AD=AC.解法二、连接DC,∵∠1=∠2,∠1+∠BPD=180°,∠2+∠BPC=180°,∴∠BPD=∠BPC,在△PBD和△PBC中∵,∴△PBD≌△PBC(ASA),∴DB=BC,PD=PC,∴AB垂直平分DC,∴AD=AC.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.【考点】等腰三角形的判定与性质.【分析】①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【解答】解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?不成立.【考点】三角形综合题.【分析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.【解答】解:(1)方案(Ⅰ)可行;理由如下:∵DC=AC,EC=BC,在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE,∴测出DE的距离即为AB的长,故方案(Ⅰ)可行.(2)方案(Ⅱ)可行;理由如下:∵AB⊥BC,DE⊥CD∴∠ABC=∠EDC=90°,在△ACB和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED,∴测出DE的长即为AB的距离,故方案(Ⅱ)可行.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴只要测出ED、BC、CD的长,即可求得AB的长.但是此题没有其他条件,可能无法测出其他线段长度,∴方案(Ⅱ)不成立;故答案为:∠ABD=∠BDE,不成立.八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣35.下列各图能表示y是x的函数是()A. B.C.D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥29.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<010.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标.14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(写出点的坐标).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为.17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限(只写一个即可).20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A;B.(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:A′;B′;C′.24.我市出租车计费方法如图所示,x(千米)表示行驶里程,y(元)表示车费,请根据图象回答下列问题.(1)我市出租车的起步价是元;(2)当x>3时,求y关于x的函数关系式.(3)小叶有一次乘坐出租车的车费是21元,求他这次乘车的里程.25.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6m3时时,水费按每立方米a元收费,超过6m3时,超过的部分每立方米按c元收费,不超过的部分每立方米仍按a元收费该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)a=,c=;(2)请分别求出用水不超过6m3和超过6m3时,y与x的函数关系式;(3)若该户11月份用水8m3,则该户应交水费多少元?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、在第一象限,故A正确;B、在第四象限,故B错误;C、在第三象限,故C错误;D、在第二象限,故D错误;故选:A.2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据M所在象限确定a和b的符号,然后确定N的横纵坐标的符号,进而确定所在象限.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,则﹣b<0,则B(﹣b,a)在第三象限.故选C.3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由图形,得点位于第三象限,故选:C.4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣3【考点】点的坐标.【分析】根据点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:点M(﹣3,2)到y轴的距离是|﹣3|=3,故选:A.5.下列各图能表示y是x的函数是()A. B.C.D.【考点】函数的概念.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)【考点】一次函数图象上点的坐标特征.【分析】分别将各个点的值代入函数中满足的即在图象上.【解答】解:当x=1时,y=1,(1,﹣1)不在函数y=﹣2x+3的图象上,(1,1))在函数y=﹣2x+3的图象上;当x=﹣2时,y=7,(﹣2,1)和(﹣2,﹣1)不在函数y=﹣2x+3的图象上;故选D.8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【考点】函数自变量的取值范围.【分析】根据分母为零无意义,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故选:C.9.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k >0,直线与y轴负半轴相交,所以b<0.故选B.10.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将函数y=﹣2x的图象沿y轴向上平移3个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3.故选:B.11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=﹣<0可得y将随x的增大而减小,利用x的大小关系和函数的单调性可判断y1>y2.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【考点】一次函数的性质.【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标(0,1).【考点】点的坐标.【分析】根据y轴上点的横坐标为0写出即可.【解答】解:y轴上的点(0,1),答案不唯一.故答案为:(0,1).14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(﹣2,2)(写出点的坐标).【考点】坐标确定位置.【分析】根据炮的坐标确定出向左一个单位,向下一个单位为坐标原点,建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图所示,“兵”位于点(﹣2,2).故答案为:(﹣2,2).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.【考点】一次函数图象上点的坐标特征.【分析】把点(a,﹣1)代入y=﹣3x+1即可求解.【解答】解:把点(a,﹣1)代入y=﹣3x+1,得:﹣3a+1=﹣1.解得a=.故答案为.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(1,﹣2).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P′的坐标为(﹣2+3,3﹣5),再计算即可.【解答】解:点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(﹣2+3,3﹣5),即(1,﹣2),故答案为:(1,﹣2).17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】直线y=kx﹣3落在直线y=2x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵函数y=2x+b与函数y=kx﹣3的图象交于点P(4,﹣6),∴不等式kx﹣3>2x+b的解集是x<4.故答案为x<4.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限y=x﹣2(只写一个即可).【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】根据①确定k>0;根据②,判定出b<0.【解答】解:∵一次函数表达式:y随着x的增大而增大;图象不经过第二象限,∴k>0;b<0.∴该一次函数的表达式可为:y=x﹣2(答案不唯一,k>0;b<0.)故答案为:y=x﹣2.20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:【考点】一次函数的图象.【分析】(1)根据解析式分别将x的值代入计算即可;(2)描点,连线,画出图象.【解答】解:(1)列表为:(2)画出的图象为下图:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.【考点】坐标与图形性质.【分析】(1)根据点在坐标系中的表示即可求解;(2)利用三角形的面积公式即可求解.【解答】解:(1)=×6×3=9.(2)AC=6,则S△ABC22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?【考点】待定系数法求一次函数解析式.【分析】(1)将x与y的两对值代入y=kx+b中求出k与b的值,即可确定出一次函数解析式.(2)把x=﹣2代入解析式即可求得.【解答】解:(1)依题意得:,解之得:,(2)由(1)知该一次函数解析式为y=3x﹣5,当x=﹣2时,y=3×(﹣2)﹣5=﹣11.23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1);B(4,3).(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:。

【最新】2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

【最新】2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

) 5,底边长为 3
∴5, 5, 3 能组成三角形, 则它的周长等于: 5+5+3=13 , 若底边长为 3,腰长为 5,
∵3+3=6 > 5, ∴3, 3, 5 能组成三角形. ∴它的周长为 11 或 13. 故选 D . 【点评】 此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.
∴AD=AB , AC=AE , 又∵∠ DAB+ ∠ BAC= ∠ EAC+ ∠ BAC , ∴∠ DAC= ∠ BAE ,
∴△ ADC ≌△ ABE ( SAS). 故选 B . 【点评】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、
ASA 、 AAS 、 HL .注意: AAA 、 SSA 不能判定两个三角形全等,判定两个三角形全等时, 必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
B、带 ② 去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故 项错误;
B选
C、带 ③ 去,不但保留了原三角形的两个角还保留了其中一个边,符合 项正确;
ASA 判定,故 C 选
D、带 ① 和 ② 去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角
形,故 D 选项错误.
2.如图, AB ∥ CD , AD ∥ BC, OE=OF , 则图中全等三角形的组数是 (
)
A . 3 B. 4 C. 5 D. 6 【考点】 全等三角形的判定. 【 分析】 先根据题意 AB ∥ CD,AD ∥ BC ,可得多对角相等,再利用平行四边形的性质可得 线段相等,所以有 △ AFO ≌△ CEO,△ AOD ≌△ COB ,△ FOD ≌△ EOB,△ ACB ≌△ ACD , △ABD ≌△ DCB ,△ AOB ≌△ COD 共 6 对. 【解答】 解:∵ AB ∥CD , AD ∥ BC ∴∠ ABD= ∠ CDB ,∠ ADB= ∠ CDB 又∵ BD=DB ∴△ ABD ≌△ CDB ∴AB=CD , AD=BC ∵OA=OC , OB=OD ∴△ ABO ≌△ CDO , △ BOC≌△ DOA ∵OB=OD ,∠ CBD= ∠ADB ,∠ BOF= ∠DOE ∴△ BFO ≌△ DEO ∴OE=OF ∵OA=OC ,∠ COF= ∠ AOE

(新人教版)2016-2017八年级数学上册期中试卷

(新人教版)2016-2017八年级数学上册期中试卷

八年级数学上册期中测试(考试时间:100分钟 试卷总分:120分) 一、选择题(30分) 1.下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3.等腰三角形的一个角是70︒,则它的底角是( )A. 70︒B. 70︒或55︒C.80︒和100︒D.110︒4.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( ) A.带①去B.带②去C.带③去D.带①和②去图25.下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角 6.已知点(x,y)与点(-2,-3)关于x 轴对称,那么x+y=( )A. -5B. 6C.1D.5 7.如图2,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个 B .2个C .3个D .4个8.将一张长方形纸片按如图3所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°9.等腰三角形的两边分别为4和6,则这个三角形的周长是 ( )A. 14B. 16C. 24 D .14或16 10.下列叙述正确的语句是( )A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合AEC 图 3B A ′E ′ D图1P OMACB D图3A CFEBC.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等 二、填空题(每小题4分,共24分)11. 若点P (m,m-1)在x 轴上,则点P 关于x 轴对称的点为___________.12. 一个多边形的每一个外角都等于360,则该多边形的内角和等于 .13. 若三角形的两条边长分别为6cm 和8cm ,且第三边的边长为偶数,则第三边长14. 从十二边形的一个顶点作对角线,把这个十二边形分成三角形的个数是 ,十二边形的对角线的条数是15.如图1,P M =P N ,∠B O C =30°,则∠A O B = .16.如图3,在△ABC 和△FED , A D =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED .(只需填写一个你认为正确的条件)三、解答题17.(9分)如图5,在平面直角坐标系中,A (1, 2),B (1)在图中作出ABC △关于y 轴对称的111A B C △ (2)写出点111A B C ,,的坐标(直接写答案)A 1 ______________B 1 ______________C 1 ____________ (3)111A B C △的面积为__________18.(6分)如图所示,CD=CA ,∠1=∠2,EC=BC19.(7分)如图,已知AD、BC相交于点O,AB=CD,AD=CB. 求证:∠A =∠CODC AADEF BC20.(10分)如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F , 求证:(1)AE=AF ,(2)DA 平分∠EDF21.(8分)已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交 AB 于点E ,交AC 于点F .求证:BE+CF=EF .22.(8分)如图:△ABC 和△CDE 是等边三角形。

2016-2017学年常州市八年级上期中数学试卷(有答案)[精品]

2016-2017学年常州市八年级上期中数学试卷(有答案)[精品]

江苏省常州市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A.B.C.D.2.(2分)等腰三角形的对称轴有()A.1条B.2条 C.3条 D.6条3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=27.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180°D.∠1=2∠2 8.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为°.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是.12.(2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为cm2.13.(2分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC的度数为°.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞米.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3= °.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为.18.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.2016-2017学年江苏省常州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(2分)等腰三角形的对称轴有()A.1条B.2条 C.3条 D.6条【解答】解:一般等腰三角形有一条对称轴,故选:A.3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC【解答】解:A、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS);故A正确;B、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(AAS);故A正确;C、在△ABD和△ACD中,,∵ASS不能证明三角形全等,故C错误;D、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SAS);故D正确;故选C.4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∠C=180°﹣∠A﹣∠B=50°.故△ABC是等腰三角形,故选B.5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等【解答】解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、有一边相等的两个等边三角形全等,根据SSS均能判定它们全等,故此选项正确;D、有两条边对应相等的两个直角三角形,不能判定两直角三角形全,故选项错误;故选:C.6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=2【解答】解:A、∵1+2=3,即a2+b2=c2,∴△ABC是直角三角形,则选项错误;B、∵b=c,∴∠B=∠C==67.5°,△ABS不是直角三角形,选项正确;C、∵∠A=∠B=3∠C,∴设∠C=°,则∠A=3°,∠B=2°,根据题意得+3+2=180°,∴=30,则∠A=90°,∠B=60°,∠C=30°,△ABC是直角三角形,选项错误;D、根据题意得,解得:,∵22+0.452=2.052,∴b2+c2=a2,∴△ABC是直角三角形,选项错误.故选B.7.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180°D.∠1=2∠2【解答】解:∵AC=CD,∴∠2=∠A,∵AB=AC,∴∠B=∠ACB,∵∠2=∠B+∠1,∴∠ACD=180°﹣2∠2,∠B=∠2﹣∠1,∴2(∠2﹣∠1)+∠2=180°,∴3∠2﹣2∠1=180°,故选A.8.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5【解答】解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=2,∠C=∠DBG,∵∠C+∠ABC=90°,∴∠DBG+∠ABC=90°,即∠ABG=90°,∵DE⊥FG,DF=DG,∴EF=EG===2.5.故选B.二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为58 °.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=50°,∵∠E=72°,∴∠F=180°﹣50°﹣72°=58°,故答案为:58.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为12 .【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是8:05 .【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,故此时的实际时刻是8:05,故答案为:8:05.12.(2分)如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 64 cm 2.【解答】解:∵S M =AB 2,S N =AC 2,又∵AC 2+AB 2=BC 2=8×8=64,∴M 与正方形N 的面积之和为64cm 2.13.(2分)如图,在△ABC 中,D 是BC 上的一点,∠CAD=∠BAE=30°,AE=AB ,∠E=∠B ,则∠ADC 的度数为 75 °.【解答】解:∵∠CAD=∠BAE=30°,∴∠CAD+∠BAD=∠BAD+∠BAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中∴△ABC≌△AED(ASA),∴AD=AC,∴∠ACD=∠ADC,∵∠CAD=30°,∴∠ADC=75°,故答案为:75.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞10 米.【解答】解:如图,过点A作AE⊥CD于点E,∵AB⊥BD,CD⊥BD,AE⊥CD,∴四边形ABDE是矩形.∵AB=2米,CD=BD=8米,∴AE=BD=8米,CE=8﹣2=6米,∴AC===10(米).故答案为:10.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∵在△ABC中,∠C=90°,AC=5,BC=12,设CD的长为,则BD=12﹣,在Rt△ACE中,由勾股定理得:2+52=(12﹣)2,解得:=.故答案为:.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3= 135 °.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为10 .【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,∵等边△ABC,BE=5,∴AE=EF=BE+CF=2BE=10,故答案为1018.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为4或.【解答】或4解:①当5为斜边长时,设较短的一个直角边长为,则另一直角边的长为:+3.由勾股定理得:2+(+3)2=52.解得:=(负值舍去).∴=,∴+3=,∴直角三角形的面积=××=4;②当5为直角边长时,设较短的一个直角边长为,则斜边长为:+3.根据题意得:2+52=(+3)2.解得:=,∴直角三角形的面积=×5×=;故答案为:4或.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.【解答】画对任意三种即可..20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.【解答】解:(1)如图,点C为所作点;(2)如图,△A′B′C′为所作三角形;(3)如图,点P为所作点.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.【解答】证明:∵点C是AB的中点,∴AC=CB∵CD∥BE,∴∠ACD=∠B∵AD∥CE,∴∠A=∠BCE在△ACD和△CBE中∴△ACD≌△CBE(ASA)22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.【解答】证明:∵点E是AD的中点,∴AE=ED=AD,∵AB=DC=AD,∴AB=AE,ED=CD,∴∠ABE=∠AEB,∠DCE=∠DEC,∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABC和△DCB中,∴△ABC≌△DCB (SAS),∴AC=BD,∠ACB=∠DBC∴AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.【解答】解:设旗杆的高度为米,则绳子的长度为(+0.5)米,根据题意可得:2+3.52=(+0.5)2,解这个方程得:=12.答:旗杆的高度为12米.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.【解答】解:(1)由AB=15,BC=12得AB2﹣BC2=225﹣144=81.由AC2=81得AB2﹣BC2=AC2即:AB2=BC2+AC2,∴∠ACB=90°,∵点D是AB的中点,∴CD=AB=7.5;=AC•BC=AB•CE,(2)由∠ACB=90°可得:S△ABC∴×9×12=×15CE,解得:CE=7.2,Rt△CDE中:DE==2.1.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.【解答】解:AF⊥DC且AF=2CD,∵CE⊥AB,∴∠BEC=∠AEC=90°,∴∠ECB+∠B=90°,又∵∠BAC=45°,∴∠ACE=45°,∴∠BAC=∠ACE,∴AE=EC,∵AB=AC,AD是△ABC的中线,∴BC=2DC,AD⊥BC,即有:AF⊥CD,∴∠ADC=∠ADB=90°,∴∠BAD+∠B=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB,∴AF=BC,∴AF=2CD.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD 沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.【解答】解:(1)∵∠ACB=90°,点D是AB的中点∴AD=BD=CD=AB.∴∠ACD=∠A=75°.∴∠ADC=30°.∵△A′CD由△ACD沿CD翻折得到,∴△A′CD≌△ACD.∴AD=AD,∠A′DC=∠ADC=30°.∴AD=A′D=DB,∠ADA′=60°.∴∠A′DB=120°.∴∠DBA′=∠DA′B=30°.∴∠ADC=∠DBA'.∴CD∥A′B.(2)连接AA′∵AD=A′D,∠ADA′=60°,∴△ADA′是等边三角形.∴AA′=AD=AB,∠DAA′=60°.∴∠AA′B=180°﹣∠A′AB﹣∠ABA′=90°.∵AB=4,∴AA′=2.∴由勾股定理得:A′B2=AB2﹣AA′2=42﹣22=12.。

八年级上学期期中测试(数学)试题含答案

八年级上学期期中测试(数学)试题含答案

八年级上学期期中测试(数学)(考试总分:150 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.下列各式中,是最简二次根式的是( )A .4B .5C .8D .2.(4分)2.下列方程中,是关于x 的一元二次方程的是( ) A .x+21x =0 B . C .ax 2+bx+c =0D .(x ﹣1)(x+2)=1 3.(4分)3.一元二次方程x 2﹣2x+3=0根的情况( )A .没有实数根B .只有一个实数根C .有两个不相等的实数根D .有两个相等的实数根4.(4分)多边形的内角和不可能为( )A. 540B. 680C. 1080D. 19805.(4分)5.设− 1,a 在两个相邻整数之间,则这两个整数是( ) A .0 和 1 B .1 和 2 C .2 和 3 D .3 和 46.(4分)6.下列3个数能成为勾股数的是( )A.6,8,9B.7,15,17C.6,12,13D.7,24,257.(4分)7.对于实数a,b,定义运算“※”如下:a ※b=a 2-ab,例如,5※3=52-5×3=10.若(x+1)※2=3,则x 的值( )A .-1或2B .1或- 2C .-1或1D .-2或28.(4分)8.如图,在四边形ABCD 中,∠DAB =∠BCD = 90°,分别以四边形的四条边317)2)(1(2-=+-x x x为边向外作四个正方形,若S 1 + S 4 = 100,S 3 = 36,则S 2 =( )A .136B .64C .50D .819.(4分)9.2019年第一季度,安徽省某企业生产总值比2018年同期增长14%,2020年第一季度受新冠肺炎疫情影响,生产总值比2019年同期减少了9%,设2019年和2020年第一季度生产总值的平均增长率为x,则可列方程( )A.2x=14%-9%B.(1+x)2 =1+14%-9%C.(1+x)2 =(1+14%)(1-9%)D.1+2x=(1+14%)(1-9%)10.(4分)10.关于x 的方程m(x+h)2 +k=0(m,h,k 均为常数,m ≠0)的解是则方程m(x+h-3)2 +k=0的解是( ) 5,0.21==x x A 1,6.21-=-=x x B5,3.21=-=x x C 2,6.21=-=x x D二、 填空题 (本题共计4小题,总分20分)11.(5分)11.已知1x =为一元二次方程2210x ax -+=的解则a =__________12.(5分)12. 若√2x−4在实数范围内有意义,则x 的取值范围为13.(5分)13.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为(化为一般形式):____________.,2,321=-=x x14.(5分)14.Rt △ABC 中,∠BAC=90°,AB=AC=4,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_______.三、 解答题 (本题共计9小题,总分90分)15.(8分)15.计算:32712)1(+-(2)16.(8分)16.解方程:(1)(用配方法)2890x x +-= (2)解方程:17.(8分)17.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小整数时,求方程的解18.(8分)18.一个多边形,每一个外角都等于30°,这个多边形是几边形,它的内角和是多少?19.(10分)19.某超市销售一种矿泉水,进价为每箱24元,现在的售价为每箱36元,每月可销售60箱。

天津市和平区2016-2017学年八年级上期中数学复习试卷含解析AKPqKn

天津市和平区2016-2017学年八年级上期中数学复习试卷含解析AKPqKn

2016-2017学年天津市和平区八年级(上)期中数学复习试卷(全等三角形)一、选择题(共11小题,每小题0分,满分0分)1.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个3.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°4.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处5.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1 B.2 C.3 D.46.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个 B.2个 C.3个 D.4个7.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③8.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A.AF=2BF B.AF=BF C.AF>BF D.AF<BF9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.510.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④11.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①②B.只有③④C.只有①③④D.①②③④二、填空题(共15小题,每小题0分,满分0分)12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.13.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.14.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.15.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC 全等,那么点D的坐标是.16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.17.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则∠ACD 度数为.18.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.19.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为.20.已知∠AOB的平分线上一点C,点C到OA的距离为1.5cm,则点C到OB的距离为.21.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.22.已知△ABC中,AB=7cm,AC=4cm,AD是BC边的中线,则AD的长的范围是.23.如图,在△ABC 中,∠C=90°,∠ABC的平分线BD交AC于点D,且CD:AD=2:3,AC=15cm,则点D到AB的距离等于cm.24.如图,已知BD平分∠ABC,DE⊥AB于E,S=36cm2,AB=18cm,BC=12cm,则DE的长为.25.如图,△ABE≌△ADC≌△ABC,若:∠1=150°,则∠α的度数为.26.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1=;(2)θn=.三、解答题(共24小题,满分0分)27.如图,已知AB=AC,CE⊥AB,BF⊥AC.求证:BF=CE.28.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.29.如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°.求证:AE=AD+BE.30.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.31.如图,已知在△ABC中,D为AC中点,连接BD.(1)若AB=10cm,BC=6cm,求中线BD的取值范围;(2)若AB=8cm,BD=6cm,求BC的取值范围.32.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE 大小关系,并说明理由.33.如图,A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF∥DE.34.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C 点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.35.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.求证:(1)AE=CF.(2)AE⊥CF.36.如图,已知在△ABC 中,AB>BC,BD平分∠ABC,P点在BD上一点,连接PA、PC.求证:AB﹣BC>PA﹣PC.37.如图,已知在△ABC中,D、E分别为AB、AC中点,连接CD并延长至G,使CD=DG,连接AG;延长BE至F,连接AF,使BE=AF.求证:AG=AF.38.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.39.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.40.如图,已知四边形ABCD中,CA平分∠BCD,BC>CD,AB=AD.求证:∠B+∠D=180°.41.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线.42.如图,已知等边△ABC,D、E分别在BC、AC上,且BD=CE,连接BE、AD交于F点.求证:∠AFE=60°.43.已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.44.如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF ∥AB.45.如图,已知等腰Rt△ABC中,∠A=90°,BD平分∠ABC,过C作BD的垂线CE.求证:BD=2CE.46.如图,已知AC平分∠BAD,CE⊥AB于E 点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.47.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.48.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.49.如图,已知B、C、E三点共线,分别以BC、CE为边作等边△ABC和等边△CDE,连接BD、AE分别与AC、CD 交于M、N,AE与BD的交点为F.(1)求证:BD=AE;(2)求∠AFB的度数;(3)求证:BM=AN;(4)连接MN,求证:MN∥BC.50.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C 在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.2016-2017学年天津市和平区八年级(上)期中数学复习试卷(全等三角形)参考答案与试题解析一、选择题(共11小题,每小题0分,满分0分)1.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个【考点】全等三角形的判定与性质.【分析】理清全等形以及全等三角形的判定及性质,即可熟练求解此题.【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故题中①②③说法正确,④⑤说法错误,此题选C.2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C3.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°【考点】等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C.4.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【考点】角平分线的性质.【分析】利用角平分线性质定理:角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以是三个内角平分线的交点一个,外角的平分线的交点三个.【解答】解:满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).故选A.5.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;角平分线的性质.【分析】易证△APM≌△APN,根据全等三角形对应边、对应角相等的性质分别对题干中5个结论进行验证,即可解题.【解答】解:①在RT△APM和RT△APN中,,∴RT△APM≌RT△APN(HL),∴AM=AN,∵PQ=AQ,AN=AQ+QN,∴AM=PQ+QN,①错误;②∵RT△APM≌RT△APN,∴∠PAM=∠PAN,∵PQ=QA,∴∠PAQ=∠APQ,∴∠APQ=∠PAM,∴QP∥AM,②正确;③无法证明;④∵∠APQ=∠PAM,∠PAM+∠APM=90°,∴∠APQ+∠APM=90°,∴∠QPC+∠MPB=90°,④正确;⑤∵MP=3,△AMP的面积是6,∴AM=4,∴PQ+QN=4,∵PN=MP=3,∴△PQN的周长是7,⑤正确;故选C.6.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个 B.2个 C.3个 D.4个【考点】角平分线的性质.【分析】利用平分线性质的逆定理分析.由已知点P到BE,BD,AC的距离恰好相等进行思考,首先到到两边距离相等,得出结论,然后另外两边再得结论,如此这样,答案可得.【解答】解:由角平分线性质的逆定理,可得①②③④都正确.故选D.7.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③【考点】角平分线的性质;三角形内角和定理;全等三角形的判定与性质.【分析】过点P分别作AB、BC、AC的垂线段,根据角平分线上的点到角的两边的距离相等可以证明点P到AC、BC的垂线段相等,再根据到角的两边距离相等的点在角的平分线上即可证明①正确;根据四边形的内角和等于360°可以证明②错误;根据①的结论先证明三角形全等,再根据全等三角形对应边相等即可证明③正确;利用三角形的一个外角等于与它不相邻的两个内角的和利用△ABC与△PBC写出关系式整理即可得到④正确.【解答】解:如图,过点P作PM⊥AB,PN⊥BC,PD⊥AC,垂足分别为M、N、D,①∵PB平分∠ABC,PA平分∠EAC,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,很明显∠MPN≠∠APC,∴∠ABC+∠APC=180°错误,故本小题错误;③在Rt△APM与Rt△APD中,,∴Rt△APM≌Rt△APD(HL),∴AD=AM,同理可得Rt△CPD≌Rt△CPN,∴CD=CN,∴AM+CN=AD+CD=AC,故本小题正确;④∵PB平分∠ABC,PC平分∠ACF,∴∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,∴∠BAC=2∠BPC,故本小题正确.综上所述,①③④正确.故选B.8.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A.AF=2BF B.AF=BF C.AF>BF D.AF<BF【考点】全等三角形的性质;等腰三角形的判定.【分析】根据角平分线的定义和两直线平行,内错角相等的性质得∠FAE=∠FEA,所以AF=EF,再根据BE⊥AD得∠AEB=90°,然后根据等角的余角相等得到∠ABE=∠BEF,根据等角对等边的性质BF=EF,所以AF=BF.【解答】解:∵AD平分∠BAC,EF∥AC,∴∠FAE=∠CAE=∠AEF,∴AF=EF,∵BE⊥AD,∴∠FAE+∠ABE=90°,∠AEF+∠BEF=90°,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF.故选B.9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【考点】角平分线的性质;全等三角形的判定与性质.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,=S△ADG﹣S△ADM=50﹣39=11,∴S△MDGS△DNM=S△EDF=S△MDG=×11=5.5.故选B.10.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④【考点】全等三角形的判定与性质;等腰直角三角形.【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【解答】解:∵∠B=45°,AB=AC,∴△ABC是等腰直角三角形,∵点D为BC中点,∴AD=CD=BD,AD⊥BC,∠CAD=45°,∴∠CAD=∠B,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠BDE+∠ADE=∠ADB=90°,∴∠ADF=∠BDE,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),故③正确;∴DE=DF、BE=AF,∴△DEF是等腰直角三角形,故①正确;∵AE=AB﹣BE,CF=AC﹣AF,∴AE=CF,故②正确;∵BE+CF=AF+AE∴BE+CF>EF,故④错误;综上所述,正确的结论有①②③;故选:C.11.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①②B.只有③④C.只有①③④D.①②③④【考点】角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的性质对①②③④进行一一判断,从而求解.【解答】解:①∵AP平分∠BAC∴∠CAP=∠BAP∵PG∥AD∴∠APG=∠CAP∴∠APG=∠BAP∴GA=GP②∵AP平分∠BAC∴P到AC,AB的距离相等∴S△PAC :S△PAB=AC:AB③∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一)④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上∴∠DCP=∠BCP又PG∥AD∴∠FPC=∠DCP∴FP=FC故①②③④都正确.故选D.二、填空题(共15小题,每小题0分,满分0分)12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=66°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.13.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为3.【考点】全等三角形的性质.【分析】直接利用全等三角形的性质得出3x﹣2=7,2x﹣1=5,进而得出答案.【解答】解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3x﹣2=7,2x﹣1=5,解得:x=3.故答案为:3.14.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是120°.【考点】全等三角形的判定与性质.【分析】首先得出∠DAC=∠EAB,进而利用ASA得出△ADC≌△AEB,进而得出∠E=∠ACD,再利用三角形内角和定理得出∠EAF=∠COF=60°,即可得出答案.【解答】解:∵∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=60°,∴∠DOE=120°.故答案为:120.15.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【考点】坐标与图形性质;全等三角形的性质.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4).17.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则∠ACD 度数为20°.【考点】三角形内角和定理.【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+60°=150°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【解答】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°18.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2.【考点】角平分线的性质.【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.19.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为(8,3).【考点】坐标与图形变化-旋转.【分析】解题的关键是抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.【解答】解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).20.已知∠AOB的平分线上一点C,点C到OA的距离为1.5cm,则点C到OB的距离为 1.5cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=CD.【解答】解:如图,∵OC是∠AOB的平分线,∴CE=CD,∵点C到OA的距离CD=1.5cm,∴点C到OB的距离CE=1.5cm.故答案为:1.5cm.21.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.【考点】全等三角形的判定.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.22.已知△ABC中,AB=7cm,AC=4cm,AD是BC边的中线,则AD的长的范围是 1.5<AD<5.5.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD至E,使DE=AD,就可以得出△ADB≌△EDC,就可以得出CE=AB,在△ACE 中,由三角形的三边关系就可以得出结论.【解答】解:如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS)∴AC=EB.∵AC=4cm,∴EB=4cm.∴7﹣4<AE∠7+4,∴3<2AD<11,∴1.5<AD<5.5.故答案为:1.5<AD<5.5.23.如图,在△ABC 中,∠C=90°,∠ABC的平分线BD交AC于点D,且CD:AD=2:3,AC=15cm,则点D到AB的距离等于6cm.【考点】勾股定理;角平分线的性质.【分析】过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD.【解答】解:如图,过点D作DE⊥AB于E,∵AC=15cm,CD:AD=2:3,∴CD=15×=6cm,∵∠C=90°,BD平分∠ABC,DE⊥AB,∴DE=CD=6cm,即点D到AB的距离为6cm.故答案为:..24.如图,已知BD平分∠ABC,DE⊥AB于E,S=36cm2,AB=18cm,BC=12cm,则DE的长为.【考点】角平分线的性质.【分析】作DF⊥BC于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,设DE=DF=x,×12x+×18x=36,解得x=,即DE=.故答案为:.25.如图,△ABE≌△ADC≌△ABC,若:∠1=150°,则∠α的度数为60°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠BAE=∠1,∠ACB=∠E,然后根据周角等于360°求出∠2,再根据三角形的内角和定理求出∠α=∠2,从而得解.【解答】解:∵△ABE≌△ADC≌△ABC,∴∠BAE=∠1=150°,∠ACB=∠E,∴∠2=360°﹣∠1﹣∠BAE=360°﹣150°﹣150°=60°,∴∠DFE=180°﹣∠α﹣∠E,∠AFC=180°﹣∠2﹣∠ACD,∵∠DFE=∠AFC(对顶角相等),∴180°﹣∠α﹣∠E=180°﹣∠2﹣∠ACD,∴∠α=∠2=60°.故答案为:60°.26.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1=;(2)θn=.【考点】等腰三角形的性质.【分析】设∠A1B1O=x,根据等腰三角形性质和三角形内角和定理得α+2x=180°,x=180°﹣θ1,即可求得θ1=;同理求得θ2=;即可发现其中的规律,按照此规律即可求得答案.【解答】解:(1)设∠A1B1O=x,则α+2x=180°,x=180°﹣θ1,∴θ1=;(2)设∠A2B2B1=y,则θ2+y=180°①,θ1+2y=180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2=;…θn=.故答案为:(1);(2)θn=.三、解答题(共24小题,满分0分)27.如图,已知AB=AC,CE⊥AB,BF⊥AC.求证:BF=CE.【考点】全等三角形的判定与性质.【分析】利用“等边对等角”得到相等的角,再利用AAS证全等,利用全等三角形的性质即可解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵CE⊥AB,BF⊥AC,∴∠BEC=∠CFB=90°,在△BEC和△CFB中,∴△BEC≌△CFB(AAS),∴BF=CE.28.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)由∠ABC为直角,得到∠CBD也为直角,得到一对角相等,再由AB=CB,BE=BD,利用SAS即可得到三角形ABE与三角形CBD全等,得证;(2)由AB=BC,且∠ABC为直角,得到三角形ABC为等腰直角三角形,根据等腰直角三角形的性质得到∠BAC为45°,由∠CAB﹣∠CAE求出∠BAE的度数,根据全等三角形的对应角相等得到∠BAE=∠BCD,即可求出∠BCD的度数.【解答】(1)证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,…在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);…(2)解:∵AB=CB,∠ABC=90°,∴△ABC为等腰直角三角形,∴∠CAB=45°,…又∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=15°.…∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.…29.如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°.求证:AE=AD+BE.【考点】全等三角形的判定与性质;角平分线的性质.【分析】过点C作CF⊥AD交AD的延长线于F,根据角平分线上的点到角的两边距离相等可得CE=CF,根据同角的补角相等求出∠CDF=∠B,然后利用“角角边”证明△CDF和△CBE全等,根据全等三角形对应边相等可得DF=BE,再利用“HL”证明Rt△ACF和Rt△ACE全等,根据全等三角形对应边相等可得AE=AF,然后根据AF=AD+DF等量代换即可得证.【解答】证明:如图,过点C作CF⊥AD交AD的延长线于F,∵AC平分∠BAD,CE⊥AB,∴CE=CF,∵∠B+∠ADC=180°.∠ADC+∠CDF=180°(平角定义),∴∠CDF=∠B,在△CDF和△CBE中,,∴△CDF≌△CBE(AAS),∴DF=BE,在Rt△ACF和Rt△ACE中,,∴Rt△ACF≌Rt△ACE(HL),∴AE=AF,∵AF=AD+DF,∴AE=AD+BE.30.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.【考点】角平分线的性质;等腰直角三角形.【分析】如图,证明DC=DE;进而证明BC=AE,即可解决问题.【解答】证明:∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DC=DE;∴BD+DE=BD+CD=BC;∵AC2=AD2﹣CD2,AE2=AD2﹣DE2,∴AC=AE,而AC=BC,∴BC=AE,∴BD+DE+BE=AE+BE=AB,即△DBE的周长等于AB.31.如图,已知在△ABC中,D为AC中点,连接BD.(1)若AB=10cm,BC=6cm,求中线BD的取值范围;(2)若AB=8cm,BD=6cm,求BC的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】(1)作辅助线,构建全等三角形,证明△ABD≌△CED,得CE=AB=10cm,在△BCE中,根据三边关系得:4cm<BE<16cm,则2cm<BD<8cm;(2)同理根据三角形三边关系得:12﹣8<BC<12+8,即4cm<BC<20cm.【解答】解:(1)如图,延长BD至E,使BD=DE,连接CE,∵D为AC中点,∴AD=DC,在△ABD和△CED中,∵,∴△ABD≌△CED(SAS),∴EC=AB=10,在△BCE中,CE﹣BC<BE<CE+BC,10﹣6<BE<10+6,∴4<BE<16,∴4<2BD<16,∴2<BD<8;则中线BD的取值范围:2cm<BD<8cm;(2)∵AB=8,BD=6,∴CE=AB=8,BE=2BD=12,∴BE﹣EC<BC<BE+BC,∴12﹣8<BC<12+8,即4<BC<20;则BC的取值范围:4cm<BC<20cm.32.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE 大小关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先过点P作PM⊥OA,PN⊥OE,证明△PMD≌△PNE,根据全等三角形的性质即可解决问题.【解答】解:PD=PE.理由:如图,过点P作PM⊥OA,PN⊥OE;∵OC平分∠AOB,∴PM=PN;∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°,∴∠OEP=∠PDM,在△PMD与△PNE中,,∴△PMD≌△PNE(AAS),∴PD=PE.33.如图,A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF∥DE.【考点】全等三角形的判定与性质.【分析】利用“HL”证明Rt△ACE和Rt△BDF全等,根据全等三角形对应角相等可得∠AEC=∠BFD,全等三角形对应边相等可得CE=DF,再利用“边角边”证明△CEF和△DFE全等,根据全等三角形对应角相等可得∠CFE=∠DEF,然后利用内错角相等,两直线平行证明即可.【解答】证明:∵AC⊥CE,BD⊥DF,∴△ACE和△BDF都是直角三角形,在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),∴∠AEC=∠BFD,CE=DF,在△CEF和△DFE中,,∴△CEF≌△DFE(SAS),∴∠CFE=∠DEF,∴CF∥DE.34.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C 点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由已知条件,根据等腰三角形三线合一这一性质,CE=FE,再证明△ABD≌△ACF,证得BD=CF,从而证得BD=2CE.【解答】证明:∵BE平分∠FBC,BE⊥CF,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,∵,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.35.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.求证:(1)AE=CF.(2)AE⊥CF.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据SAS证明△ABE≌△CBF即可得出AE=CF;(2)先延长AE交CF于D,根据三角形的内角和得:∠CDE=∠ABC=90°,则AE⊥CF.【解答】证明:(1)如图1,∵∠ABC=90°,∴∠ABC=∠EBF=90°,在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS),∴AE=CF;(2)如图2,延长AE交CF于D,∵△ABE≌△CBF,∴∠BAE=∠BCF,∵∠AEB=∠CED,∴∠CDE=∠ABC=90°,∴AD⊥CF,即AE⊥CF.36.如图,已知在△ABC 中,AB>BC,BD平分∠ABC,P点在BD上一点,连接PA、PC.求证:AB﹣BC>PA﹣PC.【考点】全等三角形的判定与性质;三角形三边关系.【分析】要证明AB﹣BC>PA﹣PC,由于四条线段比较分散,可考虑通过三角形全等把它们集中起来.由于AB>BC,可在AB上截取BM=BC,证明△BPN与△BPC全等,在三角形AMP中,利用三边关系得到AM与PA、PC的关系,等量代换后得到要证明的关系.【解答】解:在线段BA上截取BM=BC,连接PM.∵BD平分∠ABC,∴∠ABD=∠CBD在△BMP与△BCP中∴△BMP≌△BCP∴PC=PM.在△AMP中,∵AM>PA﹣PM,又∵AM=AB﹣BM,BM=BC,PM=PC∴AB﹣BC>PA﹣PC.37.如图,已知在△ABC中,D、E分别为AB、AC中点,连接CD并延长至G,使CD=DG,连接AG;延长BE至F,连接AF,使BE=AF.求证:AG=AF.【考点】全等三角形的判定与性质.【分析】根据SAS证明△ADG≌△BDC和△AEF≌△CEB,可以得出结论.【解答】证明:∵D、E分别为AB、AC中点,∴AD=BD,AE=EC,在△ADG和△BDC中,∵,∴△ADG≌△BDC(SAS),∴AG=CB,同理得:△AEF≌△CEB,∴AF=BC,∴AG=BC.38.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016_2017年八年级上学期数学期中复习A 卷(5)
一.选择题(每小题3分,共30分)
1、若一个三角形的两边长分别为3和4,则第三边长可能是( )
A .10
B .7
C .4
D .1
2.下列汉字,可看成轴对称图形的是( )
A .吉
B .祥
C . 如
D .意
3.若一个三角形的三条边长分别为5,4a ﹣7,6,则整数a 的值可能是( A .2,3 B .3,4 C .2,3,4 D .3,4,5 4.如图△ABC 中,∠B =40°,则∠1+∠2+∠3+∠4等于( ) A .220° B .250° C .280° D .360° 第4题图
5.下列条件能判断△ABC 和△DEF 全等的是( )
A .A
B =DE ,A
C =DF ,∠B =∠E B .∠A =∠
D ,∠C =∠F ,AC =EF
C .∠A =∠F ,∠B =∠E ,AC =DE
D .AC =DF ,BC =D
E ,∠C =∠D
6.点P 在△ABC 所在的平面内,且PA=PB ,则点P 在( )
A .BC 边的垂直平分线上
B .A
C 边的垂直平分线上
C .AB 边的垂直平分线上
D .∠C 的角平分线上
7.如图,△ABC 的两个内角平分线BP 、CP 交于点P ,过点P 的直线
DE ∥BC ,交AB 、AC 于D 、E ,若△ADE 的周长为10,
AB =6, 则AC = ( )
A .4
B .6
C .8
D .10 第7题图
8.若一个正多边形的每个内角为156°,则这个正多边形的所有对角线的条数是( )
A .12
B .54
C .90
D .108
9.在计算一个多边形内角和时,多加了一个角,得到的内角和为800°,那么这个多边形的
边数为( )
A .6
B .7
C .8
D .6或8
10.如图,点O 是等腰三角形△ABC 的底边上的高上一点,BO 交AC 于E ,CO 交AB 于F ,
则此图中全等三角形有( )
A .3对
B .4对
C .5对
D .6对
C
C
第10题图 第11题图 第12题图
二.填空题(每小题3分,共18分)
11.如图,AB ∥CF ,E 为AC 的中点,BD =2,CF =5,则AB = .
12.如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂直平分线交AC 于D ,CD =12,则AD = .
13.如图,AC 、AE 是正八边形ABCDEFGH 的对角线,则∠CAE= .
A
第13题图 第14题图
14.一副三角板,如图所示叠放在一起,则图中θ∠的度数是 .
15.在平面直角坐标系xOy 中,已知点A (-1,0),B (1,2),点P 坐标轴上,△ABP 是
等腰三角形,则满足条件的点P 共有 个.
16.点P (x ,y )在第三象限内,且|x |=4,|y |=3,则点P 关于x 轴的对称点坐标为 .
三.解答题(共5小题,17至20题每题10分,21题12分)
17.如图,已知M 村和N 村靠近公路a 、b ,其中公路a 南北走向,为了发展经济,两村准备在公路a 的东方合建一个工厂P ,经协商,工厂P 必须满足以下要求:
(1)到两村的距离相等;
(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?
b
18.如图,△ABC 中,∠BAC =65°,∠C=70°,AD ⊥BC 于D ,BE ⊥AC 于E 交BE 于F ,求证:CD =FD .
19.如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系.
(1)直接写出点A 、B 的坐标:A ( , ), B ( , );
(2)请在图中确定点C (1,-1)的位置并连接 AC 、 BC ,则△ABC 是 三角形(判断
其形状);
(3)在现在的网格中(包括网格的边界)存在一
点P ,点P 的横纵坐标为整数,连接P A 、PB
后得到△P AB 为等腰三角形,则满足条件的 点P 有 个. (4)在现在的网格中(包括网格的边界)存在一
点Q ,点P 的横纵坐标为整数,连接QA 、QB 后得到△QAB 的面积为1,则满足条件的
点Q 有 个.
20.如图,在△ABC 中,点D 是BC 边上的一点,∠B=65°,∠BAD=20°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .
(1)求∠AFC 的度数;
(2)求∠EDF 的度数.
21.如图①,已知等腰直角△ABC 中,BD 为斜边上的中线,E 为DC 上的一点,且直线AG 交BD 、BE 于F 、G ,DF =DE .
(1)求证:BE ⊥AG ;
(2)如图②,若点E 在DC 的延长线上, 其它条件不变,①的结论还能成立吗? 若不能,请说明理由;若能,请予以证明.。

相关文档
最新文档