第5章大数定律及中心极限定理

合集下载

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理
求P{V>105}的近似值
解 E(Vk)=5, D(Vk)=100/12 (k=1,2,…,20).
20
Vk 20 5
Z k1
V 20 5
100/ 12 20 100/ 12 20
近似服从正态分布N(0,1),
P{V 105} P{ V 20 5 105 20 5 }
100/ 12 20 100/ 12 20
设随机变量 X1 , X2 ,…, X n 相互独立, 服从同一分
布 , 且 具 有 相 同 的 数 学 期 望 和 方 差 , E(Xk) ,
D( Xk ) 2 0,(k 1,2,),则随机变量
n
n
n
Xk E( Xk ) Xk n
Yk k1
k 1 n
D( Xk )
k1
n
k 1
n k 1
Xk
|
}
1
说明
伯努利大数定理是辛钦定理的特殊情况。
n个随机变量的算术平均值以概率收敛于算术平
均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 用算术平均值作为所研究指标值的近似值。
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
(2.5) 0.9938
三 小结
1、独立同分布的中心极限定理
2.李雅普诺夫定理
3.棣莫佛-拉普拉斯定理
n
n
n
n
Xk E( Xk ) Xk k
Zn k1
k 1 n
D( Xk )
k1
k 1
Bn
k 1
近似服从标准正态分布N(0,1)。

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

(完整版)大数定律和中心极限定理

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。

(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。

(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。

另外,利用本不等式估值时精确性也不够。

(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。

(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。

(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。

(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。

大数定律与中心极限定理

大数定律与中心极限定理

第五章 大数定律与中心极限定理大数定律:概率论中,说明、提示大量随机现象平均结果的稳固性的一系列定律。

如:前面学习过:(1) 在一样条件下,进展大量重复独立实验时,随机事件发生的频率具有稳固性,即()()A n n f A p n n=→→+∞当时。

(2) 实践中得出,大量测量值的平均值也是具有稳固性, 即12...()n X X X X n nμ+++=→→+∞常数当时。

大数定律从理论上给出了这种问题的论证。

一、切贝雪夫不等式1. 切贝雪夫不等式:设随机变量X 有数学期望EX 及方差DX ,那么任意给出0ε>,有2{||}DX P X EX εε-≥≤或 2{||}1DXP X EX εε-<≥-。

例 1. 某批产品次品率,试估量10000件产品中,次品数X 介于400~600件之间的概率。

解:~(10000,0.05)X B ,500EX np ==,(1)100000.050.95475DX np p =-=⨯⨯=, 因此22475{400600}{|500|100}110.525100100DX P X P X <<=-<≥-=-=。

二、大数定律1. 依概率收敛:假设存在常数a ,使得关于任意正数ε,有lim {||}1,n n P X a ε→+∞-<=那么称随机变量序列{}n X 依概率收敛于a .2. 切比雪夫大数定律:设12,,...X X 是彼此独立的随机变量序列,各有数学期望12,,...EX EX 及方差12,,...DX DX ,而且关于所有1,2...i =都有i DX C <,其中常数C 与i 无关,那么关于0ε∀>,有1111lim {||} 1.n ni i n i i P X EX n n ε→+∞==-<=∑∑ 3. 贝努里大数定律:设A n 为n 重贝努里实验中事件A 发生的次数,p 为事件A 发生的概率。

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理
2.结论:极限n趋于∞下,{标准化}=标准正态函数
Note:1.X1+X2+…Xn~N(nu, na2)
2.和的期望等于期望之和;和的方方差等于方方差的和(独立立,同分布)
2.拉普拉斯中心心极限定理理
1.条件:服从二二项分布,结论
2.实际上是林林德伯格的中心心极限定理理的特殊情况
定义:Xn依概率收敛于a(概率上收敛,但概率推不不出事件)(类似于极限的定义)
2.切比比雪夫大大数定律律
1.条件:相ห้องสมุดไป่ตู้独立立,期望,方方差均存在,方方差有上界
2.结论:1/n(Xi)依概率收敛于1/n(EXi)(依概率收敛于期望)
3.特别的,若独立立,同分布,有EX,DX(存在)
Note:和的期望等于期望之和;和的方方差等于方方差的和(独立立)
第五章 大大数定律律与中心心极限定理理
一一 切比比雪夫不不等式 二二 大大数定律律 三 中心心极限定理理
一一 切比比雪夫不不等式(作估计)
1.公式形式(大大小小)
2.意义:EX很有用用,偏离的越多,概率越小小
3.有上限的,最多
4.“由切比比雪夫不不等式”才能用用
二二 大大数定律律
1.依概率收敛
3.辛辛钦大大数定律律
1.条件:独立立,同分布,期望存在等于u(3个)
2.结论:1/n(Xk)依概率收敛于u
4.伯努利利大大数定律律
1.条件:X为n重伯努利利发生生的次数,发生生概率为p
2.X/n依概率收敛于p
三 中心心极限大大数定律律
1.列列维——林林德伯格中心心极限定理理
1.条件:独立立,同分布,期望,方方差存在

大数定律及中心极限定理

大数定律及中心极限定理
则 g(X n, Yn ) P g(a, b)
定理1 (切比雪夫定理旳特殊情况)设随机变量序
列 X1,X2,…,Xn, ...相互独立,且具有相同旳数学期望
和方差: E(Xk)=,D(Xk)=2 (k=1,2,...) , 则对任意

> 0,有
lim P n
1 n
n
Xi
i 1
1

X
1 n
第五章 大数定律及中心极限定理
§5.1 大数定律 §5.2 中心极限定理
§5.1 大数定律
定义1 设Y1, Y2 …,Yn ,...为一随机变量序列,a是常数, 若对任意正数,有
lim
则称随机变量序列Y1, Y2 ,…,Yn , ... 依概率收敛于a ,
记为: Yn P a
性质:设 Xn P a, Yn P b , g(x, y)在点(a, b)连续,
100
于是, 一盒螺丝钉旳重量为 X Xi i 1
且 E( X i ) 100, D( X i ) 10, n 100
由中心极限定理
100
P{ X 10200} P{ i 1
Xi
10200}
P
100
Xi
i 1
n
n
10200 n n
P
X
1000 100
10200 1000
Φ
k 120 48
Φ
120 48
0.999
k 141.48,
至少供电142千瓦,才干确保以不不大于99.9%旳概率正常工作.
例3 在人寿保险企业里,有3000个同一年龄旳人参加保险.设在
一年内这些人旳死亡率为0.1%, 参加保险旳人在一年旳头一天 交付保险费10元,死亡时,家眷可从保险企业领取2023元. 求 (1)保险企业一年中获利不不大于10000元旳概率;

第5章__大数定律和中心极限定资料

第5章__大数定律和中心极限定资料

解:设在n重贝努里试验中,事件A出现的次数为X,
则X Bn,0.75,E X np 0.75n, D X npq 0.1875n,
又A事件的频率为:fn
A
X n
(1) n 7500, P
0.74
X n
0.76
P X 0.75n
0.01n
1
0.1875n
0.01n 2
1 n2
n
DXk
k 1
1 n2
n 2
2
n
由契比雪夫不等式得:P
1 n
n k 1
Xk
1
2
2
n
lim
n
P
1 n
n
Xk
k 1
1
7
定理二 伯努利大数定理
设事件A在每次试验中发生的概率为p,记nA为n次独立重复试验
中A发生的次数, 则
0, 有:lim
P
n
nA n
p
1
证明: nA Bn, p
1,
则称随机变量序列Yn依概率收敛于常数a,
记为:Yn P a。
a a a
依概率收敛性质: 若 X n P a, Yn Pb, 且g(x, y)在(a,b)处 连续,则 g( X n ,Yn)P g(a,b)
6
定理一 契比雪夫定理的特殊情况:
设随机变量序列X1, X 2, , X n , 相互独立,且具有相同的
且存在数学期望,作前n个随机变量的算术平均: X
1 n
n k 1
Xk
则 0,有:
lim P
n
X
lim
n
P
1 n
n
Xk
k 1

第5章大数定律和中心极限定理资料

第5章大数定律和中心极限定理资料

第5章 大数定律和中心极限定理本章教学基本要求1.了解切比雪夫不等式,会用该不等式估算某些事件的概率.2.了解相关大数定律.3.了解相关中心极限定理,会用定理近似计算事件的概率.5.1大数定律一、主要知识归纳1.切比雪夫不等式:设随机变量X 具有均值u X E =)(,方差2)(σ=X D ,则对于任意正数ε,有不等式 22}{εσε≤≥-u X P 成立.2. 切比雪夫大数定理:设随机变量⋅⋅⋅,,21X X 相互独立,均具有有限方差,且有公共上界,即C X D i <)( )2,1( =i ,则对于任意0>ε,有1})(11{lim 11=<-∑∑==∞→εni i n i i n X E n X n P 成立.3.辛钦大数定理:设⋅⋅⋅,,21X X 相互独立,服从同一分布的随机变量序列,且具有数学期望u X E k =)(),2,1(⋅⋅⋅=k .作前n 个变量的算术平均值∑=ni i X n 11,则对于任意0>ε,有1}1{lim 1=<-∑=∞→εu X n P ni i n 成立 4.伯努利大数定理:设X 是n 次重复独立试验中事件A 发生的次数,)10(<<p p 是在一次试验中事件A 发生的概率,则对于任意正数ε,有0}{lim =≥-∞→εp nXP n 成立.二、基础练习1.设随机变量X 的数学期望u X E =)(,方差2)(σ=X D ,试利用切比雪夫不等式估计下列概率值:(1)}{σ≥-u X P (2)}3{σ≥-u X P .2.用切比雪夫不等式估计200个新生儿中,男孩多于80个且少于120个的概率(假定生男孩和女孩的概率均为0.5)3.设随机变量n X X X ,,,21⋅⋅⋅是独立同分布的随机变量,其分布函数为)0(arctan 1)(≠+=b bxa x F π,则辛钦大数定理对此序列( ) A 适用 B 当常数a 、b 取适当数值时适用 C 不适用 D 无法判断5.2中心极限定理一、主要知识归纳:1.独立同分布中心极限定理:设随机变量n X X X ,,,21⋅⋅⋅相互独立服从同一分布,且具有有限的均值与方差,则对任意实数x 有⎰∑∑∑∞--===∞→=<-xt ni i ni i ni in dt ex X D X E XP 2111221})()({lim π成立.2.棣莫佛-拉普拉斯(De Moivre-Laplace )定理:设X ~),(p n B ,则对任意实数x ,有)(21})1({lim 22x dt ex p np np X P t xn Φ==<---∞-∞→⎰π成立.二、基础练习1.一加法器同时收到20个噪声电压k V )20,,2,1(⋅⋅⋅=k ,设它们是相互独立的随机变量,且都在区间)10,0(上服从均匀分布.记∑==201k kVV ,求}105{>V P 的近似值.2.对于一个学生而言,来参加家长会的家人是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长人数相互独立,且服从同一分布. (1)求参加会议的家长人数X 超过450的概率;(2)求有1名家长来参加会议的学生人数不多于340的概率.本章小结一 本章知识结构图二、综合练习1. 设随机变量X 的数学期望100)(=X E ,方差10)(=X D ,则由切比雪夫不等式有______}12080{≥<<X P .2.一颗骰子连续掷4次,点数总和为X .估计}1810{<<X P .3.生产灯泡的合格率为0.6,求10000个灯泡中合格数在5800~6200的概率.4.一大批种蛋中,良种蛋占80%.从中任取500枚,求其中良种蛋率未超过81%的概率.5.某商店负责供应某地区1000人商品,某种商品在一段时间内每人需用一件的概率为0.6,假定在这一段时间个人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件).6.对敌人的防御阵地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,其数学期望是2,方差是1.69,求在100次轰炸中有180颗到220颗炸弹命中目标的概率.7.设)50,,2,1( =i X i 是相互独立的随机变量,且它们都服从参数为03.0=λ的泊松分布.记5021X X X Z +++= ,利用中心极限定理计算}3{≥Z P8.设某种器件使用寿命(单位:小时)服从指数分布,其平均使用寿命为20小时,具体使用时是当以器件损坏后立即更换另一新器件,如此继续,已知每个器件进价为a 元,试求在年计划中应为此器件作多少元预算,才可以有95%的把握一年够用(假定一年有2000个工作小时).三、单元测试一、 填空题:(每小题5分,共20分)1.设随机变量X 与Y 相互独立,且1)(-=X E ,1)(=Y E ,2)(2=X E ,3)(2=Y E ,则由切比雪夫不等式有______}6{≥<+Y X P .2.设n X X X ,,,21⋅⋅⋅是n 个相互独立同分布的随机变量,u X E i =)(,8)(=i X D ,),,2,1(n i ⋅⋅⋅=,对于∑==ni inX X 1,则______}{≤≥-εu X P ,______}4{≥<-u X P . 3.设X ~)6.0,200(B ,当999.0}{≥≤k X P 时,则______≥k . 4.设随机变量10021,,,X X X ⋅⋅⋅相互独立同分布,且1!1}{-==e k k X P i ,⋅⋅⋅=,2,1k ,则______}120{1001=<∑=i i X P .二、选择题:(每小题5分,共20分)1.设随机变量X ~),(2σu N ,则随σ的增大,概率}{σ<-u X P 是( ) A 单调增大 B 单调减少 C 保持不变 D 增减不定2.设⋅⋅⋅,,21X X 为独立同分布序列,且i X ),2,1(⋅⋅⋅=i 服从参数为λ的指数分布,则( )其中dt ex Y t x2221)(-∞-⎰=π.A )(}{lim 1x Y x nnX p ni i n =≤-∑=+∞→λ B )(}{lim 1x Y x nnXp ni in =≤-∑=+∞→C )(}{lim 1x Y x nXp ni in =≤-∑=+∞→λλD )(}{lim 1x Y x n Xp ni in =≤-∑=+∞→λλ3.设随机变量921,,,X X X ⋅⋅⋅相互独立同分布,1)(=i X E ,1)(=i X D ,)9,,2,1(⋅⋅⋅=i ,令∑==919i iXS ,则对任意0>ε,从切比雪夫不等式直接可得( )A 2911}1{εε-><-S P B 2991}9{εε-≥<-S PC 2911}9{εε-><-S P D 2911}191{εε-≥<-S P4.假设随机变量⋅⋅⋅,,21X X 相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律的是( )A ⋅⋅⋅⋅⋅⋅,,,,21n X X XB ⋅⋅⋅+⋅⋅⋅++,,,2,121n X X X nC ⋅⋅⋅⋅⋅⋅,1,,21,21n X nX X D ⋅⋅⋅⋅⋅⋅,,,2,21n nX X X 三、计算题:(每小题12分,共60分)1.已知正常成人男性血液中,每一毫升含白细胞数平均为7300,均方差为700,试利用切比雪夫不等式估计每毫升含白细胞数在5200至9400之间的概率.2.设各零件的重要都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5公斤,均方差为0.1公斤.问5000只零件的总重量超过2510公斤的概率是多少?3.一部件包括10个部分,每部分的长度是一个随机变量,它们相互独立,且服从同一分布,其数学期望为2毫米,均方差为0.05毫米.规定总长度为20±0.1毫米时产品合格,试求产品合格的概率.4.某工厂生产炭末电阻,在正常生产情况下,废品的概率为0.01,今取500个装成一盒,问废品不超过5个的概率是多少?5.有一批建筑房屋用的木柱,其中80%的长度不小于3米,现从木柱中随机取出100根,问其中至少有30根短于3米的概率是多少?第6章 数理统计基础知识本章教学基本要求1.理解总体、样本、统计量等基本概念,了解经验分布函数。

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

Xi
1 n
n i 1
E(Xi)
1,
则称{Xn}服从大数定律.
(2)伯努利大数定律是切比雪夫大数定律的特例
(3) 伯努利大数定律和切比雪夫大数定律的证明 都用到切比雪夫不等式,而且需要方差存在。
定理 5.1.4. 辛钦大数定律
设X1, X 2 ,..., X n,...是独立同分布的随机变量序列,
意义:只要试验次数够大,发生事件的频率无限接近于 概率,频率稳定性,频率代替概率。
定理 5.1.3. 切比雪夫大数定律
设X1 , X 2 ,, X n ,是一相互独立的随机变 量序列,
它们的数学期望和方差 均存在,且方差有共同 的上界,
即存在常数 K 0,使得 D ( X i ) K , i 1,2, ,
不等式给出了X 与它的期望的偏差不小于的概率
的估计式.
例 1 E( ) 4, D( ) 0.2, 则由切比雪夫不等式知
P{| 4 | 2} P{| 4 | 1}
,
P{ X
}
2 2
,
P{1 7}
定义 5.1.1设{X n}是一个随机变量序列,a是常数,
若对于任意的 0,有
已知整个系统中至少有84个部件正常工作,系统
工作才正常.试求系统正常工作的概率.
解: 记Y为100个部件中正常工作的部件数,则
Y 近似服从 N(100 0.9,100 0.9 (1 0.9))
即Y 近似服从N (90, 9)
因此,所求概率为
P{Y 84}=1-P{Y<84}=1-P{ Y-90 < 84-90 }
解: 设Xi为第i个螺丝钉的重量,i 1, 2,...,100.
且设X 为一盒螺丝钉的重量.

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

• 例:一加法器同时收到 个噪声电压 k(k=1,2,…,20), 一加法器同时收到20个噪声电压 一加法器同时收到 个噪声电压V 它们相互独立且都在区间[0,10]上服从均匀分布 噪声 上服从均匀分布,噪声 它们相互独立且都在区间 上服从均匀分布 的近似值. 电压总和V=V1+V2+…+V20,求P{V>105}的近似值 电压总和 求 的近似值 • 解:易知 易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心 易知 由独立同分布的中心 20 极限定理知
∑ D( X
k =1
n
k
)=
σ2
n
1 n 所以 P{| ∑ X k − µ |< ε } = P {| X n − E ( X n ) |< ε } n k =1 D( X n ) σ2 ≥ 1− = 1− 2 2 nε ε
设随机变量序列{Y 如果存在一个常数a 定义 设随机变量序列{Yn},如果存在一个常数a,使得 ε>0 对任意的 ε>0,有
1 故 n
X k 1 . ∑ 2 P→ 3 k =1
§2
中心极限定理
定理(林德贝尔格 勒维 定理):设 定理 林德贝尔格-勒维 林德贝尔格 勒维(Lindeberg-Levy)定理 设 定理 {Xk}为相互独立的随机变量序列 服从同一分布 且 为相互独立的随机变量序列,服从同一分布 为相互独立的随机变量序列 服从同一分布,且 具有数学期望E(Xk)=µ和方差 和方差D(Xk)=σ2 ,则随机变 具有数学期望 和方差 则随机变 量
X 1 ~ U ( −1, 1). 则 1 (1) n X k,(2)1 ∑ n k =1
n 2 X k 分别 依概 率收 敛吗 ? ∑ k =1 n

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

第五章大数定理与中心极限定理

第五章大数定理与中心极限定理

2. 随机事件的频率
lim P p =1 n n
p f n p
n
作业
P112
1、3、6、7
§5.4中心极限定理
在客观实际中有许多随机变量,它们是由大 量的相互独立的随机因素的综合影响所形成的。 而其中每一个别因素在总的影响中所起的作用 都是微小的。这种随机变量往往近似地服从正 态分布,这种现象就是中心极限定理的客观背 景。
设{ξn}为随机变量序列,ξ为随机变量,其对 应的分布函数分别为Fn(x), F(x). 若在F(x)的连 续点,有
第五章
大数定律与中心极限定理
5.1大数定律的概念 5.2切贝谢夫不等式 5.3切贝谢夫定理 5.4中心极限定理
“概率是频率的稳定值”。前面已经提到, 当随机试验的次数无限增大时,频率总在其概 率附近摆动,逼近某一定值。大数定理就是从 理论上说明这一结果。正态分布是概率论中的 一个重要分布,它有着非常广泛的应用。中心 极限定理阐明,原本不是正态分布的一般随机 变量总和的分布,在一定条件下可以渐近服从 正态分布。这两类定理是概率统计中的基本理 论,在概率统计中具有重要地位。
பைடு நூலகம்
大数定律以确切的数学形式表达了这种规 律性,并论证了它成立的条件,即从理论上阐述 了这种大量的、在一定条件下的、重复的随机 现象呈现的规律性即稳定性.由于大数定律的作 用,大量随机因素的总体作用必然导致某种不依 赖于个别随机事件的结果.
§5.2 切贝谢夫不等式
一个随机变量离差平方的数学期望就是它的
f n p
n
证明:设

1 第i次试验事件A发生 i 0 第i次试验事件A不发生
E (i ) p, D(i ) p(1 p)

概率论与数理统计第5章-大数定律和中心极限定理

概率论与数理统计第5章-大数定律和中心极限定理

DX } 1
(2
DX DX
)2

3 4

例 1.2 设随机变量 X ~ P(9) ,试根据切比雪夫不等式 估计概率 P{X 19}. 解 由于 X ~ P(9) ,所以 EX DX 9 ,且
P{X 9 10} P{X 1} 0 , 故有 P{X 19} P{X 9 10}
P{ X 9 10} 9 0.09 . 102
例 1.3 设随机变量 X ,Y 独立同分布,且 D(X ) 2 ,
试根据切比雪夫不等式估计概率 P{ X Y 2} .
解 由于 X ,Y 独立同分布,所以 E( X Y ) 0 ,且
D(X Y ) DX DY 4
lim
n
FYn
(
x)

(
x)

1
2
x

e
t2 2
dt

x

(,
)


【注 1】定理 2.1 称为列维—林德伯格中心极限定理,也 称为独立同分布随机变量序列的中心极限定理.
【注 2】由定理 2.1 表明,当 n 充分大时, FYn (x) (x) ,
近似
n
近似
即得Yn ~ N (0,1) ,从而有 Xi ~ N (n, n 2 ) .
P{ X Y 2} 1 D(X Y ) 1 ,
22
2
二、大数定律(了解) 1.相关概念
定义 1.1 设有随机变量序列 X1, X 2 ,L , X n ,L ,如果
存在常数 a ,使得对任意的 0 ,有
lim P{
n
Xn
a
}1,

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

X
i 1
n
i
n

P{| Yn a | } 1 如果满足 lim n

Yn
依概率收敛于数a,记为
Yn a.
P
大数定律讨论的是依概率收敛的问题。
大数定律以严格的数学形式表达了随 机现象最根本的性质之一: 平均结果的稳定性 它是随机现象统计规律的具体表现. 大数定律在理论和实际中都有广泛的应用.
下面给出的独立同分布随机变量序列 的中心极限定理, 也称列维一林德伯格 (Levy-Lindberg)定理.
定理1(独立同分布下的中心极限定理) 设X1,X2, …,Xn是独立同分布的随机 变量序列,且E(Xi)= ,D(Xi)= 2 , i=1,2,…,n,则
lim P{
n
X
i 1
下面我们再举一例说明大数定律的 应用.
定积分的概率计算法 求 I g ( x )dx 的值
0 1
求 I g ( x )dx 的值
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
3) 用平均值近似积分值
0 1 解: X k ~ , 0.1 0.9
E(Xk)=0.1, k=1,2, …,n
诸Xk 独立同分布,且期望存在,故能 使用大数定律.
0 1 解: X k ~ , 0.1 0.9
E(Xk)=0.1, k=1,2, …,n
诸Xk 独立同分布,且期望存在,故能使用 大数定律.
n
D ( X k )
k 1
的分布函数的极限.
考虑 Z n
X
k 1

概率论第五章 大数定律及中心极限定理

概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)

lim
n
P(Yn

x)

lim
n
P
i 1
n
x




x

1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X


|




2 2

P X



1


2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2

1
2

(x



)2
p(
x)dx


2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4

因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1

DX i

E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,

所以,满足切比雪夫大数定理的条件,可使用大数定理.

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理
n
那么我们就称随机变量序列{Yn,nZ+}依概率收 P 敛到随机变量Y ,记为 Yn Y.
依概率收敛的本质是Yn对Y的绝对偏差小于任一给 定量的可能性将随着n的增大而增大.

特当Y为退化分布时,即P{Y=a}=1,则称序列依概 P 率收敛于a,即 Yn a
如果把极限放到绝对值上,即差值的极限小于任意正数的概率为1则称 为几乎处处收敛
9/41
§5.1 大数定律

依概率收敛包含了依分布收敛,反之不成 立,依分布收敛是弱收敛 所谓“弱大数定律”,是指上述收敛为依 概率收敛(in probability), 所谓“强大数定律”,是指上述收敛为 “几乎必然收敛”(almost surely/with probability one)
10/41


大量试验后事件发生的频率nA/n稳定于一个常数,即概 率 大量试验的算术平均值稳定于数学期望


大数定律就是以确切的数学形式表达了大量重复 出现的随机现象的统计规律性

即频率的稳定性和算术平均值的稳定性
2/41
§5.1 大数定律
弱大数定理 1(契比雪夫定理的特殊情况) 设随机变量X1, X2,..., Xn,...相互独立, 且具有相同 的数学期望和方差: E(Xk)=m, D(Xk)=s2(k=1,2,...), 作 前n个随机变量的算术平均值


§5.1 大数定律
上述定理中要求随机变量X1,X2,...的方差存在. 但这些随机变量服从相同分布的场合, 并不需要这 一要求, 我们有以下的定理.
弱大数定理(辛钦定理)
设随机变量X1,X2,...,Xn,...相互独立, 服从同一 分布, 且具有数学期望E(Xk)=μ (k=1,2,...), 则对于任 意正数, 有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
n i=1
n i=1
i
偏差很小的概率接近于1. 偏差很小的概率接近于 特别当
E ( X k ) = µ , D( X k ) = σ 2 , k = 1, 2,...
时,X1,X2,…,Xn的算术平均值 偏差很小的概率接近于1. 偏差很小的概率接近于
X =
1 n ∑Xi n i=1
与其数学期望 µ
nA = X P p → n
伯努利大数定律表明,当重复试验次数n充分大时,事件 伯努利大数定律表明,当重复试验次数 充分大时, 充分大时 A发生的频率 A/n与事件 的概率 有较大偏差的概率很小 发生的频率n 与事件 的概率p有较大偏差的概率很小 与事件A的概率 有较大偏差的概率很小. 发生的频率 伯努利大数定律提供了通过试验来确定事件概率的方法. 伯努利大数定律提供了通过试验来确定事件概率的方法
| x − |≥

σ2 P{| X − µ |< ε } ≥ 1 − 2 ε
∫ fε ( x)dx µ
| x − |≥
∫ε µ

( x − µ )2
ε
2
f ( x)dx
σ2 ≤ 2 ∫ ( x − µ ) f ( x) dx = 2 ε −∞ ε
1
2
µ −ε
µ
µ +ε
5.2 大数定律 定理5.2.1(契比雪夫大数定律) (契比雪夫大数定律) 定理
是相互独立的随机变量, 设 X1,X2, …是相互独立的随机变量,它们都有有 是相互独立的随机变量 限的方差,并且方差有共同的上界,即 D(Xk) ≤C, 限的方差,并且方差有共同的上界, , k=1,2, …, , 则对任意的ε>0, , 契比雪夫 契比雪夫
1 n 1 n limP{| ∑Xi − ∑EXi |< ε } = 1 n→∞ n i =1 n i =1
很大时, 近似服从N(0,1),或 即n很大时,Yn近似服从 很大时 , 近似 近似 1 n σ σ2 σ2 ∑Xi = Yn + µ ~ N ( µ , ) 即 X ~ N ( µ , ) n i=1
n n
n
5.3 中心极限定理 续2) 中心极限定理(续
定理5.3.2(棣莫佛-拉普拉斯定理) (棣莫佛-拉普拉斯定理) 定理 服从二项分布B(n, ,n=1,2,…, 二项分布B( 设随机变量 Yn服从二项分布B( p),n=1,2, ,则对任意 x,有 ,
Y − np
这里 np=100, np(1-p)=90
解得 N>115.65 即总机应备有116条外线才能以 即总机应备有 条外线才能以95%以上的把握保 条外线才能以 以上的把握保 证各个分机在使用外线时不等候。 证各个分机在使用外线时不等候。
5.3 中心极限定理 续5) 中心极限定理(续
例2.设电路供电网中有10000盏灯,夜晚每一盏灯开着 2.设电路供电网中有10000盏灯, 设电路供电网中有10000盏灯 的概率都是0.7 假定各灯开、关时间彼此无关, 0.7, 的概率都是0.7,假定各灯开、关时间彼此无关,计算 同时开着的灯数在6800 7200之间的概率 6800与 之间的概率。 同时开着的灯数在6800与7200之间的概率。 解:记同时开着的灯数为X,X ~B(10000,0.7) 记同时开着的灯数为 , np=10000×0.7=7000 ×
5.3 中心极限定理 续3) 中心极限定理(续
例1.某单位内部有1000部电话分机,每部电话分机有 1.某单位内部有1000部电话分机, 某单位内部有1000部电话分机 10%的时间要用外线通话 的时间要用外线通话, 10%的时间要用外线通话,假定各个电话用不用外线是 相互独立的,问总部要备有多少条外线才能以95% 95%的把 相互独立的,问总部要备有多少条外线才能以95%的把 握保证各个分机在用外线时不必等候。 握保证各个分机在用外线时不必等候。 解:对每部话机的观察作为一次试验, 对每部话机的观察作为一次试验, 每次试验观察该话机在某时刻是否使用外线, 使用外 每次试验观察该话机在某时刻是否使用外线, 线的概率为0.1,共进行1000次试验 次试验. 线的概率为 ,共进行 次试验 表示在某时刻使用外线的话机数, 用Y表示在某时刻使用外线的话机数, 表示在某时刻使用外线的话机数 依题意, 依题意, Y~B(1000,0.1), 设总部备有N条外线 现在的问题是: 设总部备有 条外线, 现在的问题是: 求满足 P(Y≤N)≥0.95 的最小的N. 的最小的
5.2 大数定律 (续3) 续 下面给出的独立同分布下的大数定律, 下面给出的独立同分布下的大数定律,不要求随 机变量的方差存在. 机变量的方差存在 定理5.2.3(辛钦大数定律) (辛钦大数定律) 定理
辛钦
设随机变量序列X 独立同分布, 设随机变量序列 1,X2, …独立同分布,具有有限的数学期望 独立同分布 E(Xi)=µ, i=1,2,…, 则对任给 >0 , , 则对任给ε
第5章 大数定律与中心极限定理 章 事件的频率在大样本下具有稳定性, 事件的频率在大样本下具有稳定性,即随着试验次数的 增加,事件的频率逐渐稳定于某个常数. 增加,事件的频率逐渐稳定于某个常数 大量测量值的平均值 也具有这种稳定性,这种稳定性就是大数定律的客观背景. 也具有这种稳定性,这种稳定性就是大数定律的客观背景 大数定律的客观背景
Yn =
∑X
k =1
n
k
− E (∑ X k )
k =1 n
n
=
∑X
k =1
n
k
− nµ
D (∑ X k )
k =1

的分布函数F 的分布函数 n(x)=P{Yn≤x},对∨ x,满足: , ,满足:
lim Fn ( x) = ∫
n →∞ x −∞
1 −t 2 / 2 e dt = Φ ( x) 2π
特别, 特别,当
E ( X k ) = µ , D ( X k ) = σ 2 , k = 1, 2,...
则对任意的ε>0, , 则对任意的
lim P{| X − µ |< ε } = 1
n →∞
1 n (X = ∑ Xk ) n k =1
证:由契比雪夫不等式, 由契比雪夫不等式, 即
P{| X − E ( X ) |< ε } ≥ 1 −
5.3 中心极限定理 续4) 中心极限定理(续
由德莫佛-拉普拉斯极限定理 由德莫佛 拉普拉斯极限定理 近似服从N(0,1), np( 1− p) 近似服从 N − 100 ) ≥ 0.95 于是 P(Y≤N) ≈ Φ( 90 查表知 故
Φ( 1.65 ) ≈ 0.95
N − 100 90 > 1.65
大量抛掷硬币 正面出现频率
生产过程中的 废品率
某字母使用 频率
5.1 Chebyshev不等式 不等式
设EX=µ ,DX=σ2 , 则对任意正数 ε,成立不等式 ,
σ2 P{| X − µ |≥ ε } ≤ 2 ε
证:(就连续型证) :(就连续型证) 就连续型证
P{| X − µ |≥ ε } = ≤
1 n lim P{| ∑Xi −µ |< ε} = 1 n→∞ n i=1
辛钦大数定律为寻找随机变量的期望值提供了一条实 际可行的途径. 际可行的途径
5.3 中心极限定理 在客观实际中有许多随机变量,它们是由 大量的相互独立的随机因素的综合影响所形成 的。而其中每一个别因素在总的影响中所起的 作用都是微小的。这种随机变量往往近似地服 从正态分布。 这种现象就是中心极限定理 的客观背景。
5.3 中心极限定理(续1) 中心极限定理( )
定理5.3.1(独立同分布的中心极限定理 )设随机变量 ( 定理 X1,X2,…,Xn,...相互独立,服从同一分布,且 相互独立,服从同一分布,

X k ) = µ , D( X k ) = σ 2 > 0
i
k=1,2,…
的标准化变量
np( 1 − p ) = 10000 × 0.7 × 0.3 = 45.83
P{ 6800 < X < 7200 } 7200 − 7000 6800 − 7000 = Φ − Φ 45.83 45.83 = Φ ( 4.36 ) − Φ ( −4.36 ) = 2Φ ( 4.36 ) − 1 = 0.99999
1 n 即当n充分大时 n 充分大时, 差不多不再是随机的了, 即当 充分大时, ∑Xi 差不多不再是随机的了, i=1
取值接近于其数学期望的概率接近于1. 取值接近于其数学期望的概率接近于 契比雪夫大数定律给出了 平均值稳定性的科学描述
5.2 大数定律 (续2) 续 定理5.2.2(伯努利大数定律) (伯努利大数定律) 定理 重伯努利试验中事件A发生的 设nA是n重伯努利试验中事件 发生的 重伯努利试验中事件 次数, 是事件 在每次试验中发生的概率, 是事件A在每次试验中发生的概率 次数,p是事件 在每次试验中发生的概率, 则对任给的ε> , 则对任给的 0, 伯努利 nA nA limP{| − p|≥ ε } = 0 limP{| − p|< ε } = 1 或 n→∞ n→∞ n n 1, 第i次A发生; …+X Xi = 因为n 证:因为 A~B(n,p),可记 nA=X1+X2+ 可记 n . 0, 第i次A不发生 X1,X2,…,Xn相互独立,E(Xi)=p,i=1,2,...,n. 相互独立, ∴
limP{ Yn − np np( 1− p) ≤ x} = ∫
x
n→∞
−∞
1 e 2π

t2 2
dt = Φ ( x)
定理表明, 很大(一般 定理表明,当n很大 一般 很大 一般n≥50),0<p<1是一个定值时 , 是一个定值时 也不太小时), (或者说,np(1-p)也不太小时),则 Yn 的标准化变量 或者说, 也不太小时),则 分布近似标准正态分布, 的分布近似标准正态分布,或 Yn近似服从 N(np,np(1-p)).
相关文档
最新文档