第2讲直流PWM变换器-电动机系统参考文档
(完整word版)PWM波直流电机速度调节系统
课程设计设计题目: PWM波直流电机速度调节系统学院:专业:班级:姓名:学号:指导老师:日期:目录一引言 (1)1.1开发背景 (2)1.2数字控制器D(z) (5)二直流电动机调速概述 (4)2.1直流电机调速原理 (4)2.2直流调速系统实现方式 (5)2.3 8051单片机简介……………………………………………………………三硬件电路设计............................................................................................ (7)3.1 PWM波形的程序实现 (7)3.2直流电动机驱动 (8)3.3续流电路设计 (9)四软件设计 (10)4.1主程序设计 (10)4.2 数码显数设计 (11)4.3 功能程序设计 (12)4.4仿真图 (17)4.5 仿真结果分析 (18)五心得体会 (18)摘要:在国民生产中,随着现代技术的发展,电力电子技术已得到了全面的发展,其技术已应用到各个领域。
在各类机电系统中,由于直流电机具有良好的启动、制动和调速性能,直流电机调速系统已广泛运用于工业、航天领域的各个方面,最常用的直流调速技术是脉宽调制(PWM)直流调速技术,具有调速精度高、响应速度快、调速范围宽和损耗低的特点.而利用计算机数字控制也成了直流调速的一种手段,数字控制系统硬件电路的标准化程度高,控制软件能够进行复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律,此外还拥有信息存储、数据通信和故障诊断等模拟系统无法实现的功能。
关键字:80c51单片机;PWM调速技术;直流电动机一引言1.1开发背景1 绪论1.1课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。
长期以来,直流电动机一直占据着调速控制的统治地位。
由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。
直流电动机PWM调速系统设计
1 绪论1.1 课题研究背景PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。
到目前为止,已经出现了多种PWM控制技术。
PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
1.2 直流电机调速发展现况现代社会中,电能是最常用且最为普遍的二次能源。
而电机作为机电能量转换和信号转换的电磁装置,经过了一个多世纪的发展,其应用范围已经遍及现代社会和国民经济的各个领域及环节。
例如化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源以及有些移动运输机械,在缺少交流电源时其所需要的直流电源仍然使用直流发电机作为供电电源。
同步电机具有转矩大、效率和精度高、机械特性硬等优点,但是调速困难、容易“失步”等弱点大大限制了它的应用范围;而异步电机则结构简单、制造方便、运行可靠、价格便宜,但其机械特性软、启动困难、功率因数低、不能经济地实现范围较广的平滑调速,且必须从电网吸取滞后的励磁电流,从而降低电网功率因数;直流电机具有运行效率高和调速性能好等诸多优点,被广泛地应用于对启动和调速有较高要求的拖动系统,如电力牵引、轧钢机、起重设备等。
这也是直流电机能够在工业领域占有一席之地的原因。
而采用PWM调速系统控制电机,则具有很多的优越性,比如:开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
低速性能很好,稳速精度高,调速范围广,可达到1:10000左右。
直流电动机脉宽调制(PWM)控制器.doc
摘要随着电力电子器件、计算机技术和控制理论的迅速发展,电气自动化技术也在日新月异的变化,电气传动自动化技术己广泛应用于各个工程领域。
目前,功率集成电路己将主电路器件、控制驱动、保护等集成一体,为电气传动自动控制系统机电一体化开辟了广阔的前景,数字PWM技术、微机控制及各种新型控制技术,如滑模变结构控制、自适应控制、鲁棒控制模糊控制等。
己日益渗入各类电气传动控制系统中。
而直流电动机是人类最早发明和应用的一种电机。
与交流电机相比,直流电机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,应用不如交流电机广泛。
但由于直流电动机具有优良的起动、调速和制动性能,因此,在工业领域仍占有一席之地。
随着电力电子技术的发展,直流发电机虽有被可控速流电源取代的趋势,但从供电的的质量和可靠性来年看,直流民电机仍有一定的优势,困此在某些场合,例如化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源仍然使用直流发电机作为供电电源。
直流电动机、发电机目前还没有其它的电气设备能取代。
所以,还有一定的用武之地。
此设计为直流单闭环不可逆调速系统的设计。
直流单闭环不可逆调速系统直流电动机脉宽调制(PWM)控制器UC3637用于控制开环或闭环直流电动机速度或位置,其内部产生1路模拟误差电压信号,并输出2路PWM脉冲信号,这2路PWM脉冲信号与误差电压信号的幅值成正比,并与其极性相关,因此构成双向调速系统,实现PWM双输出,驱动电流能力为100 mA,该器件还具有限流保护、欠电压封锁及温度补偿等特点。
而驱动集成电路IR2110对PWM信号具有自举功能。
有2路完全独立的高保真输入输出通道,且这2路通道具有开通慢、关断快的防桥臂直通的互锁功能,可使电路可靠工作。
这里采用UC3637和IR2110设计一种直流电动机PWM开环控制电路,并与计算机控制系统相结合,实现对某种舵系统直流电动机的控制,进而验证该电路的正确性。
PWM开环控制电路该电路设计控制系统的目标是在计算机不同的给定信号下,电动机可快速达到指定位置,以满足系统性能要求。
直流电机pwm调速原理
直流电机pwm调速原理直流电机PWM调速原理是通过改变电源给电机的电压和电流,从而控制电机转速的一种方法。
PWM,即脉冲宽度调制,是一种用来调节电平电路中电平的技术,利用脉冲信号的占空比(高电平与周期时间之比)来控制电平的平均值。
在直流电机PWM调速中,首先需要了解电机的电刷子与换向器的工作原理。
电刷子负责切换电极的极性,而换向器则根据电刷子的位置将电流传送到正确的电极上。
当电流在电机的绕组中流动时,会形成磁场,这个磁场会与永磁体产生相互作用,从而产生电机的转动力。
为了控制电机的转速,可以通过改变供电电压的幅值和频率来实现。
在PWM调速中,电源输出的电压信号被分解为一系列的脉冲信号。
脉冲信号的占空比根据所需的电机转速来确定,占空比越大,电机转速越快。
在每个脉冲周期中,脉冲信号的高电平部分代表电源给电机供电的时间,而低电平部分则代表停止供电的时间。
通过改变脉冲信号的占空比,可以控制电机的平均电压和平均电流。
当占空比增大时,电机平均得到更多的能量供应,转速也会相应增加。
反之,当占空比减小时,电机平均得到更少的能量供应,转速会减慢。
这样,通过不断调整脉冲信号的占空比,就可以实现对直流电机的精准调速。
需要注意的是,在PWM调速中,电机的换向也需要考虑进去。
换向器需要根据电机的转向来控制电刷子的位置,使电流能够按正确的路径流动。
这样能够保证电机的正常运转,并提供足够的转矩和稳定性。
综上所述,直流电机PWM调速是通过改变电源给电机的电压和电流的脉冲信号的占空比来实现的。
通过调节脉冲信号的占空比,可以控制电机的平均电压和电流,从而实现对电机转速的精确控制。
同时,需考虑电机的换向,以保证电机能够正常运转。
第2章PWM直流变换电路
(t)
IL
U0 L0
(t
DT
)
当 t T 时, iL (t) 达到最小值 I L
IL
IL
U L
0
(T
DT )
0
储能 放能
2.2.1 单象限降压斩波电路
伏秒平衡定律的证明:
电流增量: 即:
I
IL
IL
Ud U0 L0
DT
U0 L0
(T
DT )
(U d U 0 )DT U 0 (T DT )
输出电压增益
(U c1 U 0 )DT L2
U d DT L2
输入电流的最大值:
I dm
Id
I d 2
D0 D
I0
U d DT 2L1
输出电流的最大值:
I 0m
I0
I 0 2
I0
U d DT L2
VT电流最大值,
ITM I dm I 0m
2.2.5 Sepic电路
电路结构
Speic电路原理
V通态,E—L1—V回路和C1—V—L2回路同时导电,L1 和L2贮能。
U0
NP L2Uin ton N2 LP toff
N2 NP
ton toff
U in
uce
U in
NP N2
U0
toff
NP Uin N2 LP
L2 U0
ton
NP N2
L2 LP
Uin U0
ton
N2 NP
Uin U0
ton
2.3.1 单端反激电路
2 磁通不连续的工作状态
toff
N2 NP
2.1 概述
电力电子电路的分类
运动控制系统第四版思考题答案
运动控制系统第四版思考题答案电力拖动自动控制系统-运动控制系统(阮毅陈伯时)课后答案包括思考题和课后习题第2章2-1 直流电动机有哪几种调速方法?各有哪些特点?答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。
特点略。
2-2 简述直流PWM 变换器电路的基本结构。
答:直流PWM 变换器基本结构如图,包括IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流PWM 变换器,通过改变直流PWM 变换器中IGBT 的控制脉冲占空比,来调节直流PWM 变换器输出电压大小,二极管起续流作用。
2-3 直流PWM 变换器输出电压的特征是什么?答:脉动直流电压。
2=4 为什么直流PWM 变换器-电动机系统比V-M 系统能够获得更好的动态性能?答:直流PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流PWM 变换器的时间常数Ts 等于其IGBT 控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts 通常取其最大失控时间的一半(1/(2mf)。
因fc 通常为kHz 级,而f 通常为工频(50 或60Hz)为一周内),m 整流电压的脉波数,通常也不会超过20,故直流PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM 变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
2-7 直流PWM 变换器的开关频率是否越高越好?为什么?答:不是。
因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。
第2章第2讲直流PWM变换器-电动机系统参考文档
s nN 100 % n0
式中 nN = n0 - nN 静差率是用来衡量调速系统在负载变化时转速的稳定度的。 调速范围和静差率两个指标合称调速系统的稳态性能指标。
27
2、静差率s
s nN 100 % n0
机械特性越硬,静差率就
越小,转速的稳定度越高。
➢ 特性a和b的硬度相同, ➢ 特性a和b额定速降相同, ➢ 特性a和b的静差率不相同。
21
4. 电能回馈与泵升电压的限制
泵升电压限制
在大容量或负载有较大惯量的系统中,不可能只靠电容器来
限制泵升电压,这时,可以采用下图中的镇流电阻 Rb 来消耗 掉部分动能。分流电路靠开关器件 VTb 在泵升电压达到允许数 值时接通。
+
UUss
+ CC
过电压信号
RRbb VVTTbb
-
泵升电压限制电路
PWM变换器电路有多种形式,总体上可分为不 可逆与可逆两大类。
脉宽调制(PWM-Pulse Width Modulation)
4
(1). 不可逆PWM变换器
①简单的不可逆PWM变换器 简单的不可逆PWM变换器-直流电动机系统
主电路原理图如下图所示,功率开关器件VT 可以是任意一种全控型开关器件,这样的电路 又称直流降压斩波器(buck变换器)。
2
2.1.2 直流PWM变换器-电动机系统
主要研究问题 1 PWM变换器的工作状态和波形; 2 直流PWM调速系统的机械特性; 3 PWM控制与变换器的数学模型; 4 电能回馈与泵升电压的限制。
3
1.PWM变换器的工作状态和电压、电流波形
脉宽调制(PWM)变换器的作用是:用脉冲宽度调 制的方法,把恒定的直流电源电压调制成频率一 定、宽度可变的脉冲电压序列,从而可以改变平 均输出电压的大小,以调节电动机转速。
(完整word版)直流电动机的PWM调压调速原理(word文档良心出品)
直流电动机的PWM调压调速原理直流电动机转速N的表达式为:N=U-IR/Kφ由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。
其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。
现在,大多数应用场合都使用电枢控制方法。
对电动机的驱动离不开半导体功率器件。
在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。
线性放大驱动方式是使半导体功率器件工作在线性区。
这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。
绝大多数直流电动机采用开关驱动方式。
开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM来控制电动机电枢电压,实现调速。
在PWM调速时,占空比α是一个重要参数。
以下3种方法都可以改变占空比的值。
(1)定宽调频法这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。
(2)调频调宽法这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。
(3)定频调宽法这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。
前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。
目前,在直流电动机的控制中,主要使用定频调宽法。
直流电动机双极性驱动可逆PWM控制系统双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。
双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。
但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。
PWM直流电机调速系统设计
PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。
本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。
一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。
2.传感器:传感器主要用于检测电机转速和转速反馈。
常用的传感器有霍尔传感器和编码器。
3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。
控制器一般包括比较器、计数器、时钟和PWM 发生器。
4.功率电源:功率电源负责提供PWM信号的电源。
PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。
二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。
2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。
3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。
4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。
5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。
三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。
2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。
3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。
根据测试结果进行参数调整。
4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。
直流电机调速pwm的原理
直流电机调速pwm的原理
直流电机调速PWM(脉宽调制)的原理是通过改变电机供电
电压的占空比来实现电机的转速调节。
PWM调速技术通过以
一定的周期(周期时间T)将电源电压以脉冲的形式施加给电机,其中脉冲的宽度(脉宽)决定了每个周期内电源对电机的供电时间比例。
在PWM调速中,周期时间(T)和脉宽时间(Ton)与占空
比(Duty Cycle)之间的关系可以表示为:
占空比(D)= Ton / T
通过改变占空比D的大小,可以控制每个周期中电机所接收
到的有效电压信号的时间比例。
当占空比D变小时,电机接
收到的有效电压时间减少,电机的平均输入功率减小,从而降低转速;反之,当占空比D增大时,电机接收到的有效电压
时间增加,电机的平均输入功率增加,从而提高转速。
实现PWM调速的关键是通过开关器件控制电源电压的开关状
态来实现脉冲信号的生成和调节。
常见的开关器件包括晶体管和MOS管。
通过控制开关器件的导通和截止,可以控制电源
电压的施加和切断。
同时,PWM调速还需要一个控制电路来根据需要改变占空比。
控制电路通常是由微处理器、单片机或专用的PWM芯片来实现,它可以根据不同的控制需求,调整占空比大小,并将相应的控制信号发送给开关器件。
总体而言,直流电机调速PWM的原理是通过改变电机供电电压的占空比来控制电机的转速。
通过控制器件的开关状态和相应的控制电路,可以实现对占空比的调节,从而完成电机的调速操作。
直流电机PWM调速控制系统设计
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
直流电动机PWM脉宽调速系统PPT文档40页
ห้องสมุดไป่ตู้
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
直流电动机PWM脉宽调速系统
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
PWM可逆直流调速系统设计
PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。
本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。
2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。
通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。
主要原理包括: - 电源供应:系统通过电源为电机提供电能。
- PWM信号生成:通过数字控制器或单片机产生PWM 信号。
- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。
- 电机控制:根据PWM信号调整电机的转速和运行方向。
3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。
直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。
3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。
通过控制PWM信号的占空比,可以改变电机的转速。
3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。
H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。
通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。
4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。
2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。
3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。
直流pwm变换器电路的基本结构
直流pwm变换器电路的基本结构随着电子技术的发展,电力电子技术已经成为了现代工业中不可或缺的一部分。
直流pwm变换器电路作为电力电子技术中的重要组成部分,广泛应用于各种电力电子系统中。
本文将详细介绍直流pwm变换器电路的基本结构和工作原理。
一、直流pwm变换器电路的基本结构直流pwm变换器电路是一种将直流电压转换为可控交流电压的电路。
它由三个主要部分组成:输入滤波器、pwm控制电路和输出滤波器。
1. 输入滤波器输入滤波器主要用于滤除直流电源中的高频噪声和杂波。
它通常由电感和电容组成,电感和电容的组合形式有多种,其中最常见的是L型滤波器和π型滤波器。
2. pwm控制电路pwm控制电路是直流pwm变换器电路的核心部分,它能够根据输入信号的需求,产生恰当的pwm波形控制开关管的导通和截止。
pwm 控制电路通常由比较器、三角波发生器和电路保护等多个模块组成。
3. 输出滤波器输出滤波器主要用于滤除交流输出中的高频噪声和杂波。
它通常由电感和电容组成,电感和电容的组合形式有多种,其中最常见的是L型滤波器和π型滤波器。
二、直流pwm变换器电路的工作原理直流pwm变换器电路的工作原理可以分为两个阶段:开关管导通阶段和开关管截止阶段。
1. 开关管导通阶段在开关管导通阶段,pwm控制电路会根据输入信号的需求,产生恰当的pwm波形,使得开关管导通。
此时,直流电源的电流会通过开关管和输出滤波器,形成一个与输入信号频率相同的交流电流,输出到负载上。
2. 开关管截止阶段在开关管截止阶段,pwm控制电路会根据输入信号的需求,产生恰当的pwm波形,使得开关管截止。
此时,直流电源的电流会通过输入滤波器和输出滤波器,形成一个平滑的直流电流,维持负载的正常工作。
三、直流pwm变换器电路的应用直流pwm变换器电路广泛应用于各种电力电子系统中,如变频器、电力逆变器、电力调速器、电力供应系统等。
1. 变频器变频器是一种将电源交流电转换为可控交流电的电力电子系统,它通常由直流pwm变换器电路和逆变器电路组成。
自动控制系统:直流PWM变换器-电动机系统
不可逆PWM变换器-直流电动机系统
-有制动电流通路
电路原理图
一般电动状态的电压、电流波形
在一般电动状态中,id始终为正值。
在0≤t<ton期间,VT1导通,VT2关断。电流id沿回路1流通。
在ton≤t<T期间,VT1关断,id沿回路2经二极管VD2续流。
VT1和VD2交替导通, VT2和VD1始终关断。
无论是电流采样值还是转速采样值都含有扰动, 常采用阻容电路滤波,但滤波时间常数太大时会 延缓动态响应,为此可采用硬件滤波与软件滤波 相结合的办法。
转速调节器ASR和电流调节器ACR大多采用PI调 节,当系统对动态性能要求较高时,还可以采用 各种非线性和智能化的控制算法,使调节器能够 更好地适应控制对象。
在转速和电磁转矩的坐 标系上,就是四象限运 行的功能,
这样的调速系统需要正 反转,故称可逆调速系 统。
不可逆PWM-直流电动机系统,电流能够反向,但平均电压 始终大于零,因而转速不能反向。
如果要求转速反向,需要改变输出电压的正负极性,来构 成可逆的PWM变换器-直流电动机系统。
直流PWM可逆调速系统
滤波大电容
放电电阻
H型桥式 PWM变
换器
整流器
桥式可逆直流脉宽调速系统主电路的原理图
直流PWM功率变换器的能量回馈
当可逆系统进入制动状态时,直流PWM功率变换 器把机械能变为电能回馈到直流侧,
由于二极管整流器导电的单向性,电能不可能通 过整流器送回交流电网,只能向滤波电容充电, 使电容两端电压升高,称作泵升电压。
不可逆PWM直流调速系统的机械特性
Us
Rid
L did dt
E
(0 t ton )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2.1.2 直流PWM 变换器-电动机系统
? 全控型电力电子器件问世以后,就出现了采用脉 冲宽度调制的高频开关控制方式 , 形成了脉宽调 制变换器-直流电动机 调速系统,简称 直流脉宽 调速系统,或直流PWM 调速系统。
(2 )机械特性方程
电枢两端在一个周期内的 平均电压 都是 Ud = ? Us。
其平均值方程都可写成
?Us ? RId ? E ? RId ? Cen
n
?
?U s
Ce
?
R Ce
Id
?
n0
?
R Ce
Id
或用转矩表示,
n
?
?U s
Ce
?
R CeCm
Te
?
n0
?
R CeCm
Te
式中 Cm = Km? N —电机在额定磁通下的转矩系数; n0 = ? Us / Ce —理想空载转速,与电压系数成正比。 16
VT1 Ug1
-
1
VD1
M+
4
C
Us +
图2-11有制动电流通路的不可逆PWM 变换器
双管电路
当VT1 导通时,流过正向电流 + id ,VT2 导通时,流过
– id 。应注意,这个电路还是 不可逆的,只能工作在
第一、二象限,
因为平均电压
U
d
并没有改变极性
。 14
2 直流脉宽调速系统的机械特性
由于采用脉宽调制,严格地说,即使在稳态情况下,脉宽调 速系统的转矩和转速也都是脉动的, 所谓稳态,是指电机的平均 电磁转矩与负载转矩相平衡的状态, 机械特性是平均转速与平均 转矩(电流)的关系。
道。
10
VT1 主管 VT2 辅助管
U g1 ? ?U g 2
大小相等极性相反
VT2 Ug2
VT1 Ug1
VD2 E
- M+
VD1
C
Us + 11
②有制动的不可逆PWM 变换器电路
Ⅰ一般电动状态
? 工作状态与波形
VT2 Ug2
VT1 Ug1
VD2 E2
-
1
VD1
M+
C
Us +
VT1和VD2交替导通, VT2和VD1始终关断。
Us Ud E id
0 ton T
t
图2-10b 电压和电流波形
改变 ? ( 0 ≤ ? ≤ 1 )即可调节电机的转速,
若令 ? = Ud / Us为PWM电压系数,则在不可逆
PWM 变换器中
? =?
9
①简单的不可逆PWM 变换器
单管电路
? 不可逆PWM 变换器-直流电动机系统 不允许电流反向 ? 续流二极管 VD的作用只是为 id提供一个 续流的通道。 ? 如果要实现电动机的 制动,必须为其提供 反向电流 通
2 直流脉宽调速系统的机械特性
(3)PWM 调速系统机械特性
图2-12 / Ce
脉宽调速系统的机械特性曲线(电流连续), n0s =U s
17
? 与V-M 系统相比, PWM 调速系统在很多方面有 较大的优越性。
? 直流PWM 调速系统的应用日益广泛,特别在 中、 小容量的高动态性能系统中,已经 完全取代 了VM系统。
2
2.1.2 直流PWM 变换器-电动机系统
主要研究问题 ? 1 PWM 变换器的工作状态和波形; ? 2 直流PWM 调速系统的机械特性; ? 3 PWM 控制与变换器的数学模型; ? 4 电能回馈与泵升电压的限制。
输出平均电压:
Ud
?
ton T
Us
?
?Us
? 根据对输出电压平均值进行调制的方式不同而划分, 有三种控制方式:
? T 不变,变 ton —脉冲宽度调制( PWM ); ? ton 不变,变 T —脉冲频率调制( PFM ); ? ton 和 T 都可调,改变占空比 —混合型。
7
①简单的不可逆 PWM 变换器
脉宽调制(PWM -Pulse Width Modulation )
4
(1). 不可逆PWM 变换器
①简单的不可逆 PWM 变换器 简单的不可逆 PWM 变换器-直流电动机系统
主电路原理图如下图所示,功率开关器件 VT 可以是任意一种全控型开关器件,这样的电路 又称直流降压斩波器 (buck 变换器)。
? 主电路结构工作状态与波形
VT 1
id
C
Ug
+ E_
MM
2
VD
(a)电路原理图 图2-10 简单的不可逆PWM 变换
器-直流电动机系统
+ U_ s U, i
Us
Ud E
id
0 ton T
t
图2-10b 电压和电流波形 8
①简单的不可逆 PWM 变换器
输出平均电压:
Ud
?
ton T
Us
?
?Us
U, i
12
Ⅱ制动状态
i U g1 的正脉冲比负脉冲窄 , E ? U d , d 始终为负。
VT2
3
VD2
Ug2
E2
VT1 Ug1
-
1
VD1
M+
4
C
制动状态的电压、电流波形
Us +
?VT2和VD1交替导通, VT1和VD2始终关断。 13
(2)有制动的不可逆PWM 变换器电路
VT2 Ug2
3
VD2 E2
3
1.PWM 变换器的工作状态和电压、电流波形
? 脉宽调制(PWM) 变换器的作用是:用 脉冲宽度调 制的方法,把 恒定的直流电源电压 调制成频率一 定、宽度可变 的脉冲电压序列,从而可以 改变平 均输出电压 的大小,以调节电动机转速。
? PWM 变换器电路有多种形式,总体上可分为 不 可逆与可逆 两大类。
(1) 带制动的不可逆电路电压方程
对于带制动电流通路的不可逆电路,电压平衡 方程式分两个阶段
Us
?
Rid
?
L
did dt
பைடு நூலகம்
?
E
0
?
Rid
?
L
did dt
?
E
(0 ≤ t < ton) (2-17) (ton ≤ t < T) (2-18)
式中 R、L —电枢电路的电阻和电感。
15
2 直流脉宽调速系统的机械特性
5
斩波电路三种控制方式
u
控制电路
+
VT
+ Us ton
Ud
Us
VD
M
_
a)原理图
_O
T
t
b)电压波形图
输出平均电压:
Ud
?
ton T
Us
?
?Us
式中 T —电力电子开关器件的开关周期;
ton — 开通时间;
? — 占空比, ? = ton / T = ton f ;
其中 f 为开关频率。
6
斩波电路三种控制方式
回顾
直流 调速 系统
晶闸管整 流器-电 动机系统
用的 (V-M系统)
可控
直流 电源
直流PWM 变换器-电 动机系统
(PWM 系统)
1触发脉冲相位控制。 2电流脉动及其波形的连续与断续。 3晶闸管-电动机系统的机械特性。 4晶闸管触发和整流装置的放大系数 和传递函数。 5晶闸管整流器运行中存在的问题。