【视频】经济学金融市场02风险管理
如何进行金融市场风险管理
如何进行金融市场风险管理随着金融市场的不断发展,金融风险也越来越成为一个焦点,尤其是在今天不确定性越来越大的时代。
为了有效地进行风险管理,金融市场中的企业和个人需要更加深入地了解风险相关的概念和策略,从而在不确定的市场环境中更加稳健地开展业务。
本文将从以下三个方面介绍如何进行有效的金融市场风险管理。
一、了解风险的本质风险是不可避免的,但是我们可以采取措施来降低它对我们的影响。
在金融市场中,解决风险问题的第一步是了解风险的本质。
风险是指根据不同的决策而产生的可能性和影响。
在金融市场中,风险可以分为市场风险、信用风险和操作风险等不同类型。
市场风险是由于市场波动和不稳定性而导致的损失,信用风险是由于贷款违约等原因而导致的损失,操作风险则是由于过程、技术和人为错误而导致的损失。
根据风险类型和风险量的不同,可以采用不同的风险管理策略来降低风险的影响。
二、制定有效的金融市场风险管理策略了解风险后,制定有效的风险管理策略是至关重要的。
常用的风险管理策略包括多元化投资、分散风险、减少杠杆、使用保险等手段。
其中,多元化投资是降低市场风险的最基本方法之一。
投资者通过在不同的资产类别和行业之间分散投资,以分散风险和实现最优的风险报酬比。
此外,分散风险也是一种很好的风险管理策略。
通过投资在不同地区、不同国家、不同行业和不同企业的证券来降低风险。
此外,投资者还应该减少杠杆的使用。
减少杠杆意味着承担较少的风险,从而降低金融市场波动对自身的影响。
此外,保险也是一种有效的金融市场风险管理策略。
投资者可以向保险公司买保险来转移损失风险。
三、有效的风险管理工具掌握有效的金融市场风险管理工具是更好地规避风险和实现收益的重要保障。
常用的金融市场风险管理工具包括金融衍生品、基金、交易所交易基金(ETF)等。
在这里,我们以金融衍生品为例进行简单介绍。
金融衍生品是帮助投资者降低金融风险的一种工具。
常用的金融衍生品有期货、期权、互换等。
这些金融衍生品可以被用来对冲市场和利率风险,同时也可以实现高杠杆投资,更好地实现收益。
第二讲金融风险管理概述二案例 阿克洛夫旧车市场模型
案例2阿克洛夫旧车市场模型【事件背景】阿克洛夫模型是信息经济学中的一个经典模型,它描述的是在非对称信息环境下的“不利选择”问题,揭示了在某种特定的情况下,市场如何变得低效率的过程。
不利选择是指在建立委托人一代理人关系以前,代理人已经掌握了某些委托人不了解的信息,而这些信息有可能对委托人不利;代理人利用这些信息签订对自己有利的合同,而委托人则由于信息劣势而处于不利的选择位置上,这就是所谓不利选择。
目前有关不利选择问题的研究基本上是从产品销售、保险和资本市场三个方面展开的。
阿克洛夫模型以旧车市场上的旧车销售情况为例,来解释产品销售方面的不利选择问题。
在一般情况下,人们要想确切分辨出旧汽车市场上哪些是高质量汽车,哪些是低质量汽车是困难的,一辆外表全新的汽车也有可能是低质量汽车。
由于买主无法了解汽车的质量,所有外表相同的汽车都将以同样的价格出售。
这样,高质量的汽车在旧车市场上就无法以预期的高价格出售,这对于卖主是不利的。
但另一方面由于高质量的车的确有可能在旧车市场上存在,顾客偶然也能在这里以买卖双方都满意的价格买到高质量的车。
这样就使得低质量汽车的卖主不愿意以较低价格卖出,直到旧汽车的低质量性质充分显示出来为止。
从买卖双方的分析可以看出,从效用最大化的角度来讲,人们更愿意培养低质量汽车占大多数的旧汽车市场,因此,拥有高质量汽车的卖主往往将他们的汽车撤出市场。
这样旧汽车市场上汽车的平均价格在下降。
简单地说,那些低质量的汽车将高质量的汽车排挤到市场之外。
这就是一个典型的不利选择问题。
由此,阿克洛夫模型解释了为什么即使是只使用过一次的“新”汽车,在旧汽车市场上也难以卖高价。
更为重要的是,这种现象与传统经济学概念——商品质量决定其市场价格——相悻。
在非对称信息环境中,商品质量依赖于价格。
这也是市场参加者以价格判断商品质量的信息经济学解释。
当然,实际的经济环境比上面的分析更复杂,因为市场不仅仅是由高质量和低质量的车组成的,而且随着各种因素的变化,市场中旧汽车的质量也会发生变化。
金融风险管理的常用方法
金融风险管理的常用方法在金融领域,风险是无法避免的存在。
为了降低金融风险对组织和个人带来的负面影响,人们采用各种方法进行风险管理。
这篇文章将介绍金融风险管理的常用方法,包括风险识别、定量分析、多元化投资、保险和避免风险等。
一、风险识别风险识别是金融风险管理的第一步。
通过对市场环境、经济趋势和企业内部运营情况的评估,可以确定潜在的风险因素。
常见的风险包括市场风险、信用风险、操作风险和流动性风险等。
通过识别这些风险,金融机构和投资者可以有针对性地采取措施来降低风险。
二、定量分析定量分析是用数字和统计方法量化风险的过程。
通过对历史数据和市场变动的分析,可以计算出潜在风险的概率和程度。
这些分析结果可以帮助投资者制定合适的投资策略和决策,从而有效地管理风险。
例如,利用VaR(Value at Risk)模型可以评估投资组合的风险价值,并确定其风险限制。
三、多元化投资多元化投资是分散投资风险的一种方法。
通过将资金分散投资于不同的资产类别、行业和地区,可以降低单一投资带来的风险。
当某个行业或地区面临困境时,其他投资仍然可以产生收益。
多元化投资还可以通过投资组合管理来实现,以控制整体风险水平。
四、保险保险是金融风险管理的重要手段之一。
通过购买适当的保险产品,可以将潜在的损失转移给保险公司。
当出现意外事件或不可预见的风险时,保险可以起到一定的安全网作用。
企业和个人可以根据自身需求选择合适的保险类型,例如财产保险、人身保险和责任保险等。
五、避免风险风险避免是一种主动的风险管理策略。
通过避免风险所在的活动、市场或资产,可以最大程度地降低潜在的负面影响。
这需要对风险因素进行全面的评估和预测,从而做出避免的决策。
虽然避免风险可能导致一定的机会成本,但在某些情况下,这可能是最合理的选择。
六、监控和审查有效的风险管理需要不断监控和审查风险状况。
通过建立风险指标和监控系统,可以及时发现和应对潜在的风险。
同时,定期审查风险管理策略和方法的有效性和适应性,以做出必要的调整和改进。
经济学与金融风险管理与保险
经济学与金融风险管理与保险在当今全球化和高度互联的金融市场中,经济学和金融风险管理与保险扮演了至关重要的角色。
经济学作为一门研究资源的分配和决策制定的学科,与金融风险管理与保险有着密切的联系。
本文将探讨经济学如何与金融风险管理与保险相结合,并分析其在现代金融体系中的作用。
首先,经济学为金融风险管理与保险提供了理论基础。
经济学研究了人们在资源有限的情况下如何做出决策,以及如何在面临不确定性和风险的情况下进行资源分配。
这些理论可以应用于金融风险管理与保险领域,帮助我们理解和预测金融市场的波动和风险。
例如,经济学中的资本资产定价模型(CAPM)可以用来评估投资组合的风险和收益,帮助投资者做出合理的投资决策。
其次,金融风险管理与保险为经济学提供了实践应用。
金融风险管理与保险通过量化和管理金融风险,保护个人和企业免受意外损失的影响。
这些实践应用提供了大量的实证数据,可以用来验证和完善经济学理论模型。
通过分析不同类型的风险和保险产品对经济体的影响,我们可以深入了解保险市场的运作机制,从而提出更加有效的经济政策。
在现代金融体系中,经济学和金融风险管理与保险共同助力于稳定金融市场。
经济学研究宏观经济环境和市场机制,为金融风险管理与保险提供决策依据。
同时,金融风险管理与保险通过监控和管理金融市场的风险,维护市场的稳定性和健康发展。
两者紧密结合,共同推动经济的可持续增长。
此外,经济学和金融风险管理与保险还在社会层面上发挥着重要作用。
经济学研究资源的分配和社会福利最大化,在经济政策制定中具有重要的指导意义。
金融风险管理与保险为个人和社会提供了保障,减轻了风险带来的负担,促进了社会的稳定和发展。
综上所述,经济学与金融风险管理与保险相辅相成,互相促进发展。
经济学提供了理论基础和决策依据,为金融风险管理与保险提供了指导;而金融风险管理与保险通过实践应用,为经济学提供了实证数据和验证机会。
两者在现代金融体系中协同作用,共同推动经济的稳定和可持续增长。
《金融经济学》课件
改变金融服务形态
传统金融机构需要适应数字化转型的趋势,提供线上 化、智能化的金融服务。
创新业务模式
新型金融机构的出现对传统金融机构的业务模式和竞 争格局带来挑战。
金融科技对传统金融业的影响与挑战
• 提高金融服务效率:科技手段的应用可以简化业 务流程、提高服务效率,满足客户快速响应的需 求。
金融科技对传统金融业的影响与挑战
其他金融工具
总结词
特定领域或用途的金融工具
VS
详细描述
其他金融工具包括投资基金、房地产投资 信托(REITs)、可转换债券等,这些工 具具有特定的投资目标和风险收益特征, 适合特定投资者群体的需求。
04
CATALOGUE
金融风险管理
金融风险的定义与种类
金融风险的定义
金融风险是指由于各种不确定因素引起的金 融市场上的价格波动、市场流动性风险以及 金融机构的信用风险等,导致投资者或金融 机构面临损失的可能性。
研究对象
金融经济学的研究对象包括金融市场、规律和内在机制,为投资者、金融机构和政府等提供决 策依据。
金融经济学的重要性
金融市场是现代经济体系的重要组成 部分,金融经济学对于理解金融市场 的运行规律、预测市场变化以及制定 相关政策具有重要的指导意义。
科技金融的发展与应用
• 区块链技术的应用:区块链技术在金融领域的应用逐渐得 到探索和实践。
科技金融的发展与应用
线上银行
提供全天候的在线金融服务,包括转账、理财、贷款等。
移动支付
通过手机应用程序实现快速、便捷的支付体验。
区块链金融
利用区块链技术提高交易安全性、降低成本和增加透明度。
金融科技对传统金融业的影响与挑战
《金融经济学》 PPT课件
金融风险管理辨识和控制风险的关键要点
金融风险管理辨识和控制风险的关键要点在金融领域,风险管理是一个至关重要的部分,尤其是在面对经济不稳定和市场波动的时候。
辨识和控制金融风险是确保金融机构和投资者能够持续稳定运营的关键要点。
本文将重点讨论金融风险管理的辨识和控制风险的关键要点。
一、风险辨识1. 定义风险类型:首先,我们需要明确各种不同类型的金融风险,如市场风险、信用风险、操作风险等等。
只有明确不同类型的风险,才能制定相应的管理策略。
2. 评估可能的风险来源:了解可能导致风险的各种因素和可能的来源。
例如,市场风险可能由利率变化、汇率波动或政治事件等引起。
评估可能的风险来源能够帮助金融机构更好地进行风险辨识。
3. 识别潜在的风险影响:明确不同风险对金融机构或投资者可能产生的直接和间接影响。
这些影响可能是财务损失、声誉损害、市场份额下降等。
识别潜在的风险影响有助于制定相应的风险管理策略。
二、风险控制1. 制定风险管理策略:根据风险辨识的结果,制定适合的风险管理策略。
不同类型的风险可能需要不同的策略。
例如,对于市场风险,可以通过多元化投资组合、对冲和期权交易等策略进行控制。
2. 实施内部控制措施:建立内部控制措施来减少潜在的风险,例如设立适当的审查程序和监管机制。
内部控制措施应覆盖风险辨识、风险评估、风险监控和风险应对等环节。
3. 加强监测和报告机制:建立有效的监测和报告机制,定期跟踪风险的变化和演变趋势。
及时准确地向管理层报告风险情况,以便及时采取相应的风险控制措施。
4. 建立风险容忍度:确定风险容忍度的范围,即金融机构或投资者能够接受的最大风险程度。
根据风险容忍度,制定相应的限制和控制规则,以确保风险的控制在可接受的范围内。
5. 不断改进和学习:风险管理是一个不断改进和学习的过程。
金融机构应定期回顾和评估其风险管理措施的有效性,并根据评估结果进行必要的改进和调整。
总结:金融风险管理的辨识和控制是金融机构和投资者保持稳定运营的关键要点。
通过清晰地定义风险类型,评估可能的风险来源,识别潜在的风险影响,制定适合的风险管理策略,实施内部控制措施,加强监测和报告机制,建立风险容忍度,以及不断改进和学习,金融机构和投资者可以更好地应对金融风险,并确保持续稳定的经营和投资环境。
金融风险管理ppt课件
➢ 风险的特征:
客观性
普遍性
损失性
可变性
➢ 风险管理是一个连续的过程,是一个对各类风险识别、测度、控制和 监控的过程。
◇风险分类
➢ 市场风险 又称价格风险,是指由于资本的市场价格(包括金融资产价格和商品
价格) 变动或波动引起的未来损失的可能性。 可分为:利率风险、汇率风险、股市风险以及商品风险。
➢ 信用风险 指交易对手不能活不远履行合同约定的条款而导致损失的可能性。 包括评级风险(由于债务人信用评级的降低,致使其债务的市场价
长期偿债能力:资产负债率、利息倍数
企业盈利能力:销售毛利率、销售净利率、资产净利率、净资产收益率
对财务指标进行剖析:
净资产收益率(ROE)=净利润/销售额×销售额/资产×资产/权益
该指标越高,说明投资带来的收益越高,体现了自由资本获得 净收益的能力。
如果是前两个带来的ROE增长是正面的,如果是后一个带来的 增长则是负面的,意味着杠杆加大,风险加大。
风险管理的基本流程,培养良好的风险管理文化,建立健全的全面风险 管理体系,包括风险管理策略、风险理财措施、风险管理的组织职能体 系、风险管理信息系统和内部控制系统,从而为实现风险管理的总体目 标提供合理保证的过程和方法。
企业全民风险管理不同于个别风险管理。它需要对企业各种风险进行统 一、集中的识别、排序和控制,需要建立科学的全面风险管理流程,保 证企业全面风险管理工作有序性和有效性。
其他风险度量方法
• 敏感性分析 考察一个变量的变化对结果的影响。 • 情景分析 与敏感性分析相似,但会同时改变多个变量,用来模拟最差的极端情景的 影响。 • 压力测试 在缺乏历史数据的情况下,对VaR的一个补充。
➢ 风险管理
风险管理策略
金融风险管理的关键知识点
金融风险管理的关键知识点随着金融市场的不断发展和全球经济的不断变化,金融风险管理成为了金融机构和投资者所面临的重要任务。
有效管理金融风险可以帮助机构规避潜在的损失和危机,确保可持续的发展。
本文将介绍金融风险管理的关键知识点。
一、金融风险类型金融风险包括市场风险、信用风险、操作风险和流动性风险。
市场风险是由金融市场价格波动引起的风险,包括股票、债券、商品和外汇等风险。
信用风险涉及债务方无法按时履约或违约的风险。
操作风险是由内部操作失误、欺诈或系统错误等引起的风险。
流动性风险是指无法及时以合理成本进行交易或出售资产的风险。
二、风险评估和度量对金融风险进行评估和度量是金融风险管理的重要环节。
常用方法包括价值-at-风险(VaR)、应激测试、场景分析和模型方法等。
VaR是一种衡量风险暴露的统计指标,表示在给定置信水平下,投资组合在一定时间内可能损失的最大金额。
应激测试是基于一定条件下的风险暴露,用于评估金融机构在不同市场情景下的抗风险能力。
场景分析是对未来可能发生的不同情景进行系统评估,以确定可能产生的风险和影响。
模型方法使用统计和数学模型对不同风险进行建模和分析。
三、风险监测和控制风险监测和控制是风险管理的核心环节。
金融机构应建立有效的风险控制框架和内部控制体系,包括明确的风险职责和风险限额、监测和报告机制以及合适的风险传导机制。
监测风险的指标和数据可以帮助机构及时发现风险暴露和风险集中问题。
风险控制措施包括分散投资、设定适当的止损点、建立紧急情况预案等。
四、风险管理工具和策略金融机构可以利用各种金融工具和策略来管理风险。
对于市场风险,常用的工具包括期货、期权和衍生品等。
对于信用风险,常用的工具包括信用违约互换和信用担保等。
对于操作风险,机构可以建立有效的内部控制措施和流程。
对于流动性风险,机构需要合理管理资金流动和流动性预案。
五、风险管理的监管和合规性金融风险管理需要遵守各国的金融监管和合规性要求。
经济学与风险管理应用经济学原理于风险管理
经济学与风险管理应用经济学原理于风险管理经济学与风险管理:应用经济学原理于风险管理在如今复杂多变的市场环境中,风险管理成为企业和个人必不可少的一环。
为了应对不稳定的经济情况和不确定的市场波动,许多机构和个体开始探索经济学原理在风险管理中的应用。
本文将探讨经济学如何为风险管理提供理论基础,并将其应用于实际案例,以便更好地进行风险评估和决策。
1. 风险管理的概述风险管理旨在识别、评估和应对可能对目标的实现产生不利影响的因素。
在经济学中,风险被定义为不确定性的结果,并且可能导致损失或收益偏离预期值。
风险管理不仅适用于金融领域,也适用于其他行业和个人生活。
它通常包括风险识别、风险评估、风险控制和风险监管四个方面。
2. 风险管理中的经济学原理经济学提供了理论框架来解释市场行为和风险决策。
在风险管理中,经济学原理可以应用于以下几个方面:2.1 风险评估风险评估是风险管理流程的重要环节。
经济学原理中的概率理论和风险偏好理论可以用于量化和评估风险。
概率理论通过对过去数据和市场趋势进行分析,预测未来风险的概率。
而风险偏好理论则研究个体在面临不同风险时的选择行为,并帮助确定个体对风险的偏好程度。
2.2 风险决策风险决策是在面临不确定性时做出的决策。
经济学中的决策理论提供了决策者如何在风险情况下权衡利弊的方法。
决策树模型、期望效用理论和边际效用理论等经济学工具可以帮助决策者在风险管理中进行决策分析,并选择最优方案。
2.3 风险传导风险传导是指风险从一个经济主体传递到另一个经济主体的过程。
风险传导涉及到资源配置、市场机制和金融体系等方面。
经济学原理中的供求关系、市场竞争和金融机制等理论可以用于分析和理解风险在市场中的传导规律,进而采取相应的风险防范和控制措施。
3. 应用经济学原理于风险管理的案例研究以下案例研究将展示经济学原理在风险管理中的具体应用。
3.1 金融风险管理金融风险管理是金融机构面临的一项重要任务。
以银行业为例,经济学原理可以帮助银行测算信用风险、市场风险和流动性风险等,从而确定适宜的风险管理策略和措施。
金融市场风险管理中的定量方法
金融市场风险管理中的定量方法在金融市场风险管理中,定量方法是非常重要的工具。
定量方法通过使用数学、统计学和计量经济学的技术,帮助金融机构和投资者评估和管理市场风险。
本文将介绍一些常见的定量方法,包括风险度量、压力测试和模型评估。
首先,风险度量是评估金融市场风险水平的重要指标之一、常见的风险度量方法包括价值风险(VaR)和预期损失(EL)。
VaR是衡量在一定置信水平下一些投资组合的最大可能损失。
EL则是预期损失的平均值。
这些方法可以帮助投资者确定投资组合的风险敞口,并设定适当的风险限制。
其次,压力测试是一种定量方法,用于评估金融市场在不同压力条件下的弹性和稳定性。
压力测试通过在特定场景中应用外部冲击,如市场动荡或经济衰退,来评估机构的风险承受能力。
这些测试可以帮助机构确定在不同市场条件下的风险暴露,并制定相应的风险管理策略。
最后,模型评估是用于评估金融市场风险模型有效性和准确性的定量方法。
金融市场风险模型是用来预测资产价格变动和市场波动的数学模型。
模型的准确性和可靠性对于风险管理至关重要。
模型评估通过与实际数据的比较,检验模型的预测能力和准确性。
除了以上提到的方法,还有一些其他的定量方法在金融市场风险管理中也非常重要。
其中之一是蒙特卡洛模拟,它通过生成随机数来模拟不同的市场情景,并评估投资组合在不同情境下的表现。
另一个重要的定量方法是回归分析,它通过分析不同变量之间的关系,来预测资产价格以及市场波动。
总的来说,定量方法在金融市场风险管理中起着重要的作用。
风险度量、压力测试和模型评估都可以帮助投资者和金融机构评估和管理市场风险。
定量方法的应用使得风险管理更为科学和准确,提高了投资决策的可靠性。
然而,需要注意的是定量方法也存在局限性,如对于极端事件的预测能力有限。
因此,金融机构和投资者应该综合使用定量方法和定性分析,以全面评估和管理金融市场风险。
金融风险管理知识点
金融风险管理知识点金融风险管理是指金融机构或个人在进行金融活动时,采取一系列措施来识别、评估和控制可能带来的风险。
它涉及到金融市场、金融产品和金融机构等多个方面。
本文将介绍金融风险管理的几个重要知识点。
一、市场风险市场风险是指由于金融市场价格波动引起的风险。
市场风险包括股票、债券、外汇、商品等各类金融资产的价格波动风险。
金融机构在进行投资和交易时,需要关注市场风险,并采取相应的风险管理措施。
市场风险的管理方法主要包括风险度量和风险控制。
风险度量可以通过价值-at-风险(VaR)等方法来评估市场风险的大小。
风险控制则包括分散投资、建立风险管理体系、设置止损点等措施。
二、信用风险信用风险是指金融机构或个人在进行信贷业务时,由于借款人违约或无法按时偿还债务而造成的风险。
信用风险是金融风险管理中最常见和最重要的一种风险。
金融机构需要通过信用评级、贷款审查和风险控制措施来管理信用风险。
信用评级是对借款人的信用状况进行评估,以确定其还款能力。
贷款审查则是对借款人的资信状况、还款能力等进行全面评估。
风险控制措施包括担保、抵押、追踪借款人的还款情况等。
三、流动性风险流动性风险是指金融机构或个人在进行资金流动时,由于无法及时获得足够的资金或无法及时变现资产而造成的风险。
流动性风险是金融风险管理中的重要一环。
金融机构需要通过合理的资金管理和流动性管理策略来管理流动性风险。
资金管理包括合理配置资金、优化资金结构等措施。
流动性管理则包括建立流动性风险管理体系、做好流动性预案等。
四、操作风险操作风险是指金融机构或个人在进行业务操作时,由于内部失误、技术故障、欺诈行为等原因而造成的风险。
操作风险是金融风险管理中的一种重要风险。
金融机构需要通过建立完善的内部控制体系、加强员工培训、建立风险管理部门等措施来管理操作风险。
此外,建立风险事件管理机制、加强对外部供应商的监管等也是管理操作风险的重要手段。
五、法律风险法律风险是指金融机构或个人在进行金融活动时,由于违反法律法规或合同约定而造成的风险。
金融风险管理(全部内容)ppt课件
感知风险:是通过系统化的方法发现商业银行所面临的风险种 类、性质; 分析风险:是深入理解各种风险内在的风险因素。
2.风险计量
一是风险影响:指一旦风险发生可能对机构造成的影响大小。 二是风险概率:它用风险发生可能性的百分比表示。
三是风险价值:它是评估风险的重要参数。
风险值=风险概率×风险影响
金融风险管理(全部内容)
第1章
金融风险管理概述
教学目的和要求:
通过本章的学习,要求学生理解金融风险的含义及其种类, 掌握风险管理的流程,了解对冲策略的使用方法的确定。掌 握巴塞尔协议关于金融机构资本管理的有关规定,了解现代 金融风险管理的基本理论与技术发展状况,尤其是VaR方法 的优势。
第一节
8.战略风险
战略风险是指商业银行在追求短期商业目的和长期发展目标 的系统化管理过程中,不适当的未来发展规划和战略决策可 能威胁商业银行未来发展的潜在风险。
主要表现形式:商业银行战略目标缺乏整体兼容性,为实现
这些目标而制定的经营战略存在缺陷,为实现目标所需要的 资源匮乏,以及整个战略实施过程的质量难以保证。
损失是事后概念,风险是明确的事前概念。二者描述的是不 能同时并存的事物发展的两种状态。
损失的分类:
预期损失:指商业银行业务发展中基于历史数据分析可以预 见的损失,通常为一定历史时期内损失的平均值或中间值。 通常采取提取损失准备金和冲减利润的方式来应对和吸收。 非预期损失:指利用统计分析方法(在一定的置信区间和持 有期内)计算出的对预期损失的偏离,是商业银行难以预见 到的较大损失。通常用资本金来应对非预期损失。 灾难性损失:指超出非预期损失之外的可能威胁到商业银行 安全性和流动性的重大损失。一般需要通过保险手段转移。
第十章 风险管理《金融学教程》PPT课件
10.4 风险转移方法
➢ 3)运用互换交易进行套期保值:互换合约(swap contract)是
两个或两个以上的参与者之间,直接或通过中介机构签订协议,
在约定的时间内交换一定的现金流的合约。
(1)货币互换
货币互换(currency swaps)是交易双方签订的一种合约,彼此同 意在合约规定的期间互相交换一定的现金流,以不同货币计算 和支付,利率支付方式可能相同也可能不同。
10.1 风险概述 10.1.3 风险的分类
分为信用风险、
市场风险、操作
风险、流动性风
01
险、国家风险、
法律风险
1)按风险的来源划分
2)按风险是否可分散
分为系统性风险 和非系统性风险
02
10.2 不同经济主体面临的风险 10.2.1 金融机构面临的风险
➢ 金融风险是金融机构在经营过程中由于决策失误、客观情况变 化或其他原因使资金、财产、信誉遭受损失的可能性。
➢ 为了正确理解风险管理的内涵,我们有必要明确以下几点::
(1)
(2)求风险越低越 好,而是要实现 规避风险所获 得的收益与风 险管理成本之 间的权衡。
风险管理的主 体是各个经济 决策单位,不存 在一个唯一的 对所有决策主 体都适用的风 险管理方案。
风险管理不是 一次性决策行 为,而是一个动 态的过程。
对风险管理决 策正确性的判 断应当基于作 出决策时可获 得的信息。
10.3 风险管理 10.3.2 风险管理的过程
➢ 风险管理的基本过程包括风险识别、风险衡量、风险防范、风 险管理的实施、评估与调整等。下面以金融机构为例分析风险 管理过程。
01 风险的识别 02 风险衡量 03 风险的防范 04 风险管理的实施、评估与调整
经济学中的金融危机与风险管理
经济学中的金融危机与风险管理在经济学中,金融危机是一种由金融市场系统性失衡引起的经济崩溃现象。
金融危机不仅对金融市场本身造成重大冲击,还会对实体经济和社会造成严重影响。
为了防范和化解金融危机,风险管理成为一项重要的任务。
本文将探讨经济学中的金融危机与风险管理的关系,并分析其对经济发展的影响。
一、金融危机的定义与特征金融危机是指由金融市场异常波动、金融机构违约或金融体系崩溃等因素引起的一系列经济问题。
金融危机常常伴随着银行业危机、股市崩盘、资产价格暴跌和信贷紧缩等特征。
金融危机通常是由多种因素共同作用的结果,如信用风险、流动性风险、市场波动性风险等。
这些风险在金融市场中相互关联,形成金融体系的脆弱性。
二、金融危机的成因与机制金融危机的成因非常复杂,常常涉及宏观经济政策、金融市场结构和金融机构行为等多个方面。
其中,金融市场的失灵、金融机构的风险暴露和金融监管的不力是常见的成因。
首先,金融市场的失灵是金融危机的一个重要因素。
市场的不完全信息和不对称信息使得金融交易难以实现有效定价,导致市场估值的失调和泡沫的产生。
金融市场的过度波动性会引发恐慌情绪和投资者的集体行为,从而加剧市场的失灵。
其次,金融机构的风险暴露是金融危机的另一个成因。
金融机构往往承担着资金中介、信用担保和风险承担等角色,它们的经营行为对整个金融体系的稳定起着至关重要的作用。
金融机构的不良贷款、杠杆风险和投资偏差等问题,都可能威胁到金融系统的正常运转。
最后,金融监管的不力也是引发金融危机的重要原因。
金融监管机构在保障金融市场秩序、监督金融机构风险管理和维护金融稳定方面扮演着关键角色。
监管的缺失、监管规则的不完善以及监管者的失职等都可能导致金融危机的发生。
三、风险管理对金融危机的预防与化解风险管理是金融危机预防与化解的重要手段。
风险管理的核心是识别、评估、控制和转移风险。
它通过建立风险敞口的度量和监控体系,制定风险控制措施和应急预案,提高金融机构和市场的风险承受能力,从而降低金融危机的发生和传播风险。
如何进行金融市场的风险管理
如何进行金融市场的风险管理金融市场是一个充满变化的环境,投资者和交易者面临着各种风险。
为了保护自身利益并获得持续的回报,金融市场参与者需要进行有效的风险管理。
本文将介绍如何进行金融市场的风险管理。
一、了解风险类型在进行风险管理之前,我们首先需要了解不同类型的风险。
金融市场的主要风险类型包括市场风险、信用风险、操作风险、流动性风险和法律风险。
市场风险是由于市场价格波动引起的投资损失风险;信用风险是由于交易对手违约或无法履约而引起的损失风险;操作风险是由于内部操作错误或系统故障引起的风险;流动性风险是由于资产无法迅速转换成现金而引起的风险;法律风险是由于法律和监管方面的变化而引起的风险。
二、制定详细的风险管理策略根据不同的风险类型,制定详细的风险管理策略是非常重要的。
在制定策略时,需要考虑到不同的市场环境和个人风险偏好。
例如,在市场风险管理方面,我们可以采取多样化投资策略,包括资产配置和对冲等方法。
在信用风险管理方面,我们可以进行信用评级和风险敞口控制。
在操作风险管理方面,我们可以加强内部控制和风险监测。
在流动性风险管理方面,我们可以拥有足够的流动资金以应对突发情况。
在法律风险管理方面,我们需要及时了解法律和监管的变化,并遵守相关规定。
三、分散风险分散风险是降低投资组合风险的有效方法。
不要把所有的蛋放在一个篮子里,而是将资金分散投资于不同的资产类别和行业。
这样可以降低特定资产或行业波动对整个投资组合的影响。
不同类型的资产在不同的市场环境下表现也可能不同,因此分散风险可以提高整体回报稳定性。
四、定期检查和调整风险管理策略金融市场和投资环境都在不断变化,因此定期检查和调整风险管理策略是至关重要的。
根据市场和个人投资目标的变化,适时地对风险管理策略进行调整,以确保其适应新的情况,并能够更好地应对风险。
五、利用金融工具进行风险管理金融市场提供了各种各样的金融工具,可以用于风险管理。
例如,期货和期权合约可以用于对冲市场风险;信用衍生品可以用于管理信用风险;止损和限价订单可以用于管理操作风险。
经济学金融市场
经济学金融市场金融市场是经济学中一个重要的研究领域,它对于国家和全球经济的发展起着至关重要的作用。
本文将从经济学的角度探讨金融市场的定义、功能和影响。
一、金融市场的定义金融市场是指供需双方进行金融资产交易的场所和机构的总称。
它是资金供求的集中体现,通过金融交易提供了融资、投资和风险管理等服务。
金融市场根据交易工具的不同可以分为股票市场、债券市场、外汇市场、商品市场等。
二、金融市场的功能1. 资金配置功能:金融市场通过将资金从闲置者转移给资金需求者,实现了资源的优化配置。
这就促进了经济的发展和增长。
2. 风险管理功能:金融市场提供了保险、期货、期权等衍生品合约,帮助投资者规避投资风险,实现资产保值增值。
3. 定价功能:金融市场通过交易活动的进行,形成了资产的公开价格。
这些价格信息为投资者提供了参考,提高了市场效率和资源配置效率。
4. 货币功能:金融市场作为一种流动性较高的场所,帮助资金将流向从低效率的领域转向效率较高的领域,实现了货币的流通与增值。
三、金融市场对经济的影响1. 促进经济增长:金融市场提供了大量的资金,为各类企业提供融资机会,促进了经济活动和创新。
2. 优化资源配置:金融市场通过资金的流动实现了资源的优化配置,使得资源能够更加高效地利用起来。
3. 影响货币政策传导:金融市场对货币政策的传导有重要影响。
各类金融市场利率的变化对企业投资和居民消费决策产生影响。
4. 形成市场预期:金融市场上的资产价格和交易量变化反映了投资者对未来经济走势的预期。
这些预期则影响了投资和消费者的决策行为,从而对经济产生重要影响。
总之,金融市场作为经济学的一个重要领域,对于经济的发展和运行具有重要影响。
它通过提供资金配置、风险管理、定价和货币流通等功能,推动经济的增长和资源的优化配置。
同时,金融市场的运行也反过来受制于经济的整体状况和政策环境,二者相互影响、互为依存。
因此,我们应该重视金融市场的研究和监管,以维护金融市场的稳定和健康发展,促进经济的繁荣和可持续发展。
金融风险管理培训课程
金融风险管理培训课程一、课程目标本课程旨在通过理论学习和实践案例分析,使学员全面了解各类金融风险及其特点,掌握风险管理的基本原理和方法,提高金融风险管理的能力和水平。
二、课程内容1. 金融风险基础知识:介绍金融风险的概念、种类和特点,帮助学员建立对金融风险的整体认识。
2. 风险评估方法:介绍不同金融风险的评估方法,包括市场风险、信用风险、操作风险等,以及计量风险的常用模型和工具。
3. 风险管理框架:介绍风险管理的基本框架和流程,包括风险识别、评估、控制和监控,以及内部控制和合规管理等方面的知识。
4. 风险控制工具和技术:系统介绍金融风险管理中常用的工具和技术,包括风险指标、风险暴露度控制、风险敞口管理等方面的内容。
5. 风险管理案例分析:通过真实的金融风险案例,进行实践分析和讨论,帮助学员将理论知识应用到实际风险管理中,培养解决问题和应对风险的能力。
三、课程特色1. 整合理论与实践:本课程注重将金融风险管理的理论知识与实践技能相结合,通过案例分析和实践训练,帮助学员理解和应用风险管理的具体方法和技巧。
2. 针对性强:本课程根据金融机构的风险管理需求,重点讲解与金融风险密切相关的知识和技术,针对不同类型的金融机构开设不同的培训内容,提高培训效果。
3. 高效学习:采用多种教学方法和手段,如理论授课、案例研讨、小组讨论等,提供丰富多样的学习环境,帮助学员充分参与与互动,提高学习效果。
四、课程效果学员通过本培训课程的学习,将获得以下效果:1. 全面掌握金融风险的基本概念、种类和特点;2. 理解金融风险管理的基本原理和方法;3. 掌握金融风险评估和控制的工具和技术;4. 培养解决金融风险问题和应对市场变化的能力;5. 提升金融机构的风险控制能力和经营水平。
综上所述,金融风险管理培训课程是提高金融从业人员风险管理能力的重要手段,通过系统学习和实践训练,帮助学员全面了解和应对各类金融风险,提高金融机构的风险控制和经营水平。
经济法对金融市场风险的管理
经济法对金融市场风险的管理在现代金融市场中,经济法被广泛运用来管理和规范金融业务。
经济法的出台和实施对于金融市场风险的管理起着重要的作用。
本文将从立法、合同、监管等多个方面探讨经济法对金融市场风险的管理。
一、立法层面在经济法的制定和修订过程中,立法者注重对金融市场风险进行全面的认识和分析,并通过法律手段来进行规范和约束。
立法的过程中,应该综合考虑金融市场的特点和实际情况,制定出具体、可操作的法规,以确保金融市场的健康发展。
合理的立法可以为金融市场各方提供明确的法律框架,有利于风险管理与监督的顺利进行。
二、合同层面金融市场交易的基础是合同,经济法对于合同的内容与规定也对金融市场风险的管理发挥着重要作用。
合同应该明确规定各方的权利与义务,预先确定交易标的、交付方式以及违约责任等,以减少不确定性和减轻风险。
此外,经济法还规定了关于金融市场的交易行为,对交易方的资格、信用评估、信息披露等方面进行了详细的规定,以增加交易的透明度和可靠性。
三、监管层面经济法对金融市场进行严格的监管,以降低金融市场风险。
监管机构应具备独立性和权威性,对金融市场进行全面监管和风险评估。
监管应该保持高度警惕,及时发现和应对金融市场中的各类风险,并采取相应的措施来防范和化解风险。
经济法对监管机构的权力和责任进行了明确规定,确保了监管活动的合法性和公正性。
四、争议解决层面金融市场不可避免地会出现各种争议和纠纷,经济法为争议解决提供了有效的方法和程序。
例如,经济法规定了金融仲裁的程序和原则,为各方提供了一个公正、独立的争议解决机构。
通过仲裁等方式,可以方便、快速地解决金融纠纷,维护金融市场的稳定和正常运行。
综上所述,经济法在金融市场中起着重要的作用,特别是在风险管理方面。
通过合理的立法和规范的合同,可以降低金融交易的风险并增加市场的透明度和可靠性。
同时,科学有效的监管机制和争议解决程序也为金融市场的稳定运行提供了保障。
只有通过综合运用经济法的原则和规定,才能更好地管理金融市场的风险,促进金融市场的发展与稳定。
金融市场风险管理
金融市场风险管理金融市场风险管理是金融机构和投资者在进行金融交易、资产配置和投资决策时必须面对的重要问题。
随着金融市场的不断发展和变革,金融风险管理的重要性和复杂性也日益增加。
金融风险是指金融交易中可能面临的损失风险。
它可以来自多个方面,包括市场风险、信用风险、流动性风险、操作风险等。
市场风险是由市场价格波动引起的损失风险,主要包括股票、债券、外汇等资产的价格波动风险。
信用风险是由交易对手出现违约或无法履约引起的损失风险。
流动性风险是指无法按时以合理价格买卖资产的风险。
操作风险是由内部操作失误、系统故障、欺诈等原因引起的损失风险。
金融市场风险管理的目标是通过有效的风险控制和管理措施,降低风险暴露,提高投资回报,并确保金融机构的稳定和健康发展。
风险管理涉及到金融机构的整个风险管理过程,包括风险识别、风险评估、风险应对和风险监控等环节。
在风险识别方面,金融机构需要通过对市场信息的搜集和分析,识别出可能面临的各种风险。
这可以通过内部和外部的各种风险指标和数据进行监测和分析来实现。
例如,金融机构可以通过监控股票市场的价格指数、利率变动等指标来识别市场风险;通过评估交易对手的信用评级、财务状况等来识别信用风险;通过监测资产和负债的流动性状况来识别流动性风险。
在风险评估方面,金融机构需要对识别出的风险进行定量和定性的评估。
这可以通过使用各种风险模型和方法来实现。
例如,市场风险可以通过使用价值-at-risk(VaR)模型来进行评估,信用风险可以通过使用评级模型和违约概率模型来进行评估,流动性风险可以通过使用融资成本模型和流动性压力测试来进行评估。
在风险应对方面,金融机构需要制定和实施适当的风险管理策略和措施,以应对风险事件的发生。
这可以包括风险多元化、买入保险、使用衍生品等多种方法。
例如,金融机构可以通过投资不同类型的资产来实现风险多元化,降低市场风险;可以购买信用违约掉期(CDS)等产品来对冲信用风险;可以使用短期回购和长期融资等手段来应对流动性风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【视频】经济学金融市场02风险管理Financial Markets: Lecture 2 TranscriptJanuary 16, 2008Professor Robert Shiller: Today I want to spend--The title of today's lecture is: The Universal Principle of Risk Management, Pooling and the Hedging of Risk. What I'm really referring to is what I think is the very original, the deep concept that underlies theoretical finance--I wanted to get that first. It really is probability theory and the idea of spreading risk through risk pooling. So, this idea is an intellectual construct that appeared at a certain point in history and it has had an amazing number of applications and finance is one of these. Some of you--This incidentally will be a more technical of my lectures and it's a little bit unfortunate that it comes early in the semester. For those of you who have had a course in probability and statistics, there will be nothing new here. Well, nothing in terms of the math. The probability theory is new. Others though, I want to tell you that it doesn't--if you're shopping--I had a student come by yesterday and ask--he's a little rusty in his math skills--if he should take this course. I said, "Well if you can understand tomorrow's lecture--that's today's lecture--then you should have no problem."I want to start with the concept of probability. Do you know what a probability is? We attach a probability to an event. What is the probability that the stock market will go up this year? I would say--my personal probability is .45. That's because I'm a bear but--Do you know what that means? That 45 times out of 100 the stock market will go up and the other 55 times out of 100 it will stay the same or go down. That's a probability. Now, you're familiar with that concept, right? If someone says the probability is .55 or .45, well you know what that means. I want to emphasize that it hasn't always been that way and that probability is really a concept that arose in the 1600s. Before that, nobody ever said that.Ian Hacking, who wrote a history of probability theory, searched through world literature for any reference to a probability and could find none anywhere before 1600. There was an intellectual leap that occurred in the seventeenth century and it became very fashionable to talk in terms of probabilities. It spread throughout the world--the idea of quoting probabilities. But it was--It's funny that such a simple idea hadn't been used before. Hacking points out that the word probability--or probable--was already in the English language. In fact, Shakespeare used it, but what do you think it meant? He gives an example of a young woman, who was describing a man that she liked, and she said, I like him very much, I find him very probable. What do you think she means? Can someone answer that? Does anyone know Elizabethan English well enough to tell me? What is a probable young man? I'm asking for an answer. It sounds like people have no idea. Can anyone venture a guess? No one wants to venture a guess?Student: fertile?Professor Robert Shiller: That he can father children? I don't think that's what she meant butmaybe. No, what apparently she meant is trustworthy. That's a very important quality in a person I suppose.So, if something is probable you mean that you can trust it and so probability means trustworthiness. You can see how they moved from that definition of probability to the current definition. But Ian Hacking, being a good historian, thought that someone must have had some concept of probability going before, even if they didn't quote it as a number the way--it must have been in their head or in their idea. He searched through world literature to try to find some use of the term that preceded the 1600s and he concluded that there were probably a number of people who had the idea, but they didn't publish it, and it never became part of the established literature partly because, he said, throughout human history, there has been a love of gambling and probability theory is extremely useful if you are a gambler. Hacking believes that there were many gambling theorists who invented probability theory at various times in history but never wrote it down and kept it as a secret.He gives an example--I like to--he gives an example from a book that--or it's a collection--I think, a collection of epic poems written in Sanskrit that goes back--it was actually written over a course of 1,000 years and it was completed in the fourth century. Well, there's a story--there's a long story in the Mahabarahta about an emperor called Nala and he had a wife named Damayanti and he was a very pure and very good person. There was an evil demon called Kali who hated Nala and wanted to bring his downfall, so he had to find a weakness of Nala. He found finally some, even though Nala was so pure and so perfect--he found one weakness and that was gambling. Nala couldn't resist the opportunity to gamble; so the evil demon seduced him into gambling aggressively. You know sometimes when you're losing and you redouble and you keep hoping to win back what you've lost? In a fit of gambling, Nala finally gambled his entire kingdom and lost--it's a terrible story--and Nala then had to leave the kingdom and his wife. They wandered for years. He separated from her because of dire necessity.They were wandering in the forests and he was in despair, having lost everything. But then he meets someone by the name of--we have Nala and he meets this man, Rituparna, and this is where a probability theory apparently comes in. Rituparna tells Nala that he knows the science of gambling and he will teach it to Nala, but that it has to be done by whispering it in his ear because it's a deep and extreme secret. Nala is skeptical. How does Rituparna know how to gamble? So Rituparna tries to prove to him his abilities and he says, see that tree there, I can estimate how many leaves there are on that tree by counting leaves on one branch. Rituparna looked at one branch and estimated the number of leaves on the tree, but Nala was skeptical. He stayed up all night and counted every leaf on the tree and it came very close to what Rituparna said; so he--the next morning--believed Rituparna. Now this is interesting, Hacking says, because it shows that sampling theory was part of Nala's theory. You don't have to count all the leaves on the tree, you can take a sample and you count that and then you multiply.Anyway, the story ends and Nala goes back and is now armed with probability theory, we assume. He goes back and gambles again, but he has nothing left to wager except his wife; so he puts her and gambles her. But remember, now he knows what he's doing and so he really wasn't gamblinghis wife--he was really a very pure and honorable man. So he won back the entire kingdom and that's the ending.Anyway, that shows that I think probability theory does have a long history, but--it not being an intellectual discipline--it didn't really inform a generation of finance theory. When you don't have a theory, then you don't have a way to be rigorous. So, it was in the 1600s that probability theory started to get written down as a theory and many things then happened in that century that, I think, are precursors both to finance and insurance.One was in the 1600s when people started constructing life tables. What is a life table? It's a table showing the probability of dying at each age, for each age and sex. That's what you need to know if you're going to do life insurance. So, they started to do collecting of data on mortality and they developed something called actuarial science, which is estimating the probability of people living. That then became the basis for insurance. Actually, insurance goes back to ancient Rome in some form. In ancient Rome they had something called burial insurance. You could buy a policy that protected you against your family not having the money to bury you if you died. In ancient culture people worried a great deal about being properly buried, so that's an interesting concept. They were selling that in ancient Rome; but you might think, but why just for burial? Why don't you make it into full-blown life insurance? You kind of wonder why they didn't. I think maybe it's because they didn't have the concepts down. In Renaissance Italy they started writing insurance policies--I read one of the insurance policies, it's in the Journal of Risk and Insurance--and they translate a Renaissance insurance policy and it's very hard to understand what this policy was saying. I guess they didn't have our language, they didn't--they were intuitively halfway there but they couldn't express it, so I think the industry didn't get really started. I think it was the invention of probability theory that really started it and that's why I think theory is very important in finance.Some people date fire insurance with the fire of London in 1666. The whole city burned down, practically, in a terrible fire and fire insurance started to proliferate right after that in London. But you know, you kind of wonder if that's a good example for fire insurance because if the whole city burns down, then insurance companies would go bankrupt anyway, right? London insurance companies would because the whole concept of insurance is pooling of independent probabilities. Nonetheless, that was the beginning.We're also going to recognize, however, that insurance got a slow start because--I believe it is because--people could not understand the concept of probability. They didn't have the concept firmly in mind. There are lots of aspects to it. In order to understand probability, you have to take things as coming from a random event and people don't clearly have that in their mind from an intuitive standpoint. They have maybe a sense that I can influence events by willing or wishing and if I think that--if I have kind of a mystical side to me, then probabilities don't have a clear meaning. It has been shown that even today people seem to think that. They don't really take, at an intuitive level, probabilities as objective. For example, if you ask people how much they would be willing to bet on a coin toss, they will typically bet more if they can toss the coin or they will bet more if the coin hasn't been tossed yet. It could have been already tossed and concealed. Why would that be? It might be that there's just some intuitive sense that I can--I don't know--I havesome magical forces in me and I can change things.The idea of probability theory is that no, you can't change things, there are all these objective laws of probability out there that guide everything. Most languages around the world have a different word for luck and risk--or luck and fortune. Luck seems to mean something about you: like I'm a lucky person. I don't know what that means--like God or the gods favor me and so I'm lucky or this is my lucky day. Probability theory is really a movement away from that. We then have a mathematically rigorous discipline.Now, I'm going to go through some of the terms of probability and--this will be review for many of you, but it will be something that we're going to use in the--So I'll use the symbol P or I can sometimes write it out as prob to represent a probability. It is always a number that lies between zero and one, or between 0% and 100%. "Percent" means divided by 100 in Latin, so 100% is one. If the probability is zero that means the event can't happen. If the probability is one, it means that it's certain to happen. If the probability is--Can everyone see this from over there? I can probably move this or can't I? Yes, I can. Now, can you now--you're the most disadvantaged person and you can see it, right? So that's the basic idea.One of the first principles of probability is the idea of independence. The idea is that probability measures the likelihood of some outcome. Let's say the outcome of an experiment, like tossing a coin. You might say the probability that you toss a coin and it comes up heads is a half, because it's equally likely to be heads and tails. Independent experiments are experiments that occur without relation to each other. If you toss a coin twice and the first experiment doesn't influence the second, we say they're independent and there's no relation between the two.One of the first principles of probability theory is called the multiplication rule. That says that if you have independent probabilities, then the probability of two events is equal to the product of their probabilities. So, the Prob(A and B) = Prob(A)*Prob(B). That wouldn't hold if they're not independent. The theory of insurance is that ideally an insurance company wants to insure independent events. Ideally, life insurance is insuring people--or fire insurance is insuring people--against independent events; so it's not the fire of London. It's the problem that sometimes people knock over an oil lamp in their home and they burn their own house down. It's not going to burn any other houses down since it's just completely independent of anything else. So, the probability that the whole city burns down is infinitesimally small, right? This will generalize to probability of A and B and C equals the probability of A times the probability of B times the probability of C and so on. If the probability is 1 in 1,000 that a house burns down and there are 1,000 houses, then the probability that they all burn down is 1/1000 to the 1000th power, which is virtually zero. So insurance companies then–Basically, if they write a lot of policies, then they have virtually no risk. That is the fundamental idea that may seem simple and obvious to you, but it certainly wasn't back when the idea first came up.Incidentally, we have a problem set, which I want you to start today and it will be due not in a week this time, because we have Martin Luther King Day coming up, but it will be due the Monday following that.If you follow through from the independent theory, there's one of the basic relations in probability theory--it's called the binomial distribution. I'm not going to spend a whole lot of time on this but it gives the probability of x successes in n trials or, in the case of insurance x, if you're insuring against an accident, then the probability that you'll get x accidents and n trials. The binomial distribution gives the probability as a function of x and it's given by the formula where P is theprobability of the accident: ()()()()!!1xnnppx fxnx--=-. That is the formula that insurancecompanies use when they have independent probabilities, to estimate the likelihood of having a certain number of accidents. They're concerned with having too many accidents, which might exhaust their reserves. An insurance company has reserves and it has enough reserves to cover them for a certain number of accidents. It uses the binomial distribution to calculate the probability of getting any specific number of accidents. So, that is the binomial distribution. I'm not going to expand on this because I can't get into--This is not a course in probability theory but I'm hopeful that you can see the formula and you can apply it. Any questions? Is this clear enough? Can you read my handwriting?Another important concept in probability theory that we will use a lot is expected value, the mean, or average--those are all roughly interchangeable concepts. We have expected value, mean or average. We can define it in a couple of different ways depending on whether we're talking about sample mean or population mean. The basic definition--the expected value of some random variable x--E(x)--I guess I should have said that a random variable is a quantity that takes on value. If you have an experiment and the outcome of the experiment is a number, then a random variable is the number that comes from the experiment. For example, the experiment could be tossing a coin; I will call the outcome heads the number one, and I'll call the outcome tails the number zero, so I've just defined a random variable. You have discrete random variables, like the one I just defined, or there are also--which take on only a finite number of values--and we have continuous random variables that can take on any number of values along a continuum. Another experiment would be to mix two chemicals together and put a thermometer in and measure the temperature. That's another invention of the 1600s, by the way--the thermometer. And they learned that concept--perfectly natural to us--temperature. But it was a new idea in the 1600s. So anyway, that's continuous, right? When you mix two chemicals together, it could be any number, there's an infinite number of possible numbers and that would be continuous.For discrete random variables, we can define the expected value, or µx --that's the Greek letter mu--as the summation i = 1 to infinity of. [P(x=xi) times (xi)]. I have it down that there might be an infinite number of possible values for the random variable x. In the case of the coin toss, there are only two, but I'm saying in general there could be an infinite number. But they're accountable and we can list all possible values when they're discrete and form a probability weighted average of the outcomes. That's called the expected value. People also call that the mean or the average. But, note that this is based on theory. These are probabilities. In order to compute using this formula you have to know the true probabilities. There's another formula that applies for a continuous random variables and it's the same idea except that--I'll also call it µx, exceptthat it's an integral. We have the integral from minus infinity to plus infinity of F(x)*x*dx, and that's really--you see it's the same thing because an integral is analogous to a summation.Those are the two population definitions. F(x) is the continuous probability distribution for x. That's different when you have continuous values--you don't have P (x = xi) because it's always zero. The probability that the temperature is exactly 100° is zero because it could be 100.0001° or something else and there's an infinite number of possibilities. We have instead what's called a probability density when we have continuous random variables. You're not going to need to know a lot about this for this course, but this is--I wanted to get the basic ideas down. These are called population measures because they refer to the whole population of possible outcomes and they measure the probabilities. It's the truth, but there are also sample means. When you get--this is Rituparna, counting the leaves on a tree--you can estimate, from a sample, the population expected values. The population mean is often written "x-bar." If you have a sample with n observations, it's the summation i = 1 to n of xi/n--that's the average. You know that formula, right? You count n leaves--you count the number of leaves. You have n branches on the tree and you count the number of leaves and sum them up. One would be--I'm having a little trouble putting this into the Rituparna story, but you see the idea. You know the average, I assume. That's the most elementary concept and you could use it to estimate either a discreet or continuous expected value.In finance, there's often reference to another kind of average, which I want to refer you to and which, in the Jeremy Siegel book, a lot is made of this. The other kind of average is called the geometric average. We'll call that--I'll only show the sample version of it G(x) = the product i = 1 to n of (xi )^(1/n). Does everyone--Can you see that? Instead of summing them and dividing by M, I multiply them all together and take the nth root of them. This is called the geometric average and it's used only for positive numbers. So, if you have any negative numbers you'd have a problem, right? If you had one negative number in it, then the product would be a negative number and, if you took a root of that, then you might get an imaginary number. We don't want to use it in that case.There's an appendix to one of the chapters in Jeremy Siegel's book where he says that one of the most important applications of this theory is to measure how successful an investor is. Suppose someone is managing money. Have they done well? If so, you would say, "Well, they've been investing money over a number of different years. Let's take the average over all the different years." Suppose someone has been investing money for n years and xi is the return on the investment in a given year. What is their average performance? The natural thing to do would be to average them up, right? But Jeremy says that maybe that's not a very good thing to do. What he says you should do instead is to take the geometric average of gross returns. The return on an investment is how much you made from the investment as a percent of the money invested. The gross return is the return plus one. The worst you can ever do investing is lose all of your investment--lose 100%. If we add one to the return, then you've got a number that's never negative and we can then use geometric returns.Jeremy Siegel says that in finance we should be using geometric and not arithmetic averages. Why is that? Well I'll tell you in very simple terms, I think. Suppose someone is investing your moneyand he announces, I have had very good returns. I have invested and I've produced 20% a year for nine out of the last ten years. You think that's great, but what about the last year. The guy says, "Oh I lost 100% in that year." You might say, "Alright, that's good." I would add up 20% a year for nine years and than put in a zero–no, 120 because it's gross return for nine years--and put in a zero for one year. Maybe that doesn't look bad, right? But think about it, if you were investing your money with someone like that, what did you end up with? You ended up with nothing. If they have one year when they lose everything, it doesn't matter how much they made in the other years. Jeremy says in the text that the geometric return is always lower than the arithmetic return unless all the numbers are the same. It's a less optimistic version. So, we should use that, but people in finance resist using that because it's a lower number and when you're advertising your return you want to make it look as big as possible.We also need some measure of--We've been talking here about measures of central tendency only and in finance we need, as well, measures of dispersion, which is how much something varies. Central tendency is a measure of the center of a probability distribution of the--Central tendency is a measure--Variance is a measure of how much things change from one observation to another. We have variance and it's often repre sented by σ², that's the Greek letter sigma, lower case, squared. Or, especially when talking about estimates of the variance, we sometimes say S² or we say standard deviation². The standard deviation is the square root of the variance. For population variance, the variance of some random variable x is defined as the summation i = 1 to infinity of the Prob (x = xi) times (xi - µx)2. So mu is the mean--we just defined it of x--that's the expectation of x or also E(x), so it's the probability weighted average of the squared deviations from the mean. If it moves a lot--either way from the mean--then this number squared is a big number. The more x moves, the bigger the variance is.There's also another variance measure, which we use in the sample--or also Var is used sometimes--and this is ∑². There's also another variance measure, which is for the sample. When we have n observations it's just the summation i = 1 to n of (x - x bar)²/n. That is the sample variance. Some people will divide by n–1. I suppose I would accept either answer. I'm just keeping it simple here. They divide by n-1 to make it an unbiased estimator of the population variance; but I'm just going to show it in a simple way here. So you see what it is--it's a measure of how much x deviates from the mean; but it's squared. It weights big deviations a lot because the square of a big number is really big. So, that's the variance.So, that completes central tendency and dispersion. We're going to be talking about these in finance in regards to returns because--generally the idea here is that we want high returns. We want a high expected value of returns, but we don't like variance. Expected value is good and variance is bad because that's risk; that's uncertainty. That's what this whole theory is about: how to get a lot of expected return without getting a lot of risk.Another concept that's very basic here is covariance. Covariance is a measure of how much two variables move together. Covariance is--we'll call it--now we have two random variables, so I'll just talk about it in a sample term. It's the summation i = 1 to n of [(x – x-bar) times (y – y-bar)]/n. So x is the deviation for the i-subscript, meaning we have a separate xi and yi for each observation. So we're talking about an experiment when you generate--Each experiment generates both an xand a y observation and we know when x is high, y also tends to be high, or whether it's the other way around. If they tend to move together, when x is high and y is high together at the same time, then the covariance will tend to be a positive number. If when x is low, y also tends to be low, then this will be negative number and so will this, so their product is positive. A positive covariance means that the two move together. A negative covariance means that they tend to move opposite each other. If x is high relative to x-bar--this is positive--then y tends to be low relative to its mean y-bar and this is negative. So the product would be negative. If you get a lot of negative products, that makes the covariance negative.Then I want to move to correlation. So this is a measure--it's a scaled covariance. We tend to use the Greek letter rho. If you were to use Excel, it would be correl or sometimes I say corr. That's the correlation. This number always lies between -1 and +1. It is defined as rho= [cov(xiyi)/SxSy] That's the correlation coefficient. That has kind of almost entered the English language in the sense that you'll see it quoted occasionally in newspapers. I don't know how much you're used to it--Where would you see that? They would say there is a low correlation between SAT scores and grade point averages in college, or maybe it's a high correlation. Does anyone know what it is? But you could estimate the corr--it's probably positive. I bet it's way below one, but it has some correlation, so maybe it's .3. That would mean that people who have high SAT scores tend to get higher grades. If it were negative--it's very unlikely that it's negative--it couldn't be negative. It couldn't be that people who have high SAT scores tend to do poorly in college. If you quantify how much they relate, then you could look at the correlation.I want to move to regression. This is another concept that is very basic to statistics, but it has particular use in finance, so I'll give you a financial example. The concept of regression goes back to the mathematician Gauss, who talked about fitting a line through a scatter of points. Let's draw a line through a scatter of points here. I want to put down on this axis the return on the stock market and on this axis I want to put the return on one company, let's say Microsoft. I'm going to have each observation as a year. I shouldn't put down a name of a company because I can't reproduce this diagram for Microsoft. Let's not say Microsoft, let's say Shiller, Inc. There's no such company, so I can be completely hypothetical. Let's put zero here because these are not gross returns these are returns, so they're often negative.Suppose that in a given year--and say this is minus five and this is plus five, this is minus five and this is plus five--Suppose that in the first year in our sample, the company Shiller, Inc. and the market both did 5%. That puts a point right there at five and five. In another year, however, the stock market lost 5% and Shiller, Inc. lost 7%. We would have a point, say, down here at five and seven. This could be 1979, this could be 1980, and we keep adding points so we have a whole scatter of points. It's probably upward sloping, right? Probably when the overall stock market does well so does Shiller, Inc.What Gauss did was said, let's fit a line through the point--the scatter of points--and that's called the regression line. He chose the line so that--this is Gauss--he chose the line to minimize the sum of squared distances of the points from the lines. So these distances are the lengths of these line segments. To get the best fitting line, you find the line that minimizes the sum of squared distances.。