六年级奥数试题.jsp (19)

合集下载

(完整)六年级奥数题及答案_19道经典试题

(完整)六年级奥数题及答案_19道经典试题

人教版六年级奥数题及答案1甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款9600×(1-40%)=5760(元)5760÷2+120=3000(元)3000÷(1-40%)=5000(元)2小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?4*1/6=2/3 4-2/3=3又1/3(份)3+2/3=3又2/3(份)3*2=6(个)4*6=24(个)3搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?60 ×2÷(6+ 5+ 4)= 8(小时)(60- 6×8)÷4= 3(小时)(60- 5×8)÷4= 5(小时)4一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?5/6-1/3=1/2 1/2÷8=1/16,1/16×4=1/4 1/3-1/4=1/12 [1/12-1/72×3]/2=1/48 1/16-1/72-1/48=1/36 [1-5/6]÷1/36=6天答:还需要6天5股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?6一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?解: 设需要增加x人(40+x)(15-3)=40*15x=10答:所以需要增加10了7仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

六年级奥数题及答案-20道题

六年级奥数题及答案-20道题

小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子。

请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题—002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转".请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题—006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题—007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题—008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题—009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2—(3+1)=2不是11的倍数,所以1234不是11的倍数。

(完整)六年级奥数练习题及答案.doc

(完整)六年级奥数练习题及答案.doc

六年级奥数练习题及答案一商店进了一批商品,按40%加价出售 . 在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了 150 元的附加税,这使得商店的实际利润率仅仅预期利润率的一半,那么这批商品的进价是多少元?( 注:附加税算作成本 )答案与解析:理解利润率的含义,是利润在成本上的百分比。

设进价 x 元,则预期利润率是40%所以收入为 (1+40%)X×0.8+0.5 ×(1+40%)X×0.2=1.26X实际利润率为 40%×0.5=20%1.26X=(1+20%)(X+150)得X=3000所以这批商品的进价是3000 元二甲乙两班共 90 人,甲班比乙班人数的 2 倍少 30 人,求两班各有多少人 ?答案与解析:第一种方法:设乙班有Χ人,则甲班有 (90- Χ) 人。

寻等量关系:甲班人数 =乙班人数×2-30 人。

列方程: 90- Χ=2Χ-30解方程得Χ=40 从而知 90- Χ=50第二种方法:设乙班有Χ人,则甲班有 (2 Χ-30) 人。

列方程 (2 Χ-30)+ Χ=90解方程得Χ=40 从而得知 2Χ-30=50答:甲班有 50 人,乙班有 40 人。

篇二一甲乙两地相距 6 千米 . 陈宇从甲地步行去乙地,前一半时间每分钟走 80 米,后一半的时间每分钟走 70 米. 这样他在前一半的时间比后一半的时间多走 () 米.考点:简单的行程问题 .分析:解:设陈宇从甲地步行去乙地所用时间为2X 分钟,依据题意,前一半时间和后一半的时间共走(0.07+0.08)X 千米,已知甲乙两地相距 6 千米,由此列出方程 (0.07+0.08)X=6 ,解方程求出一半的时间,因此前一半比后一半时间多走: (80- 70) ×40 米,解决问题 .解答:解:设陈宇从甲地步行去乙地所用时间为X 分钟,依据题意得:(0.07+0.08)X=60.15X=6X=40前一半比后一半时间多走:(80- 70) ×40=10×40=400( 米)答:前一半比后一半的时间多走400 米。

小学六年级的奥数题与标准答案全面[1].doc

小学六年级的奥数题与标准答案全面[1].doc

小学六年级奥数题及答案( 全面 )[1]某市举行小学数学竞赛 ; 结果不低于 70 分的人数比 70 分以下的人数的 4 倍还多 2 人 ;及格的人数比不低于 70 分的人数多 22 人;恰是不及格人数的 6 倍 ;求参赛的总人数?解:设不低于 70 分的为 A 人;则 70 分以下的人数是( A-2 )/4;及格的就是 A+22; 不及格的就是A+(A-2 )/4-(A+22 )=(A-90 )/4; 而6*(A-90 )/4=A+22; 则A=314;70 分以下的人数是( A-2 )/4; 也即是 78; 参赛的总人数 314+78=392电影票原价每张若干元 , 现在每张降低 3 元出售 , 观众增加一半 , 收入增加五分之一, 一张电影票原价多少元?解:设一张电影票价 x 元 (x-3) ×(1+1/2 ) =(1+1/5)x(1+1/5)x 这一步是什么意思 ;为什么这么做(x-3){ 现在电影票的单价 } (×1+1/2){ 假如原来观众总数为整体 1; 则现在的观众人数为( 1+2/1)}左边算式求出了总收入(1+1/5 )x{其实这个算式应该是: 1x*( 1+5/1 )把原观众人数看成整体 1;则原来应收入1x 元;而现在增加了原来的五分之一;就应该再*(1+5/1 );减缩后得到( 1+1/5x )}如此计算后得到总收入 ;使方程左右相等甲乙在银行存款共 9600 元; 如果两人分别取出自己存款的 40%;再从甲存款中提120 元给乙。

这时两人钱相等 ; 求乙的存款答案取 40%后 ;存款有9600×(1-40 %)= 5760 (元)这时 ;乙有: 5760÷2+120 =3000 (元)乙原来有: 3000÷(1-40%)= 5000 (元)由奶糖和巧克力糖混合成一堆糖;如果增加 10 颗奶糖后 ;巧克力糖占总数的60% 。

小学生6年级数学奥数试题与答案.pdf

小学生6年级数学奥数试题与答案.pdf
④共用了多少小时?
习题一 1.一项工程,甲单独做 12 天可以完成.如果甲单独做 3 天,余下工 作由乙去做,乙再用 6 天可以做完.问若甲单独做 6 天,余下工作乙要做 几天? 2.一条水渠,甲乙两队合挖 30 天完工.现在合挖 12 天后,剩下的 由乙队挖,又用 24 天挖完.这条水渠由乙单独挖,需要多少天? 3.客车与货车同时从甲、乙两站相对开出,经 2 小时 24 分钟相遇, 相遇时客车比货车多行 9.6 千米.已知客车从甲站到乙站行 4 小时 30 分 钟,求客车与货车的速度各是多少? 4.水箱上装有甲、乙两个注水管.单开甲管 20 分钟可以注满全箱.现
甲 1 天能完成全工程的几分之几?
乙 1 天可完成全工程的几分之几?
这批零件共多少个?
答:这批零件共 360 个.
例 10 一项工程,甲单独做要 12 小时完成,乙单独做要 18 小时完 成.若甲先做 1 小时,然后乙接替甲做 1 小时,再由甲接替乙做 1 小时,…, 两人如此交替工作,问完成任务时,共用了多少小时?
分析 要求共用多少小时?可以设想把这些小时重新分配:甲做 1 小 时,乙做 1 小时,它们相当于合作 1 小时,也即是每 2 小时,相当于合做 1 小时.这样先大致算一下一共进行了多少个这样的 2 小时,余下部分问 题就好解决了.
解:①若甲、乙两人合作共需多少小时?
②甲、乙两人各单独做 7 小时后,还剩多少?
好排完.
一 半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?
分析 这道题是工程问题与分数应用题的复合题.解题时先要分别求 出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量) 的几分之几?
如 果二人一起干,完成任务时乙比甲多植树 36 棵,这批树一共多少棵?

2019年六年级数学下学期奥数考试试题 含答案

2019年六年级数学下学期奥数考试试题 含答案

乡镇(街道) 学校 班级 姓名 学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…绝密★启用前2019年六年级数学下学期奥数考试试题 含答案题 号 填空题 选择题 判断题 计算题 综合题 应用题 总分得 分考试须知:1、考试时间:100分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、请在试卷指定位置作答,在试卷密封线外作答无效,不予评分。

一、填空题(共10小题,每题2分,共计20分)1、陈老师出版了《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。

陈老师应交税( )元。

2、一枝钢笔的单价是a 元,买6枝这样的钢笔需要( )元。

3、在72.5%,79 ,0.7255,0.725 中,最大的数是( ),最小的数是 ( )。

4、妈妈将20000元钱存入银行,定期三年,年利率为2.75%,到期后妈妈可取回本息( )元。

5、分数单位是7 1 的最大真分数是( ),它至少再添上( )个这样的分 数单位就成了假分数。

6、有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长最大是( )厘米。

7、一辆汽车从A 城到B 城,去时每小时行30千米,返回时每小时行25千米。

去时和返回时的速度比是( ),在相同的时间里,行的路程比是( ),往返AB 两城所需要的时间比是( )。

8、1/8的倒数是( );1的倒数是( );0.35的倒数是( )。

9、光明饭店今年一月份的营业额是40万元,按规定要缴纳5%的营业税,还要按营业税的7%缴纳城市维护建设税,那么,这个饭店一月份需缴纳营业税( )元和城市维护建设税( )元。

10、在比例尺1:30000000的地图上,量得A 地到B 地的距离是3.5厘米,则A 地到B 地的实际距离是( )。

小学六年级奥数题及参考答案

小学六年级奥数题及参考答案

小学六年级奥数题及参考答案1.小学六年级奥数题及参考答案篇一1、用一批纸装订一种练习本。

如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸。

这批纸一共有多少张?答案与解析:方法一:120本对应(1-40%=)60%的总量,那么总量为120÷60%=200本。

当装订了185本时,还剩下200-185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张。

即这批纸共有18000张。

方法二:装订120本,剩下40%的纸,即用了60%的纸。

那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下1-92.5%=7.5%的纸,为1350张。

所以这批纸共有1350÷7.5%=18000张。

2、六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。

两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标。

当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间。

乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟)。

另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟。

2.小学六年级奥数题及参考答案篇二1、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

六年级上册奥数试题竞赛试卷 全国通用-2019年精选教育文档

六年级上册奥数试题竞赛试卷  全国通用-2019年精选教育文档

2019年小学六年级奥数竞赛试卷一、填空题(共23小题,每小题3分,满分69分)1.(3分)计算:(12345+23451+34512+45123+51234)÷5=2.(3分)比较大小:(填>、<或=)3.(3分)分数化成循环小数后,小数部分左起第2019个数字是.4.(3分)边长24厘米的等边三角形ABC,被分成面积相等的4个小三角形(如图).那么线段DF比BE长厘米.5.(3分)A、B两点分别是长方形的长和宽的中点,那么,阴影部分(如图)占长方形面积的(填几分之几).6.(3分)三角形ABC中(如图),DE将三角形分成甲、乙两部分.那么乙的面积是甲的面积的倍.7.(3分)计算:.8.(3分)……+++1+2+4+8+16+……+256+512=.9.(3分)一个长方形,如果长和宽都增加4米,则面积增加88平方米.原来长方形的周长是米.10.(3分)某个自然数与10的和与差均为完全平方数,这个自然数是.11.(3分)一筐苹果不足60个,若把它平均分给几个同学,则每人恰好分6个;若只分给其中几个女同学,则每个女同学可分到10个.共有位男同学.12.(3分)小王与甲、乙、丙、丁四人一起打乒乓球,每两人打一局,已知甲已打4局,乙已打3局,丙已打2局,丁已打1局.那么小王已打了局.13.(3分)100以内只有10个不同约数的自然数是.14.(3分)分母小于10且最接近1.14的最简分数是.15.(3分)两个自然数的和与差的积是41,那么这两个自然数的积是.16.(3分)两个循环小数0.96925和0.925,在小数点后第数位上首次同时出现数字7?17.(3分)等腰直角三角形的面积是4.5平方厘米,由8个这样的三角形组成一个正方形,这个正方形的周长是厘米.18.(3分)一个六位数的左边第一位数字是1.如果把这个数字移到最右边,所得的新六位数是原数的3倍.原数是.19.(3分)对于小数0.0123456,要使它成为循环小数且小数部分左起第100位上数字是4,那么两个循环点应分别加在和这两个数字上.20.(3分)甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除.那么甲数被3除的余数是.21.(3分)有四个分数:,其中最大的分数与最小的分数之和是.22.(3分)有两堆棋子,若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同.第一堆有枚,第二堆有枚.23.(3分)长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.2019年小学六年级奥数竞赛试卷参考答案与试题解析一、填空题(共23小题,每小题3分,满分69分)1.【分析】根据题意,被除数中的五个加数,每个数位上数字的和都是1+2+3+4+5=15,然后再根据数位知识拆分解答即可.【解答】解:(12345+23451+34512+45123+51234)÷5=(1+2+3+4+5)×(10000+1000+100+10+1)÷5=15×11111÷5=3×11111=33333故答案为:33333.【点评】解答此题,应仔细观察,认真分析式中数据,运用运算技巧或运算定律合理简算.2.【分析】根据题意,将这两个数分别转化成与另一个分数的和,然后比较这两个分数的大小,然后推论出原来两个数的大小即可.【解答】解:根据题意得因为所以故答案为>. 【点评】本题考查了比较大小.3.【分析】=0.3571428571428…,首先分析循环小数0.3571428571428…的循环节有几位数字,然后用2019除以循环节的位数,余数是几,第2019位上的数字就是循环节的第几位数字.【解答】解: =0.3571428571428…,循环节为571428,有6位数字,因为(2019﹣1)÷6=333…5,循环节中第5个数是2,故答案为:2.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.4.【分析】根据等边三角形的特征,以及三角形的高一定时,面积比等于底边比解答即可.【解答】解:根据题意可得:S △ABD =S △BED =S △DEF =S △CEF ,所以,S △BED :(S △DEF +S △CEF )=1:2,所以,BE :EC=1:2所以,BE=24×=8厘米,同理,S △ABD :S △ABC =1:4,所以,AD :AC=1:4,所以,CD :AC=(4﹣1):4=3:4,又因为,DF=CF ,所以,DF=24××=9厘米,所以,DF ﹣BE=9﹣8=1厘米;故答案为:1.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 5.【分析】根据题意,设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=,阴影部分的面积=长方形面积的一半﹣小三角形的面积=,阴影部分占长方形面积的,据此回答.【解答】解:根据题意设长方形的长和宽分别为a,b,则长方形的面积是ab,小三角形的面积=阴影部分面积=,阴影部分(如图)占长方形面积的.故答案为.【点评】本题考查了长方形的面积和三角形的面积问题.6.【分析】根据三角形的高一定时,面积比等于底边比解答即可.【解答】解:连接BD,如下图:△ADE与△BDE等高,且AE:EB=3:6=1:2,所以,S△ADE=S△BDE=1:2,所以,S△BDE=2×甲,同理,AD:DC=4:4=1:1,所以,S△BCD=S△ABD=(2+1)×S△ADE=3×甲,所以,乙=S△BDE +S△BCD=2×甲+3×甲=5×甲;故答案为:5.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用.7.【分析】通过观察,可把原式分为两部分,即﹣,约分计算.【解答】解:=1﹣【点评】仔细分析数据,采取灵活的方法,进行简算.8.【分析】本题可以把分数部分和整数部分分开计算,然后再相加即可.【解答】解: +1+2+4+……+256+512=1﹣+210﹣1=1024﹣【点评】本题考查的是分数的简算及等比数列的求和.9.【分析】由于原来长方形的长×4+原来长方形的宽×4+4×4=88平方厘米,根据乘法分配律可求原来长方形的长+宽,从而求得原来长方形的周长.【解答】解:根据题意得(88﹣4×4)÷4×2=36(米)故答案为:36.【点评】考查了长方形的周长和面积,本题的关键是运用运算律将原来长方形的长+宽看作一个整体,有一定的难度.10.【分析】根据题意,设这个自然数为m,,两个方程相减可得:A2﹣B2=(A﹣B)×(A+B)=20,把20写成两个数的乘积的形式可得出关于A、B的二元一次方程,由此利用加减消元法即可解答,求出A、B的值即可求出m解决问题.【解答】解:设这个自然数为m,,所以A2﹣B2=(A﹣B)×(A+B)=20,因为20=1×20=2×10=4×5,而(A﹣B)与(A+B)同奇同偶,所以只能是,解得,所以m=62﹣10=26.故答案为:26.【点评】此题较为复杂,关键是利用平方差公式得出(A﹣B)×(A+B)=20进而得出关于A、B的二元一次方程组,解这个方程组即可解答问题.11.【分析】根据题意可知:这筐苹果的总个数,即是6的倍数又是10的倍数,且6和10的最小公倍数是30,据此分析解答即可.【解答】解:[6,10]=3030÷6﹣30÷10=2(个)故填:2【点评】本题考查的是用公倍数解决问题.12.【分析】共5位选手参赛,每两个人都要比赛一场,则每个选手都要与其他四位各赛一局,每个人共赛四局.根据题意通过连线可知:据此解答即可.【解答】解:根据题意画图如下:通过观察连线可知已经打了6局(实线),没打的有4局(虚线),其中小王已打了2局.故答案为:2.【点评】根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键.本题用连线画图的方法更加直观具体.13.【分析】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.【解答】解:因数有10个,根据10=2×5=1×10,其中1×10不合要求,舍去;可写成a×b4形式(a、b是质数)这时只能取a=3或5,b=2时符合条件,当a=3,b=2时,这个数为3×25=48当a=5,b=2时,这个数为5×25=80故答案为:48和80.【点评】此题主要考查一个合数的约数个数的计算公式的逆用:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.14.【分析】因为=和1.14的小数部分0.14比较接近,据此分析解答即可.【解答】解:因为=和1.14的小数部分0.14比较接近,所以分母小于10且最接近1.14的最简分数是.故填:【点评】本题考查的是简单的分数问题.15.【分析】从两个自然数的和与差的积是41入手,41是质数,也就是1×41=41,可见它们的差是1,和是41,这是两个连续的自然数分别为20、21.然后计算其乘积即可.【解答】解:首先注意到41是质数,两个自然数的和与差的积是41,可见它们的差是1,这是两个连续的自然数,大数是21,小数是20,所以这两个自然数的积是20×21=420.故答案为:420.【点评】此题考查质数与合数.16.【分析】第一个循环小数出现数字7的周期是7个数字,第二个循环小数出现数字7的周期是5个数字,首次同时出现数字7即是7的倍数又是5的倍数,据此解答即可.【解答】解:[7,5]=35故填:35【点评】本题考查的是周期问题.17.【分析】这个大正方形的面积就是8个小三角形的面积和,求出这个大正方形的面积,再根据正方形的面积求出它的边长,根据正方形的周长公式求出它的周长.【解答】解:拼成的正方形如图:面积是:4.5×8=36(平方厘米);大正方形的面积是36平方厘米,36=6×6,那么它的边长就是6厘米;周长:6×4=24(厘米);故答案为:24.【点评】本题关键是知道拼成正方形的面积就是原来三角形的面积和,由此求解.18.【分析】把这个六位数的后面的五位数设为x,则根据位置原理可知:原来的六位数可以表示为:1000000+x;新的六位数可以表示为:10x+1,据此分析解答即可.【解答】解:设原来六位数的后面的五位数为x,则有:3(10000000+x)=10x+13000000+3x=10x+17x=299999x=42857则原来的六位数是:142857故填:142857.【点评】本题考查的是位置原理.19.【分析】根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数,据此分析解答即可.【解答】解:根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数.95÷7=13 (4)95÷6=15 (5)95÷5=19即循环节的位数是5位,所以两个循环点分别加在2和6上面.【点评】本题考查的是循环小数的循环节及周期问题.20.【分析】根据同余定理和差能被3整除,得出甲乙除以3的余数是相同的,设甲为3x+a,乙为3y+a,由此求解.【解答】解:设甲为3x+a,乙为3y+a,差能被3整除,所以甲乙除以3的余数是相同的则a的取值为0或者1或者2.甲乙的和为:3(x+y)+2a,其除以3余1,所以2a除以3余1,a只能为2故答案为:2.【点评】此题主要考查同余定理的灵活应用.21.【分析】分数的大小比较有两种方法:①分母相同,分子越大这个分数就越大;②分子相同,分子越大这个分数就越小,据此分析解答即可.【解答】解:首先,且,所以最大的分数是,最小的分数是故填:【点评】本题考查的是分数的大小比较及异分母的分数相加减.22.【分析】“若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”这个条件,说明第二堆比第一堆多2个;再结合“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍”条件得知:当第二堆比第一堆的棋子多2+1×2=4个,此时第二堆的棋子数是第一堆的2倍,这说明第一堆此时有4个,进而即可求得原来有4+1=5个,之后也就可求得第二堆的数量了.【解答】解:1×2+2×2=4(个)4+1=5(个)5+2=7(个)故:两空分别为5、7.【点评】此题并不难,关键是理解好“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”的意思.23.【分析】已知长方形面积9×4=36(平方厘米),所以正方形的边长应为6厘米,因此可以把长方形上半部剪下6厘米,下半部剪下3厘米,分成相等的两块,合起来正好拼成一个边长为6厘米的正方形.【解答】解:如下图所示:【点评】图形拆拼解决的关键点:把一个几何图形剪成几块形状相同的图形,或是把一个几何图形剪开后拼成另一种满足某种条件的图形,完成这样的图形剪拼,需要考虑图形剪开后各部分的形状、大小以及它们之间的位置关系.。

小学数学六年级奥数竞赛综合试题(含答案)

小学数学六年级奥数竞赛综合试题(含答案)

小学数学六年级奥数竞赛综合试题(含答案)(时间:90分钟)姓名:成绩一、填空题:1.11111111 1357911131517612203042567290++++++++=()2.“趣味数学”表示四个不同的数字:则“趣味数学”为()3.某钢厂四月份产钢8400吨,五月份比四月份多产17,两个月产量和正好是第二季度计划产量的75%,则第二季度计划产钢()吨.4.把17化为小数,则小数点后的第100个数字是(),小数点后100个数字的和是()5.水结成冰的时候,体积增加了原来的111,那么,冰再化成水时,体积会减少()6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积()大7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的45没完成.已知甲每天比乙少加工4个则这批零件共有()个8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是()立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后 1.16357++≈的近似值.则算式上边三个方格中的数依次分别是()10.一个四位数xxyy,使它恰好等于两个相同自然数的乘积,则这个四位数是()二、解答题:11.如图,阴影部分是正方形,则最大长方形的周长是多少厘米?9厘米12.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?13.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少?14.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?15.甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是多少天?小学数学六年级奥数竞赛综合试题答案一、填空题: 1. 答案:81.4解析:原式()111111111357911131517612203042567290⎛⎫=++++++++++++++++ ⎪⎝⎭111111118123344556677889910⎛⎫=++++++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111111111111118123344556677889910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1181210=+- 81.4= 2. 答案:3201解析:根据算式进位乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,“味”ד趣”+ “味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.所以答案为32013. 答案:24000解析:四、五月产量和1840011180007⎛⎫⨯++= ⎪⎝⎭(吨),第二季度产量18000÷75%=24000(吨). 4. 答案:8,447解析:讲17化成小数,得到10.1428577••=,由周期性可得:(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8; (2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.5. 答案:112解析:设水为11升,结成冰有12升,化成水当然是11升,但此时问题是:冰化成水时比并减少的量,因此减少了()112111212-÷=. 6. 答案:一样大解析:甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7. 答案:240个解析:甲每天完成这批零件的:()11123251230⎛⎫-⨯÷-= ⎪⎝⎭,乙每天完成这批零件的:111123020-=,这批零件共有:1142402030⎛⎫÷-= ⎪⎝⎭(个). 8. 答案:62.172,取π=3.14)解析:液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的6÷2=3倍,()3326.462.172cm 31π⨯=+.9. 答案:1,2,3解析:利用估值的办法,得1.155 1.164357≤++≤,通分得:3521151.155 1.164105⨯+⨯+⨯≤≤扩大105倍得:121.275352115122.22≤⨯+⨯+⨯≤由每个方格中是一个整数,所以352115122⨯+⨯+⨯=,由奇偶性可以看出三个方格中数是2奇1偶.试验得35×1+21×2+15×3=122.10. 答案:7744解析:利用筛选法()xxyy 1000x 100x 10y y 11100x y =+++=+,可知所求数是11的倍数,又因为它是两相同自然数乘积,从而xxyy 必为211121=的倍数.先从11到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,121×81,121×82,再由xxyy 121k =⨯是完成平方数,k 也为两相同自然数乘积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题: 11. 答案:30解析:由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm ).12. 答案:3圈解析:设大轮转n 圈,则有n 210590⨯π⨯π是整数,(为什么不除以290π⨯,因为标志线在同一直线上,小圆可以转半圈)约分后得n 21057n903⨯π⨯=π,说明n 至少取3,有7n3是整数.13. 答案:9,18,27,36,45解析:第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此第一位数是9.其余四个自然数:18,27,36,4514. 答案:6解析:找规律计算,知道这列数为:2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.()1997263323-÷=,余3说明周期中的第三个数即为所求,答案为6.15. 答案:12解析:在晴天,甲、乙两队的工作效率分别为110和116,甲队比乙队的工作效率高113101680-=; 在雨天,甲队、乙队的工作效率分别为1330%10100⨯=和1180%1620⨯=,乙队的工作效率比甲队高1312010050-=.由于两队同时开工、同时完工,完成工程所用的时间相同,所以整个施工期间,晴天与雨天的天数比为13:8:155080=.如果有8个晴天,则甲共完成工程的13815 1.2510100⨯+⨯=而实际的工程量为1,所以在施工期间,共有8 1.25 6.4÷=个晴天,15 1.2512÷=个雨天。

2019年六年级数学下学期奥数考试试题含答案.docx

2019年六年级数学下学期奥数考试试题含答案.docx

⋯⋯⋯⋯⋯.号⋯学答⋯⋯⋯⋯⋯⋯名⋯姓准.⋯⋯⋯⋯⋯⋯⋯⋯不班⋯⋯⋯⋯⋯⋯..⋯⋯内⋯⋯⋯⋯校⋯学⋯⋯⋯⋯⋯⋯⋯⋯⋯封⋯⋯⋯)⋯.绝密★启用前2019 年六年级数学下学期奥数考试试题含答案题号填空题选择题判断题计算题综合题应用题总分得分考试须知:1、考: 100 分,本卷分100 分。

2、首先按要求在卷的指定位置填写您的姓名、班、学号。

3、在卷指定位置作答,在卷密封外作答无效,不予分。

一、填空题(共 10 小题,每题 2 分,共计 20 分)1、老出版了《小学数学解答100》,得稿5000元,按定,超出800元的部分14%的个人所得税。

老交税()元。

2、一枝笔的价是a元, 6枝的笔需要 ()元。

3、在 72.5%, 79 , 0.7255,0.725中,最大的数是 (),最小的数是 ()。

4、将 20000元存入行,定期三年,年利率 2.75%,到期后可取回本息() 元。

5、分数位是 7 1的最大真分数是(),它至少再添上()个的分数位就成了假分数。

6、有一 48厘米, 36厘米的方形,如果要裁成若干同大小的正方形而无剩余,裁成的小正方形的最大是 ( )厘米。

7、一汽从 A城到 B城,去每小行30千米,返回每小行25千米。

去和返回的速度比是(),在相同的里,行的路程比是(),往返 AB两城所需要的比是()。

8、 1/8 的倒数是(); 1的倒数是(); 0.35 的倒数是()。

9、光明店今年一月份的是40万元,按定要5%的税,要按税的7%城市建税,那么,个店一月份需税()元和城市建税()元。

10、在比例尺 1: 30000000的地上,量得 A地到 B地的距离是 3.5 厘米, A地到 B地的距离是()。

A、小于B、等于C、大于D、都不是2、在内剪去一个心角45的扇形,余下部分的面是剪去部分面的()倍。

A 、B、8C、73、与面是 12平方厘米的平行四形等底等高的三角形的面是()平方厘米。

A. 4B.6C.12D.244、最的整数比的两个一定是()。

六年级奥数题大全(共35道题-142页word文档)-小学数学六年级上册-奥数试题及答案-人教版--

六年级奥数题大全(共35道题-142页word文档)-小学数学六年级上册-奥数试题及答案-人教版--

六年级奥数题大全(共35道题,142页word文档)小学数学六年级上册奥数试题及答案人教版目录1. 定义运算 (1)2. 简便运算(一) (5)3. 简便运算(二) (8)4. 转化单位“1”(一) (11)5. 转化单位“1”(二) (15)6. 设数法解题……………………………………………………(21)7. 假设法解题(一)……………………………………………(25)8. 假设法解题(二)……………………………………………(29)9. 假推法解题(一) (33)10.代数法解题 (38)11.比的应用(一) (42)12.比的应用(二) (47)13.用“组合法”解决工程问题 (52)14.浓度问题 (57)15.面积计算(一) (61)16.面积计算(二) (66)17.抓“不变量”解题 (71)18.特殊工程问题 (76)19.周期工程问题 (81)20.比较大小 (88)21.最大最小问题 (93)22.乘法和加法原理 (96)23.表面积和体积(一) (100)24.表面积和体积(二) (105)25.抽屉原理(一) (110)26.抽屉原理(二) (114)27.逻辑原理(一) (117)28.逻辑原理(一) (123)29.行程问题(一) (128)30.行程问题(一) (133)31.流水行船问题 (138)32对策问题 (142)33.应用同余解题 (146)34.“牛吃草”问题 (150)35.不定方程 (154)15.面积运算计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们基本的几何知识,适当添加辅助线,搭一座联通已知条件与所求问题的“小桥”,就会使你顺利地达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

苏教版小学六年级奥数大全附答案图文百度文库

苏教版小学六年级奥数大全附答案图文百度文库

一、拓展提优试题1.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.4.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.5.若一个十位数是99的倍数,则a+b=.6.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?7.若三个不同的质数的和是53,则这样的三个质数有组.8.被11除余7,被7除余5,并且不大于200的所有自然数的和是.9.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.10.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.11.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.12.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.13.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.14.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.16.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.17.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.18.已知两位数与的比是5:6,则=.19.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.20.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)21.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?22.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).25.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.26.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.27.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.28.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.29.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.30.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.31.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).32.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.34.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.35.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.36.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.37.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.38.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.39.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.40.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.【参考答案】一、拓展提优试题1.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.4.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.5.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.6.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.7.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.8.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.9.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.10.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.11.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.12.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.13.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.14.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30015.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.16.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4017.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.20.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.21.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.22.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.25.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.26.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.27.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.28.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.29.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.30.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.31.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.32.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①33.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.34.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.35.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.36.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.37.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.38.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.39.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.40.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.。

小学数学小学六年级奥数题及答案(全面)-2.docx

小学数学小学六年级奥数题及答案(全面)-2.docx

小学六年级奥数题及答案某市举行小学数学竞赛,结果不低于 80 分的人数比 80 分以下的人数的 4 倍还多 2 人,及格的人数比不低于 80 分的人数多 22 人,恰是不及格人数的 6 倍,求参赛的总人数?解:设不低于 80 分的为 A 人,则 80 分以下的人数是( A-2 )/4,及格的就是 A+22 ,不及格的就是 A+ (A-2 )/4-( A+22 )=(A-90 )/4,而 6* (A-90 )/4=A+22 ,则 A=314 ,80 分以下的人数是( A-2 )/4 ,也即是 78,参赛的总人数 314+78=392电影票原价每张若干元 , 现在每张降低 3 元出售 , 观众增加一半 , 收入增加五分之一, 一张电影票原价多少元?解:设一张电影票价 x 元(x-3) ×(1+1/2 ) =(1+1/5)x(1+1/5)x 这一步是什么意思,为什么这么做(x-3){ 现在电影票的单价 } ×(1+1/2){ 假如原来观众总数为整体 1,则现在的观众人数为( 1+2/1)}左边算式求出了总收入(1+1/5 )x{其实这个算式应该是: 1x*(1+5/1 )把原观众人数看成整体 1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1 ),减缩后得到( 1+1/5x ) }如此计算后得到总收入,使方程左右相等甲乙在银行存款共 9600 元,如果两人分别取出自己存款的 40%,再从甲存款中提120 元给乙。

这时两人钱相等,求乙的存款答案取 40%后,存款有9600×(1-40 %)= 5760 (元)这时,乙有: 5760÷2+120 =3000 (元)乙原来有: 3000÷(1-40%)= 5000 (元)由奶糖和巧克力糖混合成一堆糖,如果增加 10 颗奶糖后,巧克力糖占总数的60% 。

再增加 30 颗巧克力糖后,巧克力糖占总数的 75%, 那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加 10 颗奶糖,巧克力占总数的60% ,说明此时奶糖占40% ,巧克力是奶糖的60/40=1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学学习水平测试姓名班级分数命题人:
一:填空(每小题4分,共10题。


1在三角形ABC中,AB,AC两边分别被分成5等份,三角形ABC面积是阴影部分的面积
的倍
2如图。

三角形ABC中。

已知AD=10cm。

DC=18cm。

EDFB为正方型。

阴影面积。

3.2003年1月1日是星期三,2008年1月1日是
4.甲乙两班共85人,甲班人数的与一班人数的的和是42人,则甲班有40人,乙班有人。

5.三个相同的玻璃杯里装满了糖已充分溶化了的糖水,糖与水的质量比分别是1:5,1:8,1:9,现在将三杯糖水混合,则此时糖水与水的质量比为
6.有一个数学运算符号“”使下列的算式成立:2 Δ4=8 5 Δ3=13 9 Δ7=25 3 Δ5=11,按规律计算:7 Δ3=
7.一游人以等速在一条小路上散步,路边相邻两棵树的距离都相等,他以第一棵树走到第10棵树用了11分钟,如果这个游人走22分钟,应走到第棵树。

8.一本书共600页,数字0,在页码中出现的次数是
9.面值是2元,5元的人民币共27张,合计99元,面值是2元的有张,面值是5元的有张。

10.大明做题时,把被减数个位上的3错写成8,把十位上的6错写成0,这样差是200,正确的差是
二.计算(速算与巧算并写出过程,每小题5分,共3题。


1.9+99+999+9999
2.325÷25
3.25×5×64×125
三.应用题(每小题9分,共5题。


1.小李,小徐和小张是同学,大学毕业后分别当老师,数学家和工程师。

小张的年龄比工程师大,
小李和数学家不同岁;
数学家比小徐年龄小。

想一想,谁是教师,谁是数学家,谁是工程师?
2.在1,2,3,4,5,6,7,8,9这九个数字中加“+”“-”两种运算符号,使其结果等于100(数字的顺序不能改变)
1 2 3 4 5 6 7 8 9=100
3.小英一家小英和她的父母组成,小英的父亲比母亲大三岁。

今年全家年龄总和是71岁,8年前这个家的年龄的总和是49岁,今年3人的岁数各是多少?
4.一项工程甲单独做6小时,乙单独做要10小时,如果按甲乙按顺序交替工作,每次2小时,那么需要多长时间完成?
5.用长18厘米的铁丝围成各种长方形,要求长和宽的长度都是整厘米数,围成的长方形的面积最大是多少?
答案
一.填空
1.5/3
2.依题意得
=(10*18)/2
=90(平方厘米)
3.星期二
4.45
5.17:18
6.17
7.19
8.111
9.12 15
10.255
二.计算
1.9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4
=11106
2.325÷25
=(325×4)÷(25×4)
=1300÷100
=13
3.25×5×64×125
=25×5×(4×2×8)×125
=(25×4)×(5×2)×(8×125)
=1000000
三.应用题
1.小徐是教师,小张是数学家,小李是工程师
2.123+45-67+8-9=100
123―45―67+89=100
3.小英6岁,父亲34岁,母亲31岁
4.22/3小时
5.18÷2=9 9=5+4 5×4=20(平方厘米)。

相关文档
最新文档