2020春北师大版数学七年级下册第4章质量评估试卷
北师大版2020年七年级数学下册第四章质量评估试卷含答案
北师大版2020年七年级数学下册第四章质量评估试卷含答案第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,每小题均有四个选项,其中只有一项符合题目要求)1.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.钝角三角形B.等边三角形C.直角三角形D.锐角三角形2.如图1,在△ABC中,∠A=50°,∠C=70°,则∠ABD的度数是()图1A.110°B.120°C.130°D.140°3.若—个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10C.3 D.24.如图2,已知直线AB∥CD,∠A=25°,∠E=90°,则∠C的度数为()图2A.75°B.85°C.95°D.115°5.三角形的下列线段中,能将三角形分成面积相等的两部分是()A.中线B.角平分线C.高D.中位线6.如图3,点D,E分别在AB,AC边上,△ABE≌△ACD,AC=15,BD=9,则线段AD的长是()图3A.6 B.9C.12 D.157.如图4,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()图4A.∠M=∠N B.AM=CNC.AB=CD D.AM∥CN8.如图5,已知AE=CF,∠AFD=∠CEB,添加一个条件后,仍无法判定△ADF≌△CBE的是()图5A.∠A=∠C B.AD=CBC.BE=DF D.AD∥BC9.如图6,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()图6A.1组B.2组C.3组D.4组10.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列条件:(1)AC =A′C′,∠A=∠A′;(2)AC=A′C′,BC=B′C′;(3)AB=A′B′,∠A=∠A′.能判定Rt△ABC≌Rt△A′B′C′的个数是()A.0个B.1个C.2个D.3个11.如图7,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使DC=BC,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,得ED=AB,因此测得DE的长就是AB的长,在这里判定△ABC≌△EDC的条件是()图7A.ASA B.SASC.SSS D.AAS12.如图8,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()图8A.4个B.3个C.2个D.1个第Ⅱ卷(非选择题,共64分)二、填空题(本大题共4个小题,每小题3分,共12分)13.在△ABC中,如果∠A=∠B=2∠C,则∠C=____________.14.在△ABC和△DEF中,①AB=DE,②BC=EF,③AC=DF,④∠A=∠D,从这四个条件中选取三个条件,能判定△ABC≌△DEF的方法共有____________种.15.如图9,在△ABC中,∠B=40°,∠DAC和∠ACF的平分线交于点E,则∠AEC=____________度.图916.如图10,∠ACB=∠DFE,BC=EF,那么需要补充一个直接条件____________(写一个即可),才能使△ABC≌△DEF.图10三、解答题(本大题共7个小题,共52分)17.(5分)如图11,△ABC中,AD平分∠BAC,AE⊥BC于E,已知∠BAC=108°,∠C=2∠B,求∠DAE的度数.图1118.(6分)如图12,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.图1219.(7分)如图13,在△ABC和△DEC中,∠BCE=∠ACD,BC=EC,请你添加一个条件,使得△ABC和△DEC全等,并加以证明.你添加的条件是______________________.图1320.(8分)如图14,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.图1421.(8分)如图15,点D是△ABC的边AB上一点,点E为AC的中点,过点C 作CF∥AB交DE的延长线于点F.求证:AD=CF.图1522.(9分)如图16,O是AD的中点,∠AOC=135°,∠D=25°,OB=OC,OB ⊥OC.试求∠C的度数.图1623.(9分)如图17,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.如图17①,易证△CAD≌△BCE,则线段AD,DE,BE之间的关系为BE=AD+DE.(1)将直线CD绕点C旋转,使得点D,E重合,得到图17②,请你直接写出线段AD与BE的关系;(2)将直线CD绕点C继续旋转,得到图17③,请你写出线段AD,DE,BE的关系,并证明你的结论.图17参考答案第四章质量评估试卷1.A 2.B 3.B 4.D 5.A 6.A7.B8.B9.C10.D11.A12.B13.36°14.215.7016.AC=DF(或∠B=∠E或∠A=∠D)17.12°18.略19.CA=CD,证明略20.略21.略22.20°23.(1)AD=BE(2)AD=DE+BE,证明略。
2020春北师大版七年级数学下第四章《三角形》单元测试卷
即当点
Q
每秒运动������������
������
cm 时,△BEP≌△CQP.
返回
谢谢观看
返回
数学 25.如图,在四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘 米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒 的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点 运动. (1)若点Q的运动速度与点P的运动速度相等, 经过1秒后, △BPE与△CQP是否全等?请说明理由; (2)若点Q与点P的运动速度不同,当点Q的运动速度为多少时, 能够使△BEP与△CQP全等?
( C) A.锐角三角形 B.钝角三角形 C.直角三角形 D.任意三角形
返回
数学
3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为 C,D,E,则下列
说法不正确的是( C ) A.AC 是△ABC 的高
B.DE 是△BCD 的高
C.DE 是△ABE 的高
D.AD 是△ACD 的高
返回
数学
4.如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于 O 点,
A.2 cm2
B.1 cm2
C.0.5 cm2 D.0.25 cm2
返回
数学 10.一个正方形和两个等边三角形的位置如图,若∠3=50°,则 ∠1+∠2=( B )
A.90°
B填空题(本大题共 7 小题,每小题 4 分,共 28 分) 11.如图,把手机放在一个支架上面,就可以非常方便地使用, 这是因为手机支架利用了三角形的 稳定 性.
已知 AB=AC,现添加以下的哪个条件仍不能判定△ABE≌
△ACD 的是( D )
A.∠B=∠C
北师大版七年级数学下册第四章同步测试题及答案
∴∠BAC=180°﹣∠ABC﹣∠ACB=60°.
∵AE平分∠BAC,
∴∠BAE= ∠BAC=30°.
(2)∵∠CAE=∠BAE=30°,∠ACB=80°,
∴∠AEB=∠CAE+∠ACB=110°,
∵AD是BC边上的高,
∴∠ADE=90°,
∴∠DAE=∠AEB﹣∠ADE=20°.
13.解:(1)∵a+b=4,a2+b2=8,
∴(a+b)2=a2+2ab+b2=8+2ab=16,
∴ab=4,
(a﹣b)2=(a+b)2﹣4ab=16﹣16=0;
(2)∵a、b、c是△ABC的三边,
∴a+b>c,b+c>a,a+c>b,
∴|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c﹣a|+|b﹣a﹣c|
(第10题图)
三.解答题(共8小题)
11.(1)下列图中具有稳定性是(填序号)
(2)对不具稳定性的图形,请适当地添加线段,使之具有稳定性.
(3)图5所示的多边形共条对角线.
(第11题图)
12.小辉用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理.
(第12题图)
13.如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2m/s的速度沿射线AN方向运动,动点D以1m/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.
(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;
2020-2021学年北师大版数学七年级下册 第四章 三角形 单元检测卷及答案
第四章三角形单元综合测试一.选择题1.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm2.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对3.下列各选项中的两个图形属于全等形的是()A.B.C.D.4.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC =75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°6.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E8.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个9.如图,已知△ABC的六个元素,则下面甲、乙、丙、丁四个三角形中一定和△ABC全等的图形是()A.甲、丁B.甲、丙C.乙、丙D.乙10.如图,AB=AC,角平分线BF、CE交于点O,AO与BC交于点D,则图中共有()对全等三角形.A.8B.7C.6D.5二.填空题11.已知三角形的三边长为3、7、a,则a的取值范围是.12.如图,测量三角形中线段AB的长度为cm;判断大小关系:AB+AC BC(填“>”,“=”或“<”).13.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC的长度是6cm,则工件内槽的宽BD是cm.14.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.15.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.16.下列说法正确的是(填写语句的序号):①形状相同的图形是全等图形;②边长相等的等边三角形是全等图形;③面积相等的三角形是全等三角形;④平移前后的两个图形一定是全等形;⑤全等图形的对应边和对应角都相等.17.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.19.如图,已知线段AB与CD相交于点E,AC=AD,CE=ED,则图中全等三角形有对.20.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF =AC,CD=3,BD=8,则线段AF的长度为.三.解答题21.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.22.下面图形中有哪些是全等图形?23.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.24.如图,在五边形ABCDE和五边形A′B′C′D′E′中,如果AB=A′B′,BC=B′C′,CD=C′D′,DE=D′E′,EA=E′A′.请添加尽可能少的条件,使它们全等(写出添加的条件,不需要说明理由)25.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,.∴△AEB≌△AEC(第一步).∴∠BAE=∠CAE(第二步).问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.26.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.27.已知:在△ABC和△DBE中,AB=DB,BC=BE,其中∠ABD=∠CBE.(1)如图1,求证:AC=DE;(2)如图2,AB=BC,AC分别交DE,BD于点F,G,BC交DE于点H,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.参考答案一.选择题1.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.2.解:能够完全重合的两个图形叫做全等形,故选:B.3.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.4.解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.7.解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.8.解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,比如一边是两角的夹边和一角对边相等,则这两个三角形就不全等,故原说法错误;(4)全等三角形对应边相等,正确.所以有2个判断正确.故选:B.9.解:A、△ABC和甲两个三角形根据SAS可以判定全等,△ABC与丁三角形根据ASA可以判定全等,故本选项正确;B、△ABC与丙两个三角形的对应角不一定相等,无法判定它们全等,故本选项错误;C、△ABC与乙、丙都无法判定全等,故本选项错误;D、△ABC与乙无法判定全等,故本选项错误;故选:A.10.解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS);同理可证:△OBD≌△OCD,△OBE≌△OCE,△OEA≌△OF A,△OBA≌△OCA,△BEC ≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:B.二.填空题11.解:根据三角形的三边关系,得7﹣3<a<7+3,即:4<a<10.故答案为:4<a<10.12.解:测量可知,三角形中线段AB的长度为2cm;判断大小关系:AB+AC>BC.故答案为:2,>.13.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.14.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.15.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.16.解:①形状相同,大小相等的图形是全等图形,故本小题错误;②边长相等的等边三角形是全等图形,正确;③面积相等的三角形是全等三角形,错误;④平移前后的两个图形一定是全等形,正确;⑤全等图形的对应边和对应角都相等,正确.所以,正确的说法有②④⑤.故答案为:②④⑤.17.解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.18.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.19.解:在△ACE和△ADE中,,∴△ACE≌△ADE(SSS),∴∠CAE=∠DAE,在△CAB和△DAB中,∴△CAB≌△DAB(SAS),∴BC=BD,在△BCE和△BDE中,∴△BCE≌△BDE(SSS).∴图中全等三角形有3对.故答案为:3.20.解:∵AD是BC边上的高,BE是AC边上的高,∴∠ADC=∠BDF=∠AEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=FD=3,AD=BD=8,∵CD=3,BD=8,∴AD=8,DF=3,∴AF=AD﹣FD=8﹣3=5,故答案为:5.三.解答题21.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.22.解:如图所示:(1)和(8)是全等图形.23.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.24.解:如图:,连接AC,AD,A′C′,A′D′,AC=A′C′,AD=A′D′,五边形ABCDE≌五边形AB′C′D′E′.25.解:上面证明过程不正确;错在第一步.正确过程如下:∵BE=CE,∴∠EBC=∠ECB,又∵∠ABE=∠ACE,∴∠ABC=∠ACB,∴AB=AC,在△AEB和△AEC中,,∴△AEB≌△AEC(SSS),∴∠BAE=∠CAE.26.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.27.证明:(1)∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即∠ABC=∠DBE,在△ABC与△DBE中,,∴△ABC≌△DBE(SAS),∴AC=DE;(2)由(1)得△ABC≌△DBE,∴∠A=∠D,∠C=∠E,AB=DB,BC=BE,∴AB=BE,∵AB=BC,∴∠A=∠C,∴∠A=∠E,在△ABG与△EBH中,,∴△ABG≌△EBH(ASA),∴BG=BH,在△DBH与△CBG中,,∴△DBH≌△CBG(SAS),∴∠D=∠C,∵DB=CB,BG=BH,∴DG=CF,在△DFG与△CFH中,,∴△DFG≌△CFH(AAS).1、三人行,必有我师。
知识点详解北师大版七年级数学下册第四章三角形章节测评试题(含解析)
北师大版七年级数学下册第四章三角形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB =9cm ,AC =5cm ,下面有四个说法:①线段BC 长可能为4cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为3cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C .①②④D .①②③④2、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB =B .30A ∠=︒,5AB =,3BC = C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =3、如图,ABC ≌DEF ,点B 、E 、C 、F 在同一直线上,若BC =7,EC =4,则CF 的长是( )A .2B .3C .4D .74、如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A.4 B.5 C.6 D.无法确定5、将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10°B.15°C.20°D.25°6、以下列各组长度的线段为边,能构成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm7、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE ,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.408、以下列各组线段为边,能组成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm9、已知三角形的两边长分别为4cm和10cm,则下列长度的四条线段中能作为第三边的是()A.15cm B.6cm C.7cm D.5cm10、如图,点C在∠AOB的OB边上,用尺规作出了∠NCE=∠AOD,作图痕迹中,弧FG是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,某同学把一块三角形的玻璃打碎成了三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带____(填序号)去配,这样做的科学依据是_______.2、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm23、如图,△PBC的面积为5cm2,BP平分∠ABC,AP⊥BP于点P,则△ABC的面积为_____cm2.4、如图,∠ABD=80°,∠C=38°,则∠D=___度.5、如图,要测量水池的宽度AB,可从点A出发在地面上画一条线段AC,使AC AB⊥,再从点C观测,在BA的延长线上测得一点D,使ACD ACB∠=∠,这时量得160mAD=,则水池宽AB的长度是______m.三、解答题(5小题,每小题10分,共计50分)1、如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t s,且t≤5(1)PC = cm (用含t 的代数式表示)(2)如图2,当点P 从点B 开始运动时,点Q 从点C 出发,以v cm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得以A ﹑B ﹑P 为顶点的三角形与以P ﹑Q ﹑C 为顶点的三角形全等?若存在,请求出v 的值;若不存在,请说明理由.2、在边长为10厘米的等边三角形△ABC 中,如果点M ,N 都以3厘米/秒的速度匀速同时出发.(1)若点M 在线段AC 上由A 向C 运动,点N 在线段BC 上由C 向B 运动.①如图①,当BD =6,且点M ,N 在线段上移动了2s ,此时△AMD 和△BND 是否全等,请说明理由. ②求两点从开始运动经过几秒后,△CMN 是直角三角形.(2)若点M 在线段AC 上由A 向点C 方向运动,点N 在线段CB 上由C 向点B 方向运动,运动的过程中,连接直线AN ,BM ,交点为E ,探究所成夹角∠BEN 的变化情况,结合计算加以说明.3、如图,四边形ABCD 中,90BCD BAD ∠=∠=︒,AB AD =,AG CD ⊥于点G .(1)如图1,求证:AG CG =;(2)如图2,延长AB 交DC 的延长线于点F ,点E 在DG 上,连接AE ,且2AEF F ∠=∠,求证:FG AE EG =+;(3)如图3,在(2)的条件下,点H 在CB 的延长线上,连接EH ,EH 交AG 于点N ,连接CN ,且=CN AE ,当5BH =,9EF =时,求NG 的长.4、如图,在长方形ABCD 中,AB =4,BC =5,延长BC 到点E ,使得CE =12CD ,连结DE .若动点P 从点B 出发,以每秒2个单位的速度沿着BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒.(1)CE = ;当点P 在BC 上时,BP = (用含有t 的代数式表示);(2)在整个运动过程中,点P 运动了 秒;(3)当t = 秒时,△ABP 和△DCE 全等;(4)在整个运动过程中,求△ABP 的面积.5、探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图②,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.-参考答案-一、单选题1、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A ,B ,C 不在一条直线上,9−5=4cm <BC <9+5=14cm ,故线段BC 可能为9cm ,不可能为3cm ,故③,④正确.故选D .【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.2、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.3、B【分析】根据全等三角形的性质可得BC EF=-即可求得答案.=,根据CF EF EC【详解】解:ABC≌DEF,∴BC EF=点B、E、C、F在同一直线上,BC=7,EC=4,∴CF EF ECBC EC-=-==-743故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.4、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC和DEF全等,A D∠=∠,AC对应DE∴ABC DFE≅∴AB=DF=4故选:A.【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.5、B【分析】根据三角板各角度数和三角形的外角性质可求得∠BFE,再根据对顶角相等求解即可.【详解】解:由题意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故选:B.【点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键.6、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.7、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.8、C【分析】由题意根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,A、2+10<13,不能组成三角形,不符合题意;B、3+4=7,不能够组成三角形,不符合题意;C 、4+4>4,能组成三角形,符合题意;D 、5+6<14,不能组成三角形,不符合题意.故选:C .【点睛】本题主要考查三角形三边关系,注意掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、C【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.10、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG 是以点E 为圆心,DM 为半径的弧,故选:D .【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.二、填空题1、③ ASA【分析】由题意已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法进行分析即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;ASA.【点睛】本题主要考查全等三角形的判定方法的实际应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.2、6【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,EC,而高相等,∴△BEF的底是EF,△BEC的底是EC,即EF=12∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.3、10【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【详解】解:延长AP交BC于E,∵BP 平分∠ABC ,∴∠ABP =∠EBP ,∵AP ⊥BP ,∴∠APB =∠EPB =90°,在△ABP 和△EBP 中,ABP EBP BP BPAPB EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △ABC =2S 阴影=10(cm 2),故答案为:10.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等. 4、42【分析】由三角形的外角的性质可得,DABD C 代入数据即可得到答案. 【详解】解:,80,38,ABD D C ABD C 803842,D ABD C 故答案为:42【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.5、160【分析】利用全等三角形的性质解决问题即可.【详解】解:AC BD ,90CAD CAB ∴∠=∠=︒,在ACD △与ACB △中,DAC BACAC ACACD ACB∠=∠⎧⎪=⎨⎪∠=∠⎩, ACD ∴≌()ACB ASA ,160AB AD m ∴==,故答案为:160.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.三、解答题1、(1)(10﹣2t );(2)当v =1或v =2.4时,△ABP 和△PCQ 全等.(1)根据题意求出BP ,然后根据PC =BC -BP 计算即可;(2)分△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,根据全等三角形的性质解答即可.【详解】解:(1)∵点P 的速度是2cm /s ,∴t s 后BP =2t cm ,∴PC=BC −BP =(10−2t )cm ,故答案为:(10﹣2t );(2)由题意得:cm CQ vt ,∠B=∠C =90°,∴只存在△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,当△ABP ≌△PCQ 时,∴AB=PC ,BP=CQ ,∴10−2t =6,2t=vt ,解得,t =2,v =2,当△ABP ≌△QCP 时,∴AB=QC ,BP=CP ,∴2t =10-2t , vt =6,解得,t =2.5,v =2.4,∴综上所述,当v =1或v =2.4时,△ABP 和△PCQ 全等.【点睛】本题考查了全等三角形的性质,解题的关键在于能够利用分类讨论的思想求解.2、(1)①证明见解析;②经过109或209秒后,△CMN 是直角三角形;(2)∠BEN =60°,证明见解析(1)①根据题意得出AM =BD ,AD =BN ,根据等边三角形的性质得到∠A =∠B =∠C =60°,利用SAS 定理证明△AMD ≌△BDN ;②分∠CNM =90°、∠CMN =90°两种情况,根据直角三角形的性质列式计算即可;(2)证明△ABM ≌△CAN ,根据全等三角形的性质得到∠ABM =∠CAN ,根据三角形的外角性质计算,得到答案.【详解】(1)①∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°,当点M ,N 在线段上移动了2s 时,AM =6厘米,CN =6厘米,∴BN =BC ﹣CN =4厘米,∵AB =10厘米,BD =6厘米,∴AD =4厘米,∴AM =BD ,AD =BN ,在△AMD 和△BDN 中,AM BD A B AD BN =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△BDN (SAS );②设经过t 秒后,△CMN 是直角三角形,由题意得:CM =(10﹣3t )厘米,CN =3t 厘米,当∠CNM =90°时,∵∠C =60°,∴∠CMN =30°,∴CM =2CN ,即10﹣3t =2×3t ,解得:t =109, 当∠CMN =90°时,CN =2CM ,即2(10﹣3t )=3t ,解得:t =209, 综上所述:经过109或209秒后,△CMN 是直角三角形;(2)如图所示,由题意得:AM =CN ,在△ABM 和△CAN 中,AM CN BAM ACN AB CA =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△CAN (SAS ),∴∠ABM =∠CAN ,∴∠BEN =∠ABE +∠BAE =∠CAN +∠BAE =60°.【点睛】本题考查了全等三角形的判断以及列一元一次方程动点相关问题,两边和它们的夹角对应相等的两个三角形全等;一元一次方程与几何图形的相结合的题,多数会涉及到动点的问题,需要对动点的位置进行讨论,讨论时要注意讨论全面,做到不重不漏,通常会按照从左到右或从上到下的方位进行考虑.3、(1)见解析;(2)见解析;(3)2【分析】(1)过点B 作BQ AG ⊥于点Q ,根据AAS 证明△ABQ DAG ≅∆得AG BQ =,再证明四边形BCGQ 是矩形得BQ =CG ,从而得出结论;(2) 在GF 上截取GH =GE ,连接AH ,证明AH =FH ,GE =GH 即可;(3) 过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,证明()Rt AGE Rt CGN HL ∆≅∆得GN GE MG ==,可证明AC 是EH 的垂直平分线,再证明()Rt APH Rt AGM HL ∆≅∆和△()ABH ADM SAS ≅∆得5BH MD ==可求出4ME =,从而可得结论.【详解】解:(1)证明:过点B 作BQ AG ⊥于点Q ,如图1∵AG CD ⊥90AQB BAD ︒∴∠==∠ABQ BAQ DAG BAQ ∴∠+∠=∠+∠ABQ DAG ∴∠=∠又AB AD =,90AQB AGD ︒∠=∠=∴△()ABQ DAG AAS ≅∆B AG Q ∴=,,BC CD AG CD BQ AG ⊥⊥⊥∴四边形BCGQ 是矩形BQ CG ∴=CG AG ∴=;(2)在GF 上截取GH =GE ,连接AH ,如图2,,HG GE AG GF =⊥AH AE ∴=AEH AHE ∴∠=∠2AEF F ∠=∠2AHE F ∴∠=∠又AHE F FAH ∠=∠+∠F FAH ∴∠=∠FH AH ∴=AE FH ∴=FG FH HG AE EG ∴=+=+(3)过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,如图3,由(1)、(2)知,AP CG AG ==,,AM AE FM F FAM ==∠=∠∵EF FG GE FM ME =+=+∴9AM ME =+∵,CN AE AG CG ==∴()Rt AGE Rt CGN HL ∆≅∆∴GN GE MG ==∴∠45GNE GEN ︒=∠=∵BC FD ⊥∴∠45CHE CEH ︒=∠=∴CH CE =∵AG CG =∴∠45ACG CAG ︒=∠=∴45ACG ACH ∠=∠=︒∴AC 是EH 的垂直平分线,∴AH AE =∴AH AM =又∵AG AP =∴()Rt APH Rt AGM HL ∆≅∆∴∠HAP MAG =∠∴∠90HAM PAG ︒=∠=∵∠F FAM =∠,90,90FAM MAD F D ∠+∠=︒∠+∠=︒∴∠MAD D =∠∴AM MD =∵,,AP CH HC FD AG FD ⊥⊥⊥∴90PAG ∠=︒∴90MAG PAM ∠+∠=︒∵∠HAP MAG =∠∴90PAH MAP ∠+∠=︒,即90HAM ∠=︒∴90HAB BAM ∠+∠=︒∵90BAD ∠=︒,即90BAM MAD ∠+∠=︒∴HAB MAD ∠=∠在ABH ∆和ADM ∆中,{AA =AA∠AAA =∠AAA AA =AA∴△()ABH ADM SAS ≅∆∴5BH MD ==∴5AM FM ==∴4ME =∴2GN GE MG===【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)2,2t;(2)7;(3)1或6;(4)△ABP的面积为54(0)25910()229284(7)2t ttt t⎧<≤⎪⎪⎪<<⎨⎪⎪-≤<⎪⎩.【分析】(1)根据CE=12CD可求得CE的长,利用速度⨯时间即可求得BP的长;(2)先计算出总路程,再利用路程÷速度即可计算出用时;(3)分两种情况,利用全等三角形的性质即可求解;(4)分三种情况,利用三角形的面积公式求解即可.【详解】解:(1)∵CE=12CD,AB=CD=4,∴CE=2,∵点P从点B出发,以每秒2个单位的速度运动,∴BP=2t;故答案为:2,2t;(2)点P运动的总路程为BC+CD+DA=5+4+5=14,∴在整个运动过程中,点P运动了1472=(秒);故答案为:7;(3)当点P在BC上时,△ABP≌△DCE,∴BP=CE=2,∴2t=2,解得:t=1;当点P在AD上时,△BAP≌△DCE,∴AP=CE=2,点P运动的总路程为BC+CD+DA-AP=5+4+5-2=12,∴2t=12,解得:t=6;综上,当t=1或6秒时,△ABP和△DCE全等;故答案为:1或6;(4)当点P在BC上,即0<t52≤时,AB=4,BP=2t,∴△ABP的面积为12AB⨯BP=4t;当点P在CD上,即52<t92<时,AB=4,BC=5,∴△ABP的面积为12AB⨯BC=10;当点P在BC上,即92t≤<7时,AB=4,AP=14-2t,∴△ABP的面积为12AB⨯BP=28-4t;综上,△ABP的面积为54(0)25910()229284(7)2t ttt t⎧<≤⎪⎪⎪<<⎨⎪⎪-≤<⎪⎩.【点睛】本题考查了全等三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.5、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2020年春北师大版七年级数学下册第四章《三角形》单元测试提高卷
《三角形》单元测试提高卷一、选择题1.如果一个三角形三条高的交点在三角形外部,那么这个三角形是( ) A.锐角三角形B.钝角三角形C.直角三角形D.无法确定2.下列条件中,能判定△ABC为直角三角形的是( )A.△A=△B=△C B.△A+△B=2△CC.△A△△B△△C=1△2△3 D.△A=12△B=12△C3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC△AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.24.如图,在△ABC中,AD△BC于点D,BE△AC于点E,AD与BE相交于点F,若BF=AC,△CAD=25°,则△ABE的度数为()A.30°B.15°C.25°D.20°5.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么()A.M>0B.M=0 C.M<0D.不能确定6.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º7.如图,在△ABC中,AC△CB,CD平分△ACB,点E在AC上,且CE=CB,则下列结论:△DC平分△BDE;△BD=DE;△△B=△CED;△△A+△CED =90°.其中正确的有()A.1个B.2个C.3个D.4个8.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,记△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.49.如图,在直角三角形ABC中,△BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边作等腰直角三角形AED,连接BE,EC.有下列结论:△△ABE△△DCE;△BE=EC;△BE△EC.其中正确的结论有()A.0个B.1个C.2个D.3个10.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,△A=30°C.△A=60°,△B=45°,AB=4 D.△C=90°,AB=6二、填空题11.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则△1+△2=________.12.如图,已知四边形ABCD中,AC平分△BAD,CE△AB于点E,且AE=12(AB+AD),若△D=115°,则△B=________.13.如图,AD,AE分别是△ABC的角平分线、高线,且△B=50°,△C=70°,则△EAD=________.14.如图,已知四边形ABCD中,AC平分△BAD,CE△AB于点E,且AE=12(AB+AD),若△D=115°,则△B=________.15.如图5—15,△ ABC中,△ A=60°,△ ABC、△ ACB的平分线BD、CD交于点D,则△ BDC=_____.16.如图5—16,该五角星中,△ A+△ B+△ C+△ D+△ E=________度.17.如图,在Rt△ABC中,△BAC=90°,AB=AC,分别过点B,C作经过点A 的直线的垂线段BD,CE,若BD=3厘米,CE=4厘米,则DE的长为.18.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:△AD=BE;△PQ△AE;△AP=BQ;△DE=DP;△△AOB=60°.其中完全正确的是.三、解答题19.如图,在△ABC中,△B=34°,△ACB=104°,AD是BC边上的高,AE是△BAC的平分线,求△DAE的度数.20.如图,△ABC和△ECD都是等腰直角三角形,△ACB=△DCE=90°,D为AB边上一点.试说明:BD=AE.21.如图△,在Rt△ABC中,AB=AC,△BAC=90°,过点A的直线l绕点A旋转,BD△l于D,CE△l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图△所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案:1.B2.C3. B .4. D . 5.C 6.A 7.D 8.B 9.D 10.C11.90° 12.65° 13.10° 14.65° 15. 16. 17.7厘米.18. △△△△19.解:在△ABC 中,因为△B =34°,△ACB =104°,所以△CAB =180°-△B -△ACB =180°-34°-104°=42°.因为AE 平分△CAB ,所以△CAE =12△CAB =12×42°=21°.在△ACE 中,△AEC =180°-△ACB -△CAE =180°-104°-21°=55°.因为AD 是BC 边上的高,所以△D =90°.在△ADE 中,△DAE =180°-△D -△AEC =180°-90°-55°=35°.20.解:因为△ABC 和△ECD 都是等腰直角三角形,且△ACB =△DCE =90°,所以AC =BC ,CD =CE ,△ACE +△ACD =△BCD +△ACD .所以△ACE =△BCD .在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,△ACE =△BCD ,CE =CD ,所以△ACE △△BCD (SAS).所以BD =AE .21.解:(1)因为BD △l ,CE △l ,︒120︒180所以△ADB=△AEC=90°.所以△DBA+△BAD=90°.又因为△BAC=90°,所以△BAD+△CAE=90°.所以△DBA=△CAE.因为AB=AC,△ADB=△CEA=90°,所以△ABD△△CAE(AAS).所以AD=CE,BD=AE.则AD+AE=BD+CE,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD△△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.。
2020版七年级数学下册第四章三角形试题(新版)北师大版及参考答案
第四章三角形1.应用三角形的三边关系的方法技巧(1)已知三角形的两边长求第三边的范围,解答这类问题的关键是求两边之和、两边之差,第三边大于两边之差小于两边之和.【例】若三角形的两边长分别为6 cm,9 cm,则其第三边的长可能为( )A.2 cmB.3 cmC.7 cmD.16 cm【标准解答】选C.设第三边长为xcm.由三角形三边关系定理得9-6<x<9+6,解得3<x<15.(2)已知三条线段,判断以这三条线段为边能否构成三角形,解答的关键是只求两较短边之和,与最长边去比较.【例】下列长度的三条线段,不能组成三角形的是( )A.3,8,4B.4,9,6C.15,20,8D.9,15,8【标准解答】选A.分析各选项:A.∵3+4<8∴不能构成三角形;B.∵4+6>9∴能构成三角形;C.∵8+15>20∴能构成三角形;D.∵8+9>15∴能构成三角形.(3)在解决三角形中线段比较大小的问题时,我们经常会用到三角形的“三边关系定理”来解决问题,它是我们初中阶段经常用于比较线段大小的重要依据.【例】如图,点P是△ABC内任意一点,试说明PB+PC<AB+AC.【标准解答】延长BP交AC于点D,在△ABD中,PB+PD<AB+AD ①,在△PCD中,PC<PD+CD ②,①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC.1.下列长度的三条线段,能组成三角形的是( )A.1,1,2B.3,4,5C.1,4,6D.2,3,72.如果一个三角形的两边长分别为2和5,则第三边长可能是( )A.2B.3C.5D.83.某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是( )A.1,3,5B.1,2,3C.2,3,4D.3,4,54.各边长度都是整数、最大边长为8的三角形共有个.5.如图,△ABC三边的中线AD,BE,CF的公共点G,若S△ABC=12,则图中阴影部分面积是.2.求一个角的度数的方法(1)当所求角是一个三角形的内角时,可先求出这个三角形另外两个内角的度数,再根据三角形内角和定理计算.【例】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于( )A.40°B.65°C.75°D.115°【标准解答】选B.∵∠A=40°,∠AOB=75°.∴∠B=180°-∠A-∠AOB=180°-40°-75°=65°,∵AB∥CD,∴∠C=∠B=65°.(2)当所求角是一个三角形的外角时,可利用三角形外角的性质结合三角形的内角和定理计算. 【例】将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为( )A.75°B.95°C.105°D.120°【标准解答】选C.∵∠ACO=45°-30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.(3)当条件中含有平行线时,可利用平行线的性质将其转化为其他易求的角.【例】如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )A.40°B.60°C.80°D.100°【标准解答】选D.如图,方法一:∵l1∥l2,∴∠1=∠ABC=60°,∴∠2=∠A+∠ABC=60°+40°=100°;方法二:∵l1∥l2,∴∠2=∠3.∵∠1=∠4=60°,∠A=40°.∴∠2=∠3=∠A+∠4=60°+40°=100°.1.一副三角板如图叠放在一起,则图中∠α的度数为( )A.75°B.60°C.65°D.55°2.如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )A.17°B.34°C.56°D.124°3.如图,在△ABC中,∠B,∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ( )A.118°B.119°C.120°D.121°4.如图,在△ABC中,点D,E,F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD= ( )A.80°B.75°C.70°D.65°5.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B= °.6.如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.3.确定全等三角形的对应边、对应角的方法(1)在全等三角形中找对应边和对应角,关键是先找出对应顶点,然后按对应顶点字母的顺序记两个三角形全等,再按顺序写出对应边和对应角.(2)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角.两条对应边所夹的角是对应角.(3)全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角.(4)最大边是对应边,最小边是对应边,最大角是对应角,最小角是对应角.【例】如图,△ABC≌△DEF,点A与点D是对应顶点,则BC的对应边是,∠BAC的对应角是.【标准解答】因为点A与点D是对应顶点,对应顶点所对的边是对应边,所以BC的对应边是EF;又因为以对应点为顶点的角是对应角,所以∠BAC的对应角是∠EDF.答案:EF ∠EDF如图所示,∠1=∠2,∠B=∠D,△ABC和△AED全等应表示为( )A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△ADED.△ABC≌△DEA4.全等三角形(1)判定基本思路:在证明两个三角形全等时,往往题目中已知某些边或角的条件,常根据以下思路来寻找三角形全等的条件.(2)常见的全等三角形的基本模型:①平移变换型②轴对称变换型③旋转变化型【例1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【标准解答】∵AD∥CB,∴∠A=∠C,∵AD=CB,∠D=∠B,∴△ADF≌△CBE,∴AF=CE,∴AE=CF.【例2】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D. 求证:△BEC≌△CDA.【标准解答】∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,∵BC=AC,∴△BEC≌△CDA.1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°2.如图,B,E,C,F在同一直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .3.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.4.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED.(2)AC=BD.5.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E点,使DE=AB.求证:(1)∠ABC=∠EDC.(2)△ABC≌△EDC.6.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.5.尺规作图用尺规作图作出图形的三个步骤:(1)分析图形,明确作图顺序.(2)选择合适的基本作图.(3)验证所作图形是否符合要求.【例1】如图所示,已知线段AB,∠α,∠β,分别过A,B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)【标准解答】如图所示:.【例2】作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.【标准解答】如图所示:1.画△ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法)2.如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC沿AD剪开,拼成如图2的四边形ABDC′.(1)四边形ABDC′具有什么特点?(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).跟踪训练答案解析第四章三角形1.应用三角形的三边关系的方法技巧【跟踪训练】1.【解析】选 B.如果满足较小的两条线段之和大于最长的线段,那么这三条线段就能组成三角形.因为1+1=2,1+4<6,2+3<7,而3+4>5.2.【解析】选C.设第三边长为x,则由三角形三边关系定理得5-2<x<5+2,即3<x<7.故选C.3.【解析】选C.设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4.4.【解析】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.答案:205.【解析】由中线性质,可得AG=2GD,则S△BGF=S△CGE=S△ABG=×S△ABD=××S△ABC=×12=2,∴阴影部分的面积为4.答案:42.求一个角的度数的方法【跟踪训练】1.【解析】选A.如图,∵∠1=60°,∠2=45°,∴∠α=180°-45°-60°=75°.2.【解析】选C.∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°-∠DCE=90°-34°=56°.3.【解析】选C.∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠B,∠C的平分线为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.4.【解析】选B.∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°-60°-45°=75°.5.【解析】∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°, ∴∠B=70°.答案:706.【解析】∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.3.确定全等三角形的对应边、对应角的方法【跟踪训练】【解析】选C.由于∠1=∠2,∠B=∠D,所以点C与点E,点B与点D是对应点,故应表示为△ABC≌△ADE,所以选C.4.全等三角形【跟踪训练】1.【解析】选C.A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选C.2.【解析】∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,∵AB=DE,∴△ABC≌△DEF,∴DF=AC=6.答案:63.【解析】在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.4.【证明】(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED.(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,∴△AEC≌△BED(SAS),∴AC=BD.5.【证明】(1)在四边形ABCD中,∵∠A=∠BCD=90°,∴∠B+∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC=∠EDC.(2)连接AC.∵在△ABC和△EDC中∴△ABC≌△EDC.6.【证明】∵AE∥BD,∴∠EAC=∠ACB, ∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,∴△ABD≌△CAE,∴AD=CE.5.尺规作图【跟踪训练】1.【解析】已知:线段a,b和∠β.求作:△ABC,使BC=a,AC=b,∠C=β(也可以使任意两边分别等于a和b,夹角为β).2.【解析】(1)四边形ABDC′中,AB=DC′,∠B=∠C′(或四边形ABDC′中,一组对边相等,一组对角相等).(2)作法:①延长NP;②以点M为圆心,MN为半径画弧,交NP的延长线于点G;③以点P为圆心,MN为半径画弧,以点M为圆心,PG为半径画弧,两弧交于点Q;④连接MQ,PQ;⑤四边形MNPQ是满足条件的四边形.。
北师大版七年级数学下册第四章《三角形》质量检测试卷(解析版)
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
北师大版七年级数学下册 第四章 三角形 达标检测卷(含详细解答)
北师大版七年级数学下册第四章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( )2.若三角形有两个内角的和是85°,那么这个三角形是 ( )A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( ) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( ) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( )A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( ) A.BD是△ABC的高 B.CD是△BCD的高C.EG是△ABD的高 D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( )A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是()①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有 km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为 cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B,C为直线l上两点,点A在直线l外,且∠ABC=45°.若P是l上一点,且△ABP是“准直角三角形”,则∠APB 的所有可能的度数为.三、解答题(共66分)19.(6分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,试说明:AB∥DE.20.(8分)如图,已知线段a,b,∠α,求作三角形ABC,使AC=b,BC=2a,∠C=180°-α.(不写作法,保留作图痕迹)21.(8分)如图,AM平分∠CAD,CN平分∠ACB,△ACB≌△CAD,请你判断AM和CN的位置关系,并说明理由.22.(8分)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C =70°,求∠AEC和∠DAE的度数.23.(10分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)试说明:△ABE≌△CBD;(2)试说明:∠1=∠3.24.(12分)(南岗区校级期中)已知AD是△ABC的角平分线(∠ACB>∠B),P是射线AD上一点,过点P作EF⊥AD,交射线AB于点E,交直线BC于点M.(1)如图①,∠ACB=90°,试说明:∠M=∠BAD;(2)如图②,∠ACB为钝角,P在AD延长线上,连接BP,CP,BP平分∠EBC,CP 平分∠BCF,∠BPD=50°,∠CPD=21°,求∠M的度数.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( B)2.若三角形有两个内角的和是85°,那么这个三角形是 ( A)A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( D) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( D) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( C)A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( C)A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( C) A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A)A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( C)A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是( D)①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是__三角形的稳定性__.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为__4__.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为__10__.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有__1.1__km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__75°__.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为__0.7___cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__60°.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B ,C 为直线l 上两点,点A 在直线l 外,且∠ABC =45°.若P 是l 上一点,且△ABP 是“准直角三角形”,则∠APB 的所有可能的度数为__15°或22.5°或120°__.三、解答题(共66分)19.(6分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,试说明:AB ∥DE.解:∵BE =CF ,∴BC =EF ,在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC = DF ,BC=EF ,∴△ABC ≌△DEF(SSS),∴∠ABC =∠DEF ,∴AB ∥DE.20.(8分)如图,已知线段a ,b ,∠α,求作三角形ABC ,使AC =b ,BC =2a ,∠C =180°-α.(不写作法,保留作图痕迹)解:如图,△ABC 即为所求.21.(8分)如图,AM 平分∠CAD ,CN 平分∠ACB ,△ACB ≌△CAD ,请你判断AM 和CN 的位置关系,并说明理由.解:AM ∥CN.理由:∵△ACB ≌△CAD ,∴∠ACB =∠CAD.∵AM 和CN 分别平分∠CAD 和∠ACB ,∴∠ACN =12 ∠ACB ,∠CAM =12 ∠CAD ,∴∠ACN =∠CAM ,∴AM ∥CN.22.(8分)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C=70°,求∠AEC 和∠DAE 的度数.解:∵∠B =42°,∠C =70°,∴∠BAC =180°-∠B -∠C =68°.∵AE 平分∠BAC ,∴∠EAC =12 ∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°-∠C =20°,∴∠DAE =∠EAC -∠DAC =34°-20°=14°,∴∠AEC =90°-∠DAE =76°.23.(10分)如图,点E 在CD 上,BC 与AE 交于点F ,AB =CB ,BE =BD ,∠1=∠2.(1)试说明:△ABE ≌△CBD ;(2)试说明:∠1=∠3.解:(1)∵∠1=∠2,∴∠1+∠CBE =∠2+∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS);(2)∵△ABE ≌△CBD ,∴∠A =∠C ,∵∠AFB =∠CFE ,∴∠1=∠3.24.(12分)(南岗区校级期中)已知AD 是△ABC 的角平分线(∠ACB >∠B),P 是射线AD 上一点,过点P 作EF ⊥AD ,交射线AB 于点E ,交直线BC 于点M.(1)如图①,∠ACB =90°,试说明:∠M =∠BAD ;(2)如图②,∠ACB 为钝角,P 在AD 延长线上,连接BP ,CP ,BP 平分∠EBC ,CP 平分∠BCF ,∠BPD =50°,∠CPD =21°,求∠M 的度数.解:(1)∵EF ⊥AD ,∴∠APF =∠MCF =90°.∵∠AFP =∠MFC ,∴∠M =∠PAF.∵∠BAD =∠CAD ,∴∠M=∠BAD.(2)∵∠BPD=50°,∠CPD=21°,∴∠BPC=71°,∴∠PBC+∠PCB=109°.∵∠BCF=2∠PCB,∠EBC=2∠PBC,∴∠EBC+∠BCF=218°,∴∠ABC+∠ACB=360°-218°=142°,∴∠BAC=180°-142°=38°,∴∠DCP=∠FCP=∠CPD+∠CAD=40°,∴∠MDP=∠DPC+∠DCP=61°.∵EF⊥AP,∴∠MPD=90°,∴∠M=90°-61=29°.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③解:(1)∵△PAB和△PMN是等边三角形,∴∠BPA =∠MPN =60°, AB =BP =AP ,PM =PN =MN ,∴∠BPA -∠MPB =∠MPN -∠MPB , ∴∠APM =∠BPN.在△APM 和△BPN 中,⎩⎪⎨⎪⎧AP =BP ,∠APM =∠BPN ,PM =PN ,∴△APM ≌△BPN(SAS), ∴AM =BN.(2)图②中,BN =AB +BM ; 图③中,BN =BM -AB.。
北师大版七年级数学下册第四章三角形单元检测练习试题(有答案)
第四章单元检测题一.选择题1.下列长度的四根木棒中,能与长为4cm,9cm的两根木棒围成一个三角形的是()A.4cm B.5cm C.9cm D.14cm2.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对3.如图,∠A=∠B,∠C=α,DE⊥AC,FD⊥AB,则∠EDF等于()A.αB.C.90°﹣αD.180°﹣2α4.下列条件中,能判定△ABC为直角三角形的是()A.∠A=2∠B=3∠C B.∠A+∠B=2∠CC.∠A=∠B=30°D.∠A=∠B=∠C5.下列说法错误的有()①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个6.如图,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有()A.1组B.2组C.3组D.4组7.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.68.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间10.等腰三角形是一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角的度数为()A.30°或120°B.150°C.30°或150°D.30°二.填空题11.已知三角形的两边长分别为7和2,第三边的数值是奇数,则该三角形的周长为.12.如图,在△ABC中,CD=DE,AC=AE,∠DEB=110°,则∠C=.13.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BC=8cm,则DE+DB=.14.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是.(答案不唯一,只要写一个条件)15.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.16.如图,AB=AC,点D、E分别在AC、AB上,AF⊥CE,AG⊥BD,垂足分别为F、G,AF=AG,下列结论中:①∠B=∠C;②AD=AE;③∠EAF=∠DAG;④BE=CD.其中正确的结论是(填序号)三.解答题17.如图,已知△ABC,用三角尺和量角器作△ABC的:①中线AD;②角平分线BE;③高CH.18.如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.19.如图,已知AD∥BC,AD=BC,AE=CF.E,F两点在直线AC上,试说明DE∥BF.20.已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹)已知:线段a和∠α,如图所示.求作:Rt△ABC使BC=a,∠C=90°,∠A=∠α21.如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B的距离(要求画出图形,写出测量方案和理由)22.如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.参考答案一.选择题1.C.2.B.3.B.4.D.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题11.16.12.70°13.8cm.14.∠ADC=∠AEB.15.220.16.①②③④.三.解答题17.解:(1)(2)(3)如图所示:..18.解:∵AD是高,∠B=70°,∴∠BAD=20°,∴∠BAE=20°+18°=38°,∵AE是角平分线,∴∠BAC=76°,∴∠C=180°﹣70°﹣76°=34°.19.解:∵AD∥BC,∴∠1=∠2,∴∠DAE=∠BCF,在△DAE和△BCF,,∴△DAE≌△BCF(SAS),∴∠E=∠F,∴DE∥BF.20.解:如图,Rt△ABC为所作.21.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,在△PCQ和△BCA中,∴△PCQ≌△BCA(SAS),∴AB=PQ.22.解:(1)△BPE与△CQP全等.(1分)∵点Q的运动速度与点P的运动速度相等,且t=2秒∴BP=CQ=2×2=4厘米(2分)∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,,∴Rt△BPE≌Rt△CQP;(4分)(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,(5分)∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.(6分)∴点P,Q运动的时间t=此时点Q的运动速度为(厘米/秒).(8分)。
北师大版七年级数学(下册)第四章测试卷(附参考答案)
北师大版七年级数学(下册)第四章测试卷(考试时间:90分钟满分:100分)1.已知三角形的两边a=4,b=8,则下列长度的四条线段中能作为第三边c的是( )A.3B.4C.7D.122.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是( )A.三角形具有稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.知一个等腰三角形的两边长分别为2和1,则此等腰三角形的周长为( )A.5B.4C.3D.5或44.如图1,∠B+∠C+∠D+∠E-∠A等于( )图1A.360°B.300°C.180°D.240°5.如图2,△ABC中,∠C=60°,若沿图中虚线截去∠C,则∠1+∠2等于( )图2A.360°B.240°C.180°D.140°6.如图3,尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径作弧交OA,OB于C,D,再分别以C,D为圆心,以大于1CD长为半径画弧,两弧交于P点,作射线OP,由作法得△OCP≌△ODP的根据是( )图3A.SASB.ASAC.AASD.SSS7.如图4,AB∥CD,BD平分∠ABC,CD平分∠ACE,并且∠D=40°,则∠A=( )图4A.50°B.60°C.70°D.80°8.如图5,AC=BD,AB=CD,图中的全等三角形的对数是( )图5A.2对B.3对C.4对D.5对9.如图6,观察下列图形,则第n个图形中三角形的个数是( )…图6A.2n+2B.4n+4C.4n-4D.4n10.如图7所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D 到BC的距离是( )图7A.3B.4C.5D.611.如图8为两个全等的三角形,则∠C的对应角为.图812.将一副三角尺按如图9所示叠放在一起,则∠α的度数为.图913.如图10,已知方格中是4个相同的正方形,则∠1+∠2+∠3=度.图1014.某风景区改造中,需测量湖两岸游船码头A,B间的距离(如图11),于是工作人员在AB的垂线AF上取两点E,D,使ED=AE,再过点D作出AF的垂线OD,并在OD上找一点C,使B,E,C在同一直线上,这时测量CD的长是15米,由此可知A,B的距离是.图1115.如图12,在4×5的正方形网格中,已知顶点在格点上的△ABC,现在要在其他的格点中选择点D,使△ABC与△ABD全等,这样的格点一共有个.图1216.如图13,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角的度数是.图1317.如图14,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是.(写出一个即可)图1418.用直尺和圆规作一个角等于已知角的示意图如图15所示,则要说明∠D’O’C’=∠DOC,需要证明△D’O’C’≌△DOC,则这两个三角形全等的依据是(写出全等的简写).图1519.如图16所示,方格中有一个△ABC,请你在方格内,画出满足条件A1B1=AB,B1C1=BC,∠A1=∠A的△A1B1C1,并判断△A1B1C1与△ABC是否一定全等?图1620.等边三角形给人以“稳如泰山”的美感,它有独特的性质,请按照下列要求分别在各图中画出分割线.(1)把图17①分割成两个全等三角形;(2)把图17②分割成三个全等三角形;(3)把图17③分割成四个全等三角形.图1721.如图18,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于点D,过D点作DE⊥AB于点E,若∠AFD=158°,求∠EDF的度数.图1822.已知:如图19,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.图1923.如图20,在△ABC中,AC=BC,AC⊥BC,AE⊥CD,垂足为点E,BF⊥CD,垂足为点F,图中BF与哪条线段相等?请说明为什么.图2024.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望(如图21),一棵树(AB)高是30尺,另一棵树(CD)高是20尺,两棵树树干间的距离(BD)是50尺,两棵树的树顶(A,C)处各站着一只鸟,忽然,两只鸟同时看见两树间的水面上(E处)游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且路线垂直,最终同时到达目标,问这条鱼出现的地方(E点)离比较高的棕榈树(AB)的树根(B点)有多远?图21参考答案1.C2.A3.A4.C5.B6.D7.D8.B9.D10.A11.∠AED12.105°13.13514.15米15.316.40°17.AC=AE或∠C=∠E或∠B=∠D18.SSS19.不一定全等.如图所示:20.图略.(1)过一顶点作对边垂线;(2)三条中线的交点到三个顶点连线构成了三个全等三角形;(3)连接三条边的中点,得到四个全等三角形.21.解:因为AB=AC,所以∠B=∠C.因为FD⊥BC于点D,DE⊥BC于点E,所以∠BED=∠FDC=90°.因为∠AFD=158°,所以∠EDB=∠CFD=180°-158°=22°.所以∠EDF=90°-∠EDB=90°-22°=68°.22.求证:△ABC≌△CDE.证明:因为AC∥DE,所以∠ACD=∠D,∠BCA=∠E.又因为∠ACD=∠B,所以∠B=∠D.又因为AC=CE,所以△ABC≌△CDE.23.解:BF=CE.理由:因为AC⊥BC,AE⊥CD,所以∠CAE+∠ACE=90°,∠BCF+∠ACE=90°,所以∠CAE=∠BCF.又因为∠AEC=∠CFB=90°,AC=BC,所以△ACE≌△CBF(AAS),所以BF=CE.24.解:依题意可知CE=AE,CE⊥AE,所以∠CED+∠AEB=90°.又因为CD⊥BD,AB⊥BD,所以∠CDE=∠EBA=90°,所以∠CED+∠C=90°,所以∠C=∠AEB.在△CDE和△EBA中,所以△CDE≌△EBA(AAS),所以EB=CD=20(尺).。
北师大版初中数学七下第四章综合测试试题试卷含答案
第四章综合测试一、选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .72.在ABC △中,作BC 边上的高,以下作图正确的是( )A .B .C .D .3.如图,已知BD CD =,则AD 一定是ABC △的( )A .角平分线B .高线C .中线D .无法确定4.如图,在ABC △中,点D 在BC 的延长线上,若60A ︒∠=,40B ︒∠=,则ACD ∠的度数是( )A .140︒B .120︒C .110︒D .100︒5.如图,在ABC △中,CD 平分ACB ∠,DE BC ∥.已知74A ︒∠=,46B ︒∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,AB AC =,若要使ABE ACD △≌△.则添加的一个条件不能是( )A .BC ∠=∠ B .ADC AEB ∠=∠ C .BD CE = D .BE CD =7.如图,A B 、两点分别位于一个池塘的两端,小明想用绳子测量A B 、间的距离,如图所示的这种方法,是利用了三角形全等中的( )A .SSSB .ASAC .AASD .SAS8.小明学习了全等三角形后总结了以下结论: ①全等三角形的形状相同、大小相等; ②全等三角形的对应边相等、对应角相等; ③面积相等的两个三角形是全等图形; ④全等三角形的周长相等. 其中正确的结论个数是( ) A .1B .2C .3D .49.如图,AD 是ABC △的高,BE 是ABC △的角平分线,BE AD ,相交于点F ,已知42BAD ︒∠=,则BFD ∠=( )A .45︒B .54︒C .56︒D .66︒10.如图,ABC △的三边长均为整数,且周长为22,AM 是边BC 上的中线,ABM △的周长比ACM △的周长大2,则BC 长的可能值有( )个.A .4B .5C .6D .7二、填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是________.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带________块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是________.13.如图,Rt ABC △中,90C ︒∠=,25B ︒∠=,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M N 、两点,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数是________.14.如图,在ABC △中,AC BC =,过点A B ,分别作过点C 的直线的垂线AE BF ,.若3AE CF ==,4.5BF =,则EF =________.15.边长为整数、周长为20的三角形的个数为________.16.如图,Rt ABC △中,90BAC ︒∠=,6AB =,3AC =,G 是ABC △重心,则AGC S =△________.三、解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.19.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ︒∠=),点C 在DE 上,点A 和B 分别与木墙的顶端重合. (1)求证:ADC CEB △≌△;(2)求两堵木墙之间的距离.20.如图,已知B D ,在线段AC 上,且AD CB =,BF DE =,90AED CFB ︒∠=∠= 求证:(1)AED CFB △≌△;(2)BE DF ∥.21.如图,已知锐角ABC △,AB BC >.(1)尺规作图:求作ABC △的角平分线BD ;(保留作图痕迹,不写作法) (2)点E 在AB 边上,当BE 满足什么条件时?BED C ∠=∠.并说明理由.22.如图,ABC △中,90ACB ︒∠=,D 为AB 上一点,过D 点作AB 垂线,交AC 于E ,交BC 的延长线于F .(1)1∠与B ∠有什么关系?说明理由.(2)若BC BD =,请你探索AB 与FB 的数量关系,并且说明理由.23.如图1,点A B 、分别在射线OM ON 、上运动(不与点O 重合),AC BC 、分别是BAO ∠和ABO ∠的角平分线,BC 延长线交OM 于点G .(1)若60MON ︒∠=,则ACG ∠=________︒;若90MON ︒∠=,则ACG ∠=________︒; (2)若MON n ︒∠=.请求出ACG ∠的度数;(用含n 的代数式表示)(3)如图2,若MON n ︒∠=,过C 作直线与AB 交F .若CF OA ∥时,求BGO ACF ∠−∠的度数.(用含n 的代数式表示)24.如图1所示,在Rt ABC △中,90C ︒∠=,点D 是线段CA 延长线上一点,且AD AB =,点F 是线段AB上一点,连接DF ,以DF 为斜边作等腰Rt DFE △,连接EA ,EA 满足条件EA AB ⊥.(1)若20AEF ︒∠=,50ADE ︒∠=,2BC =,求AB 的长度;(2)求证:AE AF BC =+;(3)如图2,点F 是线段BA 延长线上一点,探究AE AF BC 、、之间的数量关系,并证明你的结论.第四章综合测试答案解析一、 1.【答案】C【解析】解:设第三边的长为x , 由题意得:4242x −+<<,26x <<,故选:C. 2.【答案】D【解析】解:BC 边上的高应从点A 向BC 引垂线,只有选项D 符合条件,故选:D. 3.【答案】C【解析】解:由于BD CD =,则点D 是边BC 的中点,所以AD 一定是ABC △的一条中线.故选:C.4.【答案】D【解析】解:ACD ∠是ABC △的一个外角,100ACD A B ︒∴∠=∠+∠=,故选:D. 5.【答案】A【解析】解:74A ︒∠=,46B ︒∠=,60ACB ︒∴∠=,CD 平分ACB ∠,11603022BCD ACD ACB ︒︒∴∠=∠=∠=⨯=,180104BDC B BCD ︒︒∴∠=−∠−∠=,故选:A. 6.【答案】D【解析】解:A 、添加B C ∠=∠可利用ASA 定理判定ABE ACD △≌△,故此选项不合题意;B 、添加ADC AEB ∠=∠可利用AAS 定理判定ABE ACD △≌△,故此选项不合题意;C 、添加BD CE =可得AD AE =,可利用利用SAS 定理判定ABE ACD △≌△,故此选项不合题意;D 、添加BE CD =不能判定ABE ACD △≌△,故此选项符合题意;故选:D.7.【答案】D【解析】解:观察图形发现:AC DC BC BC ACB DCB ==∠=∠,,,所以利用了三角形全等中的SAS ,故选:D. 8.【答案】C【解析】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C. 9.【答案】D 【解析】解:AD 是ABC △的高,90ADB ︒∴∠=,42BAD ︒∠=,18048ABD ADB BAD ︒︒∴∠=−∠−∠=,BE 是ABC △的角平分线, 1242ABF ABD ︒∴∠=∠=,422466BFD BAD ABF ︒︒︒∴∠=∠+∠=+=,故选:D. 10.【答案】A【解析】解:ABC △的周长为22,ABM △的周长比ACM △的周长大2,222BC BC ∴−<<,解得211BC <<,又ABC △的三边长均为整数,ABM △的周长比ACM △的周长大2,2222BC AC −−∴=为整数, BC ∴边长为偶数, 46810BC ∴=,,,,故选:A. 二、11.【答案】①③【解析】解:根据全等三角形的判定(SAS )可知属于全等的2个图形是①③,故答案为:①③. 12.【答案】② ASA【解析】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带②去.故答案为:②,ASA . 13.【答案】40︒【解析】解:Rt ABC △中,90C ︒∠=,25B ︒∠=,90902565CAB B ︒︒︒︒∴∠=−∠=−=,由作图过程可知:MN 是AB 的垂直平分线,DA DB ∴=, 25DAB B ︒∴∠=∠=,652540CAD CAB DAB ︒︒︒∴∠=∠−∠=−=.答:CAD ∠的度数是40︒. 故答案为:40︒. 14.【答案】7.5【解析】解:过点A B ,分别作过点C 的直线的垂线AE BF ,,90AEC CFB ︒∴∠=∠=,在Rt AEC △和Rt CFB △中,AC BCAE CF =⎧⎨=⎩,Rt Rt AEC CFB HL ∴△≌△(), 4.5EC BF ∴==,4.537.5EF EC CF ∴=+=+=,故答案为:7.5. 15.【答案】8【解析】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8. 16.【答案】3【解析】解:延长AG 交BC 于E .90BAC ︒∠=,63AB AC ==,,192ABC S AB AC ∴==△, G 是ABC △的重心,2AG GE BE EC ∴==,,19 4.52AEC S ∴=⨯=△,233AGC AEC S S ∴=⨯=△△,故答案为3. 三、17.【答案】解:如图所示,图中三角形的个数有ABC △,ACD △,ADE △,AEF △,AFG △,ABD △,ABE △,ABF △,ABG △ACE △,ACF △,ACG △,ADF △,ADG △,AEG △.18.【答案】解:BE CF =,BE EC CF EC ∴+=+,即BC EF =,在ABC △和DEF △中,AB DE AC DFBC EF =⎧⎪=⎨⎪=⎩(已知)(已知)(已知), ABC DEF SSS ∴△≌△().19.【答案】(1)证明:由题意得:AC BC =,90ACB ︒∠=,AD DE BE DE ⊥⊥,,90ADC CEB ︒∴∠=∠=,9090ACD BCE ACD DAC ︒︒∴∠+∠=∠+∠=,, BCE DAC ∴∠=∠在ADC △和CEB △中ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB AAS ∴△≌△();(2)解:由题意得:236cm AD =⨯=,7214cm BE =⨯=,ADC CEB △≌△,6cm EC AD ∴==,14cm DC BE ==, 20cm DE DC CE ∴=+=(),答:两堵木墙之间的距离为20cm .20.【答案】证明(1)90AED CFB ︒∠=∠=, 在Rt AED △和Rt CFB △中AD BCDE BF =⎧⎨=⎩, Rt Rt AED CFB HL ∴△≌△().(2)AED CFB △≌△,BDE DBF ∴∠=∠,在DBE △和BDF △中DE BFBDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩,DBE BDF SAS ∴△≌△(),DBE BDF ∴∠=∠, BE DF ∴∥.21.【答案】解:(1)如图,线段BD 即为所求.(2)结论:BE BC =. 理由:BD 平分ABC ∠, EBD CBD ∴∠=∠, BE BC BD BD ==,,BDE BDC SAS ∴△≌△(), BED C ∴∠=∠.22.【答案】解:(1)1∠与B ∠相等,理由:ABC △中,90ACB ︒∠=,190F ︒∴∠+∠=,FD AB ⊥,90B F ︒∴∠+∠=,1B ∴∠=∠;(2)若BC BD =,AB 与FB 相等,理由:ABC △中,90ACB ︒∠=,DF AB ⊥,90ACB FDB ︒∴∠=∠=,在ACB △和FDB △中,B B ACB FDB BC BD ∠=∠∠=∠=⎧⎪⎨⎪⎩,ACB FDB AAS ∴△≌△(),AB FB ∴=.23.【答案】(1)60 45(2)在AOB △中,180180OBA OAB AOB n ︒︒︒∠+∠=−∠=−,OBA OAB ∠∠、的平分线交于点C ,1118022ABC BAC OBA OAB n ︒︒∴∠+∠=∠+∠=−()(), 即1902ABC BAC n ︒︒∠+∠=−, 11180180909022ACB ABC BAC n n ︒︒︒︒︒︒∴∠=−∠+∠=−−=+()(), 1809090ACG n n ︒︒︒︒︒∴∠=−+=−();(3)AC BC 、分别是BAO ∠和ABO ∠的角平分线,1122ABC ABO BAC OAC BAO ∴∠=∠∠=∠=∠,, CF AO ∥,ACF CAG ∴∠=∠,BGO BAG ABG ∠=∠+∠,°12902BGO ACF BAG ABG ACF BAC ABG BAC ABG BAC n ︒∴∠−∠=∠+∠−∠=∠+∠−∠=∠+∠=−. 【解析】解:(1)60MON ︒∠=,120OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,1120602ABC BAC ︒︒∴∠+∠=⨯=, 18060120ACB ︒︒︒∴∠=−=,60ACG ︒∴∠=;90MON ︒∠=,90OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,195452ABC BAC ︒︒∴∠+∠=⨯=, 18045135ACB ︒︒︒∴∠=−=;45ACG ︒∴∠=;故答案为:60,45.24.【答案】解:(1)在等腰直角三角形DEF 中,°90DEF ∠=, 120︒∠=,2170DEF ︒∴∠∠−∠==,23180EDA ︒∠+∠+∠=,360︒∴∠=,EA AB ⊥,°90EAB ∴∠=,3180EAB A ︒∠+∠+∠=,430︒∴∠=,90C ︒∠=,24AB BC ∴==;(2)如图1,过D 作DM AE ⊥于M ,在DEM △中,2590︒∠+∠=, 2190︒∠+∠=,15∴∠=∠,DE FE =,在DEM △与EFA △中,51DME EAF DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, DEM EFA ∴△≌△,AF EM ∴=,490B ︒∠+∠=,34180EAB ︒∠+∠+∠=,3490︒∴∠+∠=,3B ∴∠=∠,在DAM △与ABC △中,3B DMA C AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,DAM ABC ∴△≌△,BC AM ∴=,AE EM AM AF BC ∴=+=+;(3)如图2,过D 作DM AE ⊥交AE 的延长线于M , 90C ︒∠=,190B ︒∴∠+∠=,°°2118090MAB MAB ∠+∠+∠=∠=,,21902B ︒∴∠+∠=∠=∠,,在ADM △与BAC △中,2M CB AD AB∠=∠∠=∠=⎧⎪⎨⎪⎩,ADM BAC ∴△≌△,BC AM ∴=,°90EF DE DEF =∠=,,34180DEF ︒∠+∠+∠=,°3490∴∠+∠=,°3590∠+∠=,45∴∠=∠,在MED △与AFE △中,54M EAFDE EF∠=∠∠=∠=⎧⎪⎨⎪⎩,MED AFE ∴△≌△,ME AF ∴=,AE AF AE ME AM BC ∴+=+==,即AE AF BC +=.。
北师大版数学七年级下册 第四章检测卷
第四章检测卷时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.以下列各组数据为三角形的三边,不能构成三角形的是()A.4,8,7 B.3,4,7C.2,3,4 D.13,12,53.如图,△ABC≌△DEF,若∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°第3题图第4题图4.如图,有下列四种结论:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2个结论作为依据不能判定△ABC≌△ADC的是()A.①②B.①③C.①④D.②③5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45° B.60° C.90° D.100°第5题图第6题图6.如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°,则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=12S△ABC.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,满分18分)7.如图,九江大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是________________.第7题图第8题图8.如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC.若∠1=25°,则∠B的度数为________.9.如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的总长度为________cm.第9题图第10题图10.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,连接CD,则图中有________对全等三角形.11.如图,△ABC的中线BD,CE相交于点O,OF⊥BC,且AB=6,BC=5,AC=4,OF=1.4,则四边形ADOE的面积是________.第11题图第12题图12.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发在直线BC上以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.当点E运动________s时,CF=AB.三、解答题(本大题共5小题,每小题6分,满分30分)13.求下图中x的值.14.如图,已知线段AC,BD相交于点O,△AOB≌△COD.试说明:AB∥CD.15.如图,点E,C,D,A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.试说明:△ABC≌△DEF.16.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.17.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.四、(本大题共3小题,每小题8分,共24分)18.如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.试说明:(1)△ABC≌△DEF;(2)AB∥DE.19.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.20.如图,在6×10的网格中,每个小正方形的边长均为1,每个小正方形顶点叫作格点,△ABC的三个顶点和点D,E,F,G,H,K均在格点上,现以D,E,F,G,H,K 中的三个点为顶点画三角形.(1)在图①中画出一个三角形与△ABC全等,如△DEG;(2)在图②中画出一个三角形与△ABC面积相等但不全等,如△HFG.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.22.如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;(2)在你设计的测量方案中,需要测量哪些数据?为什么?六、(本大题共12分)23.小明和小亮在学习探索三角形全等时,碰到如下一题:如图①,若AC=AD,BC =BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由;(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE,DE,则有CE =DE,你知道为什么吗(如图②)?(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有(2)中类似的结论.请你帮他在图③中画出图形,并写出结论,不要求说明理由.参考答案与解析1.A 2.B 3.D 4.A 5.C 6.C7.三角形的稳定性 8.65° 9.45 10.3 11.3.512.5或2 解析:如图,当点E 在射线BC 上移动时,CF =AB .∵∠A +∠ACD =90°,∠BCD +∠ACD =90°,∴∠A =∠BCD .又∵∠ECF =∠BCD ,∴∠A =∠ECF .在△CFE 与△ABC 中,⎩⎪⎨⎪⎧∠ECF =∠A ,∠CEF =∠ACB =90°,CF =AB ,∴△CFE ≌△ABC (AAS),∴CE =AC =7cm ,∴BE =BC+CE =10cm ,10÷2=5(s).当点E 在射线CB 上移动时,CF =AB .在△CF ′E ′与△ABC 中,⎩⎪⎨⎪⎧∠E ′CF =∠A ,∠CE ′F ′=∠ACB ,CF ′=AB ,∴△CF ′E ′≌△ABC (AAS),∴CE ′=AC =7cm ,∴BE ′=CE ′-CB =4cm ,4÷2=2(s).综上可知,当点E 运动5s 或2s 时,CF =AB .13.解:由图可得x +2x +60°=180°,(4分)解得x =40°.(6分)14.解:∵△AOB ≌△COD ,∴∠A =∠C ,(4分)∴AB ∥CD .(6分)15.解:∵AB ∥DF ,∴∠B =∠CPD ,∠A =∠FDE .∵∠E =∠CPD ,∴∠E =∠B .(3分)在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BA =DE ,∠A =∠FDE ,∴△ABC ≌△DEF (ASA).(6分)16.解:(1)∵在△BCD 中,BC =4,BD =5,∴5-4<CD <5+4,即1<CD <9.(2分) (2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =180°-∠BDE =55°.(4分)∵∠A =55°,∴∠C =180°-∠AEC -∠A =70°.(6分)17.解:(1)∵∠B =54°,∠C =76°,∴∠BAC =180°-54°-76°=50°.(2分)∵AD 平分∠BAC ,∴∠BAD =∠CAD =25°,∴∠ADB =180°-54°-25°=101°,∠ADC =180°-101°=79°.(4分)(2)∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC =180°-90°-76°=14°.(6分) 18.解:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE =90°.(2分)在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF (SAS).(5分) (2)由(1)知△ABC ≌△DEF ,∴∠B =∠DEF .(7分)∴AB ∥DE .(8分)19.解:∵∠CAB =50°,∠C =60°,∴∠ABC =180°-50°-60°=70°.又∵AD 是高,∴∠ADC =90°,∴∠DAC =180°-90°-∠C =30°.(3分)∵AE ,BF 是角平分线,∴∠CBF =∠ABF =35°,∠EAF =∠EAB =25°,∴∠DAE =∠DAC -∠EAF =5°,(6分)∠BOA =180°-∠EAB -∠ABF =180°-25°-35°=120°.(8分)20.解:(1)如图①所示,△DEF (或△KHE ,△KHD )即为所求.(4分) (2)如图②所示,△KFH (或△KHG ,△KFG )即为所求.(8分)21.解:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .(4分)(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .由(1)知△ABD ≌△ACE ,∴∠B =∠C .(6分)在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN (ASA),∴∠M =∠N .(9分)22.解:(1)方案为:①如图,过点B 画一条射线BD ,在射线BD 上选取能直接到达的O ,D 两点,使OD =OB ;②作射线AO 并在AO 上截取OC =OA ;③连接CD ,则CD 的长即为AB 的长.(3分) 理由如下:在△AOB 和△COD 中,∵⎩⎪⎨⎪⎧OA =OC (测量方法),∠AOB =∠COD (对顶角相等),OB =OD (测量方法),∴△AOB ≌△COD (SAS),∴AB =CD .(6分)(2)根据这个方案,需要测量5个数据,即:线段OA ,OB ,OC ,OD ,CD 的长度,并使OC =OA ,OD =OB ,则CD =AB .(9分)23.解:(1)△ACB ≌△ADB ,(1分)理由如下:∵在△ACB 与△ADB 中,⎩⎪⎨⎪⎧AC =AD ,BC =BD ,AB =AB ,∴△ACB ≌△ADB (SSS).(4分)(2)由(1)知△ACB ≌△ADB ,则∠CAE =∠DAE .(5分)在△CAE 与△DAE 中,⎩⎪⎨⎪⎧AC =AD ,∠CAE =∠DAE ,AE =AE ,∴△CAE ≌△DAE (SAS),∴CE =DE .(8分) (3)如图,CP =DP .(12分)。
北师大版七年级下册数学-第四章综合检测试卷
第四章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在(B)A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间2.若一个三角形的两边长分别为5和8,则第三边长可能是(B)A.14 B.10C.3 D.23.如图所示,有一条线段是△ABC(AB>AC)的中线,该线段是(B)A.线段GH B.线段ADC.线段AE D.线段AF4.如图,小明试卷上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与试卷原图完全一样的三角形,那么两个三角形完全一样的依据是(A)A.ASA B.SASC.AAS D.SSS5.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形全等;④全等三角形的周长相等.其中正确的说法为(D) A.①②③④B.①②③C.②③④D.①②④6.要测量河岸相对两点A、B之间的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是(C)A.2.5 B.10C.5 D.以上都不对7.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于(C)A.150°B.180°C.210°D.270°8.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是(B)A.15°B.20°C.25°D.30°9.如图,D、E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为(D)A.15°B.20°C.25°D.30°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是(B)①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二、填空题(每小题3分,共18分)11.在△ABC中,∠A∶∠C∶∠B=4∶3∶2,且△ABC≌△DEF,则∠DEF=40°.12.已知a、b、c分别为△ABC的三边,则化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b -c|=0.13.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=120°.14.如图,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB 上一点,CF⊥AD交AD于点H.则下列判断:①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线.其中判断正确的有③④.(填序号)15.如图,∠C=90°,AC=8,BC=3,AQ+AP=11,P、Q两点分别在AC和过点A 且垂直于AC的射线AX上运动,问P点运动到AP=8或3时,才能使△ABC与△APQ 全等.16.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是7.三、解答题(共72分)17.(6分)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =70°,求∠AEC 和∠DAE 的度数.解:因为∠B =42°,∠C =70°,所以∠BAC =180°-∠B -∠C =68°.因为AE 平分∠BAC ,所以∠EAC =12∠BAC =34°.因为AD 是高,∠C =70°,所以∠DAC =90°-∠C =20°,所以∠DAE =∠EAC -∠DAC =34°-20°=14°,所以∠AEC =90°-∠DAE =76°.18.(6分)如图,在四边形ABCD 中,点E 在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC ≌△DEC .证明:因为∠BCE =∠ACD =90°,所以∠3+∠4=∠4+∠5,所以∠3=∠5.在△ACD 中,∠ACD =90°,所以∠2+∠D =90°.因为∠BAE =∠1+∠2=90°,所以∠1=∠D .在△ABC 和△DEC 中,⎩⎪⎨⎪⎧∠1=∠D ,∠3=∠5,BC =EC ,所以△ABC ≌△DEC (AAS).19.(7分)如图,已知线段m 及锐角∠α,锐角∠β,求作△ABC ,使∠A =∠α,AB =m ,∠B =∠α+∠β.(不写作法,保留作图痕迹)解:如图所示,△ABC 即为所求.20.(7分)如图,在△ABC 中,EF ∥BC ,PG ∥AB ,AP =CF . 求证:△AEF ≌△PGC .证明:因为EF ∥BC ,PG ∥AB ,所以∠C =∠AFE ,∠GPC =∠A .因为AP =CF ,所以AP +PF =CF +PF ,即AF =PC .在△AEF 和△PGC 中,⎩⎪⎨⎪⎧∠A =∠GPC ,∠AFE =∠C ,AF =PC ,所以△AEF ≌△PGC (AAS).21.(8分)如图,AD 是△ABC 的中线,点E 在AD 上,且BE =AC ,求证:∠BED =∠CAD .证明:延长AD 到F ,使DF =AD ,连接BF .因为AD 是△ABC 的中线,所以BD =DC .在△ADC 和△FDB 中,⎩⎪⎨⎪⎧AD =DF ,∠ADC =∠FDB ,CD =BD ,所以△ADC ≌△FDB (SAS),所以BF =AC ,∠CAD=∠F .因为BE =AC ,所以BE =BF ,所以∠F =∠BED ,所以∠BED =∠CAD .22.(8分)已知a 、b 、c 是△ABC 的三边长,a =4,b =6,设三角形的周长是x . (1)直接写出c 及x 的取值范围; (2)若x 是小于18的偶数. ①求c 的长;②判断△ABC 的形状.解:(1)因为a =4,b =6,所以2<c <10.故周长x 的范围为12<x <20.(2)①因为周长为小于18的偶数,所以x =16或x =14.当x 为16时,c =6;当x 为14时,c =4.②当c =6时,b =c ,△ABC 为等腰三角形;当c =4时,a =c ,△ABC 为等腰三角形.综上,△ABC 是等腰三角形.23.(9分)小明家所在的小区有一个池塘,如图,A 、B 两点分别位于池塘的两侧,池塘西边有一座假山D ,在BD 的中点C 处有一个雕塑,小明从A 出发,沿直线AC 一直向前经过点C 走到点E ,并使CE =CA ,然后他测量点E 到假山D 的距离,则DE 的长度就是A 、B 两点之间的距离.(1)你能说明小明这样做的根据吗?(2)如果小明未带测量工具,但是知道点A 和假山、雕塑分别相距200米、120米,你能帮助他确定AB 的长度范围吗?解:(1)在△ECD 和△ACB 中,⎩⎪⎨⎪⎧CE =CA ,∠DCE =∠BCA ,DC =BC ,所以△ECD ≌△ACB (SAS),所以DE =AB .(2)连接AD .因为AD =200米,AC =120米,所以AE =240米,所以40米<DE <440米,所以40米<AB <440米.24.(9分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△CAB ≌△EAD ; (2)求∠F AE 的度数; (3)求证:CD =2BF +DE .(1)证明:因为∠BAD =∠CAE =90°,所以∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,所以∠BAC =∠DAE .在△CAB 和△EAD 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,所以△CAB ≌△EAD (SAS).(2)解:因为∠CAE =90°,AC =AE ,所以∠E =45°.由(1)知△CAB ≌△EAD ,所以∠BCA =∠E =45°.因为AF ⊥BC ,所以∠CF A =90°,所以∠CAF =45°,所以∠F AE =∠F AC +∠CAE =45°+90°=135°. (3)证明:延长BF 到G ,使得FG =FB ,连接AG .因为AF ⊥BG ,所以∠AFG =∠AFB =90°.在△AFB 和△AFG 中,⎩⎪⎨⎪⎧BF =GF ,∠AFB =∠AFG ,AF =AF ,所以△AFB ≌△AFG (SAS),所以AB =AG ,∠ABF =∠G .因为△CAB ≌△EAD ,所以∠CBA =∠EDA ,CB =ED .因为AB =AD ,所以AG =AD .因为∠ABF =180°-∠CBA ,∠CDA =180°-∠EDA ,所以∠ABF =∠CDA ,∠G =∠CD A .在△CGA 和△CDA 中,⎩⎪⎨⎪⎧∠GCA =∠DCA ,∠CGA =∠CDA ,AG =AD ,所以△CGA ≌△CDA (AAS),所以CG =CD .因为CG =CB +BF +FG =CB +2BF =DE +2BF ,所以CD =2BF +DE .25.(12分)如图1,在△ABC 中,AD 是角平分线,AE ⊥BC 于点E . (1)若∠C =80°,∠B =50°,求∠DAE 的度数; (2)若∠C >∠B ,试说明∠DAE =12(∠C -∠B );(3)如图2,若将点A 在AD 上移动到A ′处,A ′E ⊥BC 于点E .此时∠DAE 变成∠DA ′E ,(2)中的结论还正确吗?为什么?解:(1)在△ABC 中,∠BAC =180°-∠B -∠C =180°-50°-80°=50°.因为AD 是角平分线,所以∠DAC =12∠BAC =25°.在△AEC 中,因为∠AEC =90°,所以∠EAC =90°-∠C=10°,所以∠DAE =∠DAC -∠EAC =15°.(2)∠DAE =180°-∠ADC -∠AED =180°-∠ADC -90°=90°-∠ADC =90°-(180°-∠C -∠DAC )=90°-⎝⎛⎭⎫180°-∠C -12∠BAC =90°-⎣⎡⎦⎤180°-∠C -12(180°-∠B -∠C )=12(∠C -∠B ). (3)(2)中的结论仍正确.理由:过点A 作AF ⊥BC 于点F ,则A ′E ∥AF ,所以∠DA ′E =∠DAF .由(2)可知∠DAF =12(∠C -∠B ),所以∠DA ′E =12(∠C -∠B ).。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
北师大版七年级数学下册第四章学情评估附答案
北师大版七年级数学下册第四章学情评估一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四组图形中,是全等图形的是()2.如图,在△ABC中,过点A作AD⊥BC于点D,则下列说法正确的是() A.CD是△ABC的高B.BD是△ABC的高C.AD只是△ABC的高D.AD是图中三个三角形的高(第2题)(第3题)(第4题)3.如图所示,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠BAD的度数为()A.40°B.45°C.50°D.55°4.如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD 的周长之差为()A.2 B.3 C.4 D.55.如图,要测量河中礁石A离岸边点B的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA′=∠CBA,∠BCA′=∠BCA,可得△A′BC ≌△ABC,所以A′B=AB,所以测量A′B的长即可得到AB的长.判定图中两个三角形全等的依据是()A.SAS B.ASA C.SSS D.AAS(第5题)(第7题)6.已知a,b,c分别为△ABC的三边长,并满足|a-4|+(c-3)2=0.若b为奇数,则△ABC的周长为()A.10 B.8或10C.10或12 D.8或10或127.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于() A.90°B.135°C.270°D.315°8.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC ≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠AC B.其中结论正确的个数是()A.1 B.2 C.3 D.4(第8题)(第9题)二、填空题(共5小题,每小题3分,计15分)9.如图,把手机放在一个支架上面,可以使它稳固起来,这是利用了三角形的____________.10.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是______________.(第10题)(第12题)(第13题)11.一张三角形纸片上,小明只能折叠出它的一条高,可以推断,这个三角形纸片的形状是__________三角形.12.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为________.13.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连接AE,DE,DC.若∠CAE=30°,则∠BDC=________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)图中有几个三角形?用符号表示这些三角形.(第14题)15.(5分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.求c边的长并判断△ABC的形状.16.(5分)如图,已知△ABC,求作△A′B′C′,使A′B′=AB,∠B′=∠B,B′C′=BC.(尺规作图,不写作法,保留作图痕迹,作在右侧方框内)(第16题)17.(5分)如图,∠ACD=140°,∠A=60°,求∠B,∠ACB的度数.(第17题)18.(5分)如图,AD是△ABC的边BC上的中线,已知AB=6 cm,AC=5 cm.△ABD 的周长为14 cm,求△ACD的周长.(第18题) 19.(5分)如图,△ABC≌△ADE,点E在边BC上,试说明∠BED=∠BAD.(第19题)20.(5分)如图,点A,B,C,D在同一直线上,AM=CN,BM=DN,AC=BD.试说明BM∥DN.(第20题)21.(6分)如图,在△ABC中,∠A=90°,CD∥BA交BD于点D,已知∠1=32°,∠D=29°,试说明BD平分∠ABC.(第21题)22.(7分)如图,树AB与树CD之间相距13 m,小华从点B沿BC走向点C,行走一段时间后,他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5 m,小华行走的速度为1 m/s,求小华行走到点E的时间.(第22题)23.(7分)如图,点A,B,D,E在同一直线上,AD=EB,∠A=∠E.请你添加一个条件,使得AC=EF.(第23题)(1)你添加的条件是____________________;(2)请你写出说明过程.24.(8分)如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向以相同的步子走了30步到达一棵树C处,接着再向前走了30步到达D处,然后向正南方向直行,当小刚看到电线塔、树与自己现处的位置E在一条直线上时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约是50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.(第24题)25.(8分)如图,已知AB∥DE,点B,C,D在一条直线上,AC⊥CE,∠B=90°,AB=CD.(1)△ABC与△CDE全等吗?为什么?(2)你还能得到哪些线段的相等关系?为什么?(第25题)26.(10分)[问题情景]如图①:在四边形ABCD中,AB=AD,∠BAD=120°,E,F分别是BC,CD上的点,且∠EAF=60°,试探究图中线段BE,EF,DF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,再判定△AEF≌△AGF,可得出结论:________________.【探索延伸】如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图③,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.(第26题)答案一、1.C 2.D 3.A 4.A 5.B 6.C 7.C 8.C 提示:设AB 与CD 交于点F .因为∠DAB =∠CAE ,所以∠DAB +∠BAC =∠CAE +∠BAC , 所以∠DAC =∠BAE .在△ADC 和△ABE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,所以△ADC ≌△ABE (SAS), 所以CD =BE ,∠ADC =∠ABE . 因为∠AFD =∠BFO , 所以∠BOD =∠BAD =50°, 故①②③正确, 故选C.二、9.稳定性 10.ASA 11.直角或钝角 12.65°13.75° 提示:延长AE 交DC 边于点F ,如图.(第13题)因为∠ABC =90°,所以∠CBD =90°.在△ABE 与△CBD 中,⎩⎨⎧BE =BD ,∠ABE =∠CBD =90°,AB =CB ,所以△ABE ≌△CBD ,所以∠AEB =∠BDC . 易知∠BAC =∠ACB =45°, 又因为∠CAE =30°,所以∠AEB=180°-∠AEC=∠ACB+∠CAE=45°+30°=75°,所以∠BDC=75°.三、14.解:图中有6个三角形,分别是△ABD,△ABE,△ACB,△ADE,△ADC,△AEC.15.解:因为a,b,c是△ABC的三边,a=4,b=6,所以2<c<10.因为三角形的周长是小于18的偶数,所以2<c<8,且c边的长为偶数,所以c=4或6.当c=4或6时,△ABC的形状都是等腰三角形.16.解:如图,△A′B′C′即为所求.(第16题)17.解:因为∠ACD=140°,所以∠ACB=180°-∠ACD=40°,又因为∠A=60°,所以∠B=180°-∠A-∠ACB=180°-60°-40°=80°.18.解:因为AD是△ABC的中线,所以BD=CD,所以△ABD与△ACD的周长之差为(AB+BD+AD)-(AC+CD+AD)=AB+BD+AD-AC-CD-AD=AB-AC =6-5=1(cm).因为△ABD的周长为14 cm,所以△ACD的周长为14-1=13(cm).19.解:因为△ABC≌△ADE,所以∠C=∠AED,∠BAC=∠DAE,所以∠BAC-∠BAE=∠DAE-∠BAE,即∠CAE =∠BAD .因为∠AEB =∠AED +∠BED =180°-∠AEC =∠CAE +∠C ,所以∠CAE =∠BED ,所以∠BED =∠BAD .20.解:因为AC =BD ,所以AC +BC =BD +BC ,即AB =CD .在△ABM 和△CDN 中,⎩⎨⎧AB =CD ,BM =DN ,AM =CN ,所以△ABM ≌△CDN ,所以∠MBA =∠D ,所以BM ∥DN .21.解:因为CD ∥BA ,所以∠ABD =∠D =29°.因为∠A =90°,∠1=32°,所以∠ABC =90°-32°=58°,所以∠DBC =∠ABC -∠ABD =58°-29°=29°,所以∠ABD =∠DBC ,所以BD 平分∠ABC .22.解:由题意,得AB ⊥BC ,CD ⊥BC ,∠AED =90°,BC =13 m ,AB =5 m ,所以∠B =∠C =90°,∠A +∠AEB =∠CED +∠AEB =90°,所以∠A =∠CED .在△ABE 和△ECD 中,⎩⎨⎧∠B =∠C =90°,∠A =∠CED ,AE =ED ,所以△ABE ≌△ECD (AAS),所以AB =CE =5 m ,所以BE =BC -CE =8 m ,则小华行走到点E 的时间为8÷1=8(s).23.解:(1)∠C =∠F (答案不唯一)(2)因为AD =EB ,AB +BD =DE +BD ,所以AB =DE .在△ABC 和△EDF 中,⎩⎨⎧∠A =∠E ,∠C =∠F ,AB =DE ,所以△ABC ≌△EDF ,所以AC =EF .24.解:(1)如图所示.(第24题)(2)小刚在点A 处时他与电线塔的距离约为40米.理由如下:由题意得,DE =140-30-30=80(步).在△DEC 和△ABC 中,⎩⎨⎧∠D =∠A =90°,DC =AC ,∠DCE =∠ACB ,所以△DEC ≌△ABC (ASA),所以DE =AB .因为DE ≈80×50÷100=40(米),所以AB ≈40米.答:小刚在点A 处时他与电线塔的距离约为40米.25.解:(1)△ABC ≌△CDE ,理由如下:因为AB ∥DE ,所以∠B +∠D =180°,因为∠B =90°,所以∠D =90°=∠B .因为AC ⊥CE ,所以∠ACB +∠DCE =90°.因为∠ACB +∠A =90°,所以∠A =∠DCE .在△ABC 与△CDE 中,⎩⎨⎧∠A =∠DCE ,AB =CD ,∠B =∠D ,所以△ABC ≌△CDE .(2)BC =DE ,AC =CE ,理由如下:由(1)知△ABC ≌△CDE ,所以BC =DE ,AC =CE .26.解:【问题情景】EF =BE +DF【探索延伸】结论EF =BE +DF 仍然成立.理由:如图,延长FD 到点G ,使DG =BE ,连接AG .因为∠B +∠ADF =180°,∠ADF +∠ADG =180°,所以∠B =∠ADG .在△ABE 和△ADG 中,⎩⎨⎧DG =BE ,∠B =∠ADG ,AB =AD ,所以△ABE ≌△ADG ,所以AE =AG ,∠BAE =∠DAG ,因为∠EAF =12∠BAD ,所以∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF , 所以∠EAF =∠GAF .在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,所以△AEF ≌△AGF ,所以EF =FG ,因为FG =DG +DF =BE +DF ,所以EF =BE +DF .【学以致用】△DEF 的周长为10.(第26题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
第四章质量评估试卷
[时间:90分钟分值:100分]
第Ⅰ卷(选择题,共36分)
一、选择题(本大题共12个小题,每小题3分,共36分,每小题均有四个选项,其中只有一项符合题目要求)
1.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()
A.钝角三角形B.等边三角形
C.直角三角形D.锐角三角形
2.如图1,在△ABC中,∠A=50°,∠C=70°,则∠ABD的度数是()
图1
A.110°B.120°
C.130°D.140°
3.若—个三角形的两边长分别为5和8,则第三边长可能是()
A.14 B.10
C.3 D.2
4.如图2,已知直线AB∥CD,∠A=25°,∠E=90°,则∠C的度数为()
图2
A.75°B.85°
C.95°D.115°
5.三角形的下列线段中,能将三角形分成面积相等的两部分是()
A.中线B.角平分线
C.高D.中位线
6.如图3,点D,E分别在AB,AC边上,△ABE≌△ACD,AC=15,BD=9,则线段AD的长是()
图3
A.6 B.9
C.12 D.15
7.如图4,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()
图4
A.∠M=∠N B.AM=CN
C.AB=CD D.AM∥CN
8.如图5,已知AE=CF,∠AFD=∠CEB,添加一个条件后,仍无法判定△ADF≌△CBE的是()
图5
A.∠A=∠C B.AD=CB
C.BE=DF D.AD∥BC
9.如图6,给出下列四组条件:
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.
其中,能使△ABC≌△DEF的条件共有()
图6
A.1组B.2组
C.3组D.4组
10.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列条件:(1)AC =A′C′,∠A=∠A′;(2)AC=A′C′,BC=B′C′;(3)AB=A′B′,∠A=∠A′.能判定Rt△ABC≌Rt△A′B′C′的个数是()
A.0个B.1个
C.2个D.3个
11.如图7,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使DC=BC,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,得ED=AB,因此测得DE的长就是AB的长,在这里判定△ABC≌△EDC的条件是()
图7
A.ASA B.SAS
C.SSS D.AAS
12.如图8,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;
③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()
图8
A.4个B.3个
C.2个D.1个
第Ⅱ卷(非选择题,共64分)
二、填空题(本大题共4个小题,每小题3分,共12分)
13.在△ABC中,如果∠A=∠B=2∠C,则∠C=____________.
14.在△ABC和△DEF中,①AB=DE,②BC=EF,③AC=DF,④∠A=∠D,从这四个条件中选取三个条件,能判定△ABC≌△DEF的方法共有____________种.
15.如图9,在△ABC中,∠B=40°,∠DAC和∠ACF的平分线交于点E,则∠AEC=____________度.
图9
16.如图10,∠ACB=∠DFE,BC=EF,那么需要补充一个直接条件____________(写一个即可),才能使△ABC≌△DEF.
图10
三、解答题(本大题共7个小题,共52分)
17.(5分)如图11,△ABC中,AD平分∠BAC,AE⊥BC于E,已知∠BAC=108°,∠C=2∠B,求∠DAE的度数.
图11
18.(6分)如图12,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.
图12
19.(7分)如图13,在△ABC和△DEC中,∠BCE=∠ACD,BC=EC,请你添加一个条件,使得△ABC和△DEC全等,并加以证明.你添加的条件是______________________.
图13
20.(8分)如图14,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.
图14
21.(8分)如图15,点D是△ABC的边AB上一点,点E为AC的中点,过点C 作CF∥AB交DE的延长线于点F.求证:AD=CF.
图15
22.(9分)如图16,O是AD的中点,∠AOC=135°,∠D=25°,OB=OC,OB ⊥OC.试求∠C的度数.
图16
23.(9分)如图17,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.如图17①,易证△CAD≌△BCE,则线段AD,DE,BE之间的关系为BE=AD+DE.
(1)将直线CD绕点C旋转,使得点D,E重合,得到图17②,请你直接写出线段AD与BE的关系;
(2)将直线CD绕点C继续旋转,得到图17③,请你写出线段AD,DE,BE的关系,并证明你的结论.
图17
参考答案
第四章质量评估试卷
1.A 2.B 3.B 4.D 5.A 6.A7.B
8.B9.C10.D11.A12.B
13.36°14.215.70
16.AC=DF(或∠B=∠E或∠A=∠D)
17.12°18.略19.CA=CD,证明略
20.略21.略22.20°
23.(1)AD=BE
(2)AD=DE+BE,证明略
关闭Word文档返回原板块。