2017年辽宁省营口市中考数学试卷

合集下载

2017年辽宁营口中考真题数学

2017年辽宁营口中考真题数学

2017年辽宁省营口市中考真题数学一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1. -5的相反数是( )A.-5B.±5C.1 5D.5解析:根据相反数的定义直接求得结果.答案:D.2.下列几何体中,同一个几何体的三视图完全相同的是( )A.球B.圆锥C.圆柱D.三棱柱解析:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.答案:A.3.下列计算正确的是( )A.(-2xy)2=-4x2y2B.x6÷x3=x2C.(x-y)2=x2-y2D.2x+3x=5x解析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.答案:D.4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( )A.6,6B.9,6C.9,6D.6,7解析:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.答案:A.5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )A.a+b<0B.a-b>0C.ab>0D.ba<0解析:由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题.答案:D.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是( )A.75°B.85°C.60°D.65°解析:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3-∠A=115°-30°=85°.答案:B.7.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°CD解析:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=12AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=12AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=12(180°-∠EFD)=12(180°-135°)=22.5°,∴∠FDE=12∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC-∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴CD,∵AB=AC,∴CD,故D正确,不符合题意.答案:C.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为( )B.y=-xC.y=-3 xD.y=x解析:过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.答案:A.9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )A.4B.5C.6D.7解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.答案:B.10.如图,直线l的解析式为y=-x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l 的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )A.B.C.D.解析:分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断.答案:C.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____. 解析:29150000000=2.915×1010.答案:2.915×1010.12.函数y=1x+中,自变量x的取值范围是_____.解析:根据题意得:x,-1≥0且x+1≠0,解得:x≥1.答案:x≥1.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是_____个.解析:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.答案:15.14.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_____.解析:根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.答案:k>12且k≠1.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.解析:先求出CE=2CD ,求出∠DEC=30°,求出∠DCE=60°,CEB ′和三角形CDE 的面积,即可求出答案.答案:83π-16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_____.解析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间-实际所用时间=8”列方程即可. 答案:2400240081.2x x-=.17.在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为_____.解析:由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC 为直角三角形分两种情况:①当∠EFC=90°时,可得出AE 平分∠BAC ,根据角平分线的性质即可得出8610BE BE-=,解之即可得出BE 的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE 的长度. 答案:3或6.18.如图,点A 1(1,3)在直线l 1:上,过点A 1作A 1B 1⊥l 1交直线l 2:x 于点B 1,A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,…按此规律进行下去,则第n 个等边三角形A n B n C n 的面积为_____.(用含n 的代数式表示)解析:由点A 1的坐标可得出OA 1=2,根据直线l 1、l 2的解析式结合解直角三角形可求出A 1B 1的长度,由等边三角形的性质可得出A 1A 2的长度,进而得出OA 2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.2332n-⎫⎪⎝⎭.三、解答题(19小题10分,20小题10分,共20分.)19.先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中x=(13)-1-(2017-32)0,y= sin60°.解析:先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.答案:原式=()()()2222x yx yxy x y xy x y xy⎡--⎤⎢⎥⎦÷⎣-++=()()()()22x y x y xyxy x y x y⋅+-+--=2x y--,当x=(13)-1-(2017-32)0=3-1=2,sin60°32=时,原式=2322--=-4.20.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).解析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.答案:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.四、解答题(21题12分,22小题12分,共24分)21.某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_____人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.解析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.答案:(1)这四个班参与大赛的学生数是:30÷30%=100(人);(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1-30%-20%-35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×100160=1250(人).答:全校的学生中参与这次活动的大约有1250人.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,≈1.41≈1.73)解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答案:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C 的最近距离是CE , AB=30×4060=20, ∵∠NAC=45°,∠NAB=75°, ∴∠DAB=30°, ∴BD=12AB=10,由勾股定理可知:∵BC ∥AN , ∴∠BCD=45°, ∴CD=BD=10,∴+10 ∵∠DAB=30°,∴CE=12≈13.7 答:船在航行过程中与码头C 的最近距离是13.7海里.五、解答题(23小题12分,24小题12分,共24分)23.如图,点E 在以AB 为直径的⊙O 上,点C 是BE 的中点,过点C 作CD 垂直于AE ,交AE 的延长线于点D ,连接BE 交AC 于点F.(1)求证:CD 是⊙O 的切线; (2)若cos ∠CAD=45,BF=15,求AC 的长. 解析:(1)连接OC ,由点C 是BE 的中点利用垂径定理可得出OC ⊥BE ,由AB 是⊙O 的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC⊥CD,由此即可证出CD是⊙O 的切线.(2)过点O作OM⊥AC于点M,由点C是BE的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=45可求出AB的长度,在Rt△AOM中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度. 答案:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34 EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO·cos∠OAM=8,∴AC=2AM=16.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.解析:(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;(2)根据基本等量关系:利润=(每台空调订购价-每台空调成本价-增加的其他费用)×生产量即可得出答案.答案:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920-2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920-2000-20(40+2x-50)]×(40+2x)=-80(x-4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=()()()2184******** 8044608510x xx x+≤≤⎧⎪⎨--+≤⎪⎩<.六、解答题(本题满分14分)25.在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系_____;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC=mAB ,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,连接AE ′,DF ′,请在图3中画出草图,并直接写出AE ′与DF ′的数量关系.解析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则AB ,再证明△BEF 为等腰直角三角形得到BE ,所以BE ,从而得到AE ;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB==,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE==(2)先画出图形得到图3,利用勾股定理得到AB ,再证明△BEF ∽△BAD 得到BE BFBA BD =,则BF BDBE BA==,接着利用旋转的性质得∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,所以BF BDBE BA'==',然后根据相似三角形的判定方法得到△ABE ′∽△DBF ′,再利用相似的性质可得DF BDAE BA'=='答案:(1)①∵四边形ABCD 为正方形, ∴△ABD 为等腰直角三角形,∴AB , ∵EF ⊥AB ,∴△BEF 为等腰直角三角形,BE ,∴BE ,即AE ;②AE.理由如下:∵△EBF 绕点B 逆时针旋转到图2所示的位置,∴∠ABE=∠DBF ,∵BF BE =BDAB = ∴BF BD BE AB=, ∴△ABE ∽△DBF ,∴DF BFAE BE==即AE ; (2)如图3,∵四边形ABCD 为矩形, ∴AD=BC=mAB ,∴=,∵EF ⊥AB , ∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BFBA BD =,∴BF BD BE BA== ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′, ∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF BDBE BA'==' ∴△ABE ′∽△DBF ′,∴DF BDAE BA'=='即DF ′′.七、解答题(本题满分14分)26.如图,抛物线y=ax 2+bx-2的对称轴是直线x=1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E.(1)求抛物线解析式;(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.解析:(1)由抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,-2),求得BC 的解析式为y=12x-2,设D(m ,0),得到E(m ,12m-2),P(m ,14m 2-12m-2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5, 74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n ,12n-2),①以BD 为对角线,根据菱形的性质得到MN 垂直平分BD ,求得n=4+12,于是得到N(92,-14);②以BD 为边,根据菱形的性质得到MN ∥BD ,MN=BD=MD=1,过M 作MH ⊥x 轴于H ,根据勾股定理列方程即可得到结论.答案:(1)∵抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,∴()2122220b a a b ⎧-=⎪⎨⎪---=⎩,解得:1412a b ⎧=⎪⎪⎨⎪=-⎪⎩,抛物线解析式为y=14x 2-12x-2;(2)令y=14x 2-12x-2=0,解得:x 1=-2,x 2=4,当x=0时,y=-2, ∴B(4,0),C(0,-2),设BC 的解析式为y=kx+b ,则402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴y=12x-2, 设D(m ,0), ∵DP ∥y 轴,∴E(m,12m-2),P(m,14m2-12m-2),∵OD=4PE,∴m=4(14m2-12m-2-12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD-S△EBD=171133 5124228⨯⨯-⨯⨯=;(3)存在,设M(n,12n-2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,-14);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH 2+DH 2=DM 2, 即(12n-2)2+(n-5)2=12, ∴n 1=4(不合题意),n 2=5.6, ∴N(4.6,310), 同理(12n-2)2+(4-n)2=1,∴n 1=4+5(不合题意,舍去),n 2=4-4,∴N(5-5,5), ③以BD 为边,如图3,过M 作MH ⊥x 轴于H , ∴MH 2+BH 2=BM 2, 即(12n-2)2+(n-4)2=12,∴n 1n 2不合题意,舍去),∴N(5+5,5),综上所述,当N(92,-14)或(4.6,310)或(5-55)或(5+5,5),以点B ,D ,M ,N 为顶点的四边形是菱形.。

辽宁省营口市2017届中考模拟数学试卷(2)含答案

辽宁省营口市2017届中考模拟数学试卷(2)含答案

九年级数学中考模拟试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第 一 部 分(客观题)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项正确)1.(85-)-1的相反数是( )A. 58-B. 85-C. 85D. 582.下列手机软件图标中,属于中心对称的是( )3、下列运算正确的是( )A.()b a ab 33= B.1-=+--ba ba C. 326a a a =÷ D.222)(b a b a +=+ 4.在一次体检中,抽得某班8位同学的身高(单位:cm )分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是( ) A. 170,165 B. 166. 5,165 C. 165.5,165 D. 165,165.5 5. 在△ABC 中,90C ∠=o ,若4BC =,2sin 3A =,则AC 的长是( ) A.6 B.25 C.35D.2136.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7. 已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程02=+bx ax 一定有两个不相等的实数根.以上说法正确的个数为A .1B .2C .3D .48. 如图,在△ABC 中,AB=AC=26,BC=20,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( )A .B .C .D .9. 若二次函数y=x 2-6x+c 的图象过A (-1,y 1),B (2,y 2),C (3+2,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B y 3>y 1>y 2C .y 2>y 1>y 3D . y 1>y 3>y 210.如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示的位置出发,沿直线AB 向右匀速运动,当点G 与点B 重合时停止运动,设△EFG 与矩形ABCD 重合部分的面积为S,运动时间为t,则S 与t 的图象大致是( )第 二 部 分(主 观 题)二、填空题(每小题3分,共24分)第10题图11.函数1x y x+=的自变量x 的取值范围是 . 12.一个口袋中装有5个红球,x 个绿球,3个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是31,则袋里有 个绿球 13.分解因式:4ax 2﹣a= . 14.若关于x 的分式方程﹣1=无解,则m 的值为.15.若圆锥的母线长为5cm ,底面圆的半径为3cm ,则它的侧面展开图的面 积为 cm 2(保留π).16,已知a+b-6ab=0(a>b ),则ab ba -+= 17. 直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 .18,如图,在平面直角坐标系中,有若干个横坐标分别 为整数的点,其顺序按图中“→”方向排列,如 (1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2017个点的坐标为18.三、解答题(共96分) 19.(10分) 先化简,再求代数式的值,其中a=2sin60°+tan45°.20.(12分) 某校2015年八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题: 发言次数n A 0≤n <3B 3≤n <6C 6≤n <9D 9≤n <12E 12≤n <15F 15≤n <18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率. 21.(10分) 12分)如图,三沙市一艘海监船某天在钓鱼岛P 附近海域由南向北巡航,某一时刻航行到A 处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B 处,测得该岛在北偏东75°方向,求此时海监船与钓鱼岛P 的距离BP 的长. (参考数据:≈1.414,结果精确到0.1)22.(12分)如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,⊙O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是⊙O 的切线;东(钓鱼岛)北PBA30o75o(2)求证:△BCD∽△BEC(3)若1tan2CED∠=,⊙O的半径为3,求OA的长.23.(12分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?24.(12分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?图3图2图1DCBANEMDCBAED CBA25 (14分)1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等边△ABE 和等边△ACD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,△ABC 中,∠ABC=45°,AB=5cm ,BC=3cm ,分别以AB 、AC 为边向外作正方形ABNE 和正方形ACMD ,连接BD ,求BD 的长.(3)如图3,在(2)的条件下,以AC 为直角边在线段AC 的左侧作等腰直角△ACD ,求BD 的长.26.(本题满分14分)如图,直线y=﹣x+3与x 轴交于点C ,与y 轴交于点B ,抛物线y=ax 2+x+c 经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.( 备用图第26题图参考答案一选择题1D 2C 3B 4C 5B 6A 7C 8C 9D 10D 二、填空题11.x>=-1且x ≠0 12.4个13.a(2x+1)2x-1) 14.m=-1.5或m=-0.5 15.15π 16.或- 17.7/24 18.(45,8) 三、解答题19.解:2121()111a a a a --÷+-+= ------------3 ------------4-----------------------------52sin 60tan 45a =+o o = ---------------- ------------------------------8所以原式=3331=---------------------------------------------------------------------------------10 20、解:(1)∵由发言人数直方图可知B 组发言人为10人,又已知B 、E 两组发言人数的比为5:2, ∴E 组发言人为4人又由发言人数扇形统计图可知E 组为%,∴发言人总数为人,于是由扇形统计图知A 组、C 组、D 组分别为3人,15人,13人, ∴F 组为人,于是补全直方图为:11)1()1)(1(1)1())1)(1(2)1)(1(1-=++-=+⋅+---+--a a a a a a a a a a a (131232+=+⨯(2) ∵在统计的50人中,发言次数的有人∴在这天里发言次数不少于12的概率为∴全年级500人中,在这天里发言次数不少于12的次数为次;(3)∵A、E组人数分别为3人、4人,又各恰有1女∴由题意可画树状图为:∴由一男一女有5种情况,共有12种情况,于是所抽的两位学生恰好是一男一女的概率为21题解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在Rt△BDP中,∵∠P=45°,∴PB=BD=20.答:此时海监船与钓鱼岛P的距离BP的长为20海里。

2017年辽宁省营口市中考数学试卷含答案.docx

2017年辽宁省营口市中考数学试卷含答案.docx

2017 年中考数学真题试题2017 年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题 3 分,共 30 分 .)1.(3 分)﹣ 5 的相反数是()A.﹣ 5 B.± 5 C.D.52.(3 分)下列几何体中,同一个几何体的三视图完全相同的是()A.球 B.圆锥C.圆柱D.三棱柱3.(3 分)下列计算正确的是()2 2 2B.x 6÷x3 2.(﹣)2 2﹣y2.2x+3x=5xA.(﹣ 2xy) =﹣4x y=x C x y=x D4.(3 分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量4568910/m 3户数679521则这 30 户家庭的月用水量的众数和中位数分别是()A.6,6B.9,6C.9,6D.6,75.( 3 分)若一次函数 y=ax+b 的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b< 0B.a﹣b>0 C.ab> 0D.< 06.(3 分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠ 1 的度数是()A.75°B.85°C. 60°D.65°7.(3 分)如图,在△ ABC中, AB=AC,E,F 分别是 BC,AC的中点,以 AC 为斜边作 Rt△ ADC,若∠ CAD=∠CAB=45°,则下列结论不正确的是()A.∠ ECD=112.5° B.DE平分∠ FDC C.∠ DEC=30° D. AB= CD8.(3 分)如图,在菱形 ABOC中,∠ A=60°,它的一个顶点 C 在反比例函数 y=的图象上,若将菱形向下平移 2 个单位,点 A 恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B. y=﹣C.y=﹣D.y=9.(3 分)如图,在△ ABC中, AC=BC,∠ ACB=90°,点 D 在 BC 上, BD=3, DC=1,点 P 是 AB 上的动点,则PC+PD的最小值为()A.4 B.5 C. 6 D.710.( 3 分)如图,直线 l 的解析式为 y=﹣x+4,它与 x 轴和 y 轴分别相交于 A,B 两点.平行于直线 l 的直线 m 从原点 O 出发,沿 x 轴的正方向以每秒 1 个单位长度的速度运动.它与 x 轴和 y轴分别相交于 C,D 两点,运动时间为 t 秒( 0≤t ≤4),以 CD为斜边作等腰直角三角形CDE(E, O 两点分别在 CD两侧).若△ CDE和△ OAB的重合部分的面积为S,则 S 与 t 之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题 3 分,共 24 分,将答案填在答题纸上)11.( 3 分)随着“互联网 +”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000 元,将29150000000 用科学记数法表示为.12.( 3 分)函数y=中,自变量x 的取值范围是.13.( 3 分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20 个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和 15%,则箱子里蓝色球的个数很可能是个.14.( 3 分)若关于x 的一元二次方程(k﹣1)x2+2x﹣ 2=0 有两个不相等的实数根,则k 的取值范围是.15.(3 分)如图,将矩形ABCD绕C 沿顺时针方向旋转90°到矩形A′B′的CD位′置,AB=2,AD=4,点阴影部分的面.16.( 3 分)某市 化 境 划植 2400 棵, 中每天植 的数量比原 划多 20%,果提前 8 天完成任 .若 原 划每天植 x 棵, 根据 意可列方程.17.( 3 分)在矩形 片 ABCD 中, AD=8,AB=6,E 是 BC 上的点,将 片沿 AE 折叠,使点 B 落在点 F , 接 FC ,当△ EFC 直角三角形 , BE 的.18.( 3 分)如 ,点 A 1(1, )在直 l 1: y= x 上, 点 A 1 作 A 1B 1⊥ l 1交直 l 2:y= x于点 B 1,A 1B 1 在△ OA 1 B 1 外 作等 三角形 A 1B 1C 1,再 点 C 1 作 A 2B 2⊥l 1,分 交直 l 1 和 l 2 于 A 2,B 2 两点,以 A 2B 2 在△ OA 2B 2 外 作等 三角形 A 2B 2C 2 ,⋯按此 律 行下去,第 n 个等 三角形 A n B n C n 的面.(用含 n 的代数式表示)三、解答 ( 19 小 10 分, 20 小 10 分,共 20 分 .).( 分)先化 ,再求 :()÷( ),其中﹣ 11910x=( )(20171)0, y=sin60 °.20.( 10 分)如 ,有四 背面完全相同的 牌 A 、B 、C 、D ,其正面分 画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D 表示).四、解答题( 21 题 12 分, 22 小题 12 分,共 24 分)21.( 12 分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图 1 和图 2 两幅尚不完整的统计图,请根据图中的信息,解答下列问题:( 1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图 1 中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是 160 人,全校共 2000 人,请你估计全校的学生中参与这次活动的大约有多少人.22.( 12 分)如图,一艘船以每小时30 海里的速度向北偏东75°方向航行,在点 A 处测得码头C 在船的东北方向,航行 40 分钟后到达 B 处,这时码头 C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头 C 的最近距离.(结果精确的 0.1 海里,参考数据≈1.41,≈1.73)五、解答题( 23 小题 12 分, 24 小题 12 分,共 24 分)23.( 12 分)如图,点 E 在以 AB 为直径的⊙ O 上,点 C 是的中点,过点C作CD垂直于AE,交 AE 的延长线于点 D,连接 BE交 AC于点 F.( 1)求证: CD是⊙ O 的切线;( 2)若 cos∠CAD= , BF=15,求 AC的长.24.(12 分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42 台,以后每天生产的空调都比前一天多 2 台,由于机器损耗等原因,当日生产的空调数量达到50 台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20 元.( 1)设第 x 天生产空调 y 台,直接写出 y 与 x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台空调的成本价(日生产量不超过 50 台时)为 2000 元,订购价格为每台 2920 元,设第x 天的利润为 W 元,试求 W 与 x 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14 分)25.( 14 分)在四边形中 ABCD,点 E 为 AB 边上的一点,点 F 为对角线 BD 上的一点,且EF⊥ AB.( 1)若四边形 ABCD为正方形.①如图 1,请直接写出AE与 DF 的数量关系;②将△ EBF绕点 B 逆时针旋转到图 2 所示的位置,连接AE,DF,猜想 AE与 DF 的数量关系并说明理由;( 3)如图 3,若四边形 ABCD为矩形, BC=mAB,其它条件都不变,将△ EBF绕点 B 顺时针旋转α(0°<α< 90°)得到△ E'BF',连接 AE',DF',请在图 3 中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14 分)26.( 14 分)如图,抛物线 y=ax2+bx﹣2 的对称轴是直线 x=1,与 x 轴交于 A, B 两点,与 y 轴交于点 C,点 A 的坐标为(﹣ 2,0),点 P 为抛物线上的一个动点,过点 P 作 PD⊥x 轴于点 D,交直线 BC于点 E.(1)求抛物线解析式;(2)若点 P 在第一象限内,当 OD=4PE时,求四边形 POBE的面积;(3)在(2)的条件下,若点 M 为直线 BC上一点,点 N 为平面直角坐标系内一点,是否存在这样的点 M 和点 N,使得以点 B,D,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017 年中考数学真题试题第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的, 每小题 3 分, 共 30 分. )1.-5的相反数是()A.-5B.5C. 1D. 55【答案】 D.【解析】试题分析:根据相反数的定义直接求得结果.因为只有符号不同的两个数互为相反数,所以﹣ 5 的相反数是 5.故选 D.考点:相反数 .2.下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【答案】 A.【解析】确.故选 A.考点:简单几何体的三视图.3.下列计算正确的是()A.2xy 22 y2 B .x6x3x222y2 D .2x 3x 5x 4x C .x yx【答案】 D.【解析】2017 年中考数学真题试题试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A、(﹣ 2xy)2=4x2y2,故本选项错误;B、x6÷ x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、 2x+3x=5x,故本选项正确;故选 D.考点:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;4C:完全平方公式.4. 为了解居民用水情况,小明在某小区随机抽查了30 户家庭的月用水量,结果如下表:月用水量 / m34568910户数679521则这 30 户家庭的月用水量的众数和中位数分别是()A. 6 , 6B. 9 , 6 C. 9,6D.6, 7【答案】 B.【解析】考点:众数;中位数.5.若一次函数y ax b 的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a b0B. a b0 C.ab0D.b0 a【答案】 D.【解析】试题分析:由于一次函数 y=ax+b 的图象经过第一、二、四象限,由此可以确定a< 0,b>0,然后一一判断各选项即可解决问题.∵一次函数 y=ax+b 的图象经过第一、二、四象限,2017 年中考数学真题试题∴ a< 0, b> 0,∴ a+b 不一定大于 0,故 A 错误,a﹣b<0,故 B 错误,ab<0,故 C 错误,b<0,故 D 正确.a故选 D.考点:一次函数图象与系数的关系.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交, 2 1150,则 1 的度数是()A. 75°B.85° C. 60°D.65°【答案】 B.【解析】考点:平行线的性质 .7.如图,在ABC 中,AB AC , E, F分别是BC, AC的中点,以AC为斜边作 Rt ADC ,若CAD CAB450,则下列结论不正确的是()2017 年中考数学真题试题A .ECD 112.50B. DE 平分 FDC C. DEC30 0 D . AB2CD【答案】 C.【解析】由∠ FEC=∠B=67.5°,∠ FED=22.5°,求出∠ DEC=∠FEC ﹣∠ FED=45°,从而判断 C 错误;在等腰 Rt △ADC 中利用勾股定理求出 AC= 2 CD ,又 AB=AC ,等量代换得到 AB= 2 CD ,从而判断 D 正确.∵ AB=AC ,∠ CAB=45°,∴∠ B=∠ACB=67.5°.∵ Rt △ADC 中,∠ CAD=45°,∠ ADC=90°,∴∠ ACD=45°, AD=DC , ∴∠ ECD=∠ACB+∠ACD=112.5°,故 A 正确,学 . 科 * 网不符合题意;∵ E 、 F 分别是 BC 、 AC 的中点,∴ FE=1AB , FE ∥AB ,2∴∠ EFC=∠BAC=45°,∠ FEC=∠B=67.5°.∵ F 是 AC 的中点,∠ ADC=90°, AD=DC ,∴ FD=1AC ,DF ⊥ AC ,∠ FDC=45°,2∵ AB=AC ,∴ FE=FD ,∴∠ FDE=∠FED=1 (180°﹣∠ EFD ) = 1( 180°﹣ 135°)=22.5 °,2 2∴∠ FDE=1∠FDC ,∴ DE 平分∠ FDC ,故 B 正确,不符合题意;2∵∠ FEC=∠B=67.5°,∠ FED=22.5°,∴∠ DEC=∠FEC ﹣∠ FED=45°,故 C 错误,符合题意;∵ Rt△ADC中,∠ ADC=90°, AD=DC,∴ AC= 2 CD,∵AB=AC,∴ AB= 2 CD,故D 正确,不符合题意.故选C.考点:三角形中位线定理;等腰三角形的性质;勾股定理.8.如图,在菱形ABOC中, A 600,它的一个顶点C在反比例函数y k的图像上,若将菱形向下平x移 2 个单位,点 A 恰好落在函数图象上,则反比例函数解析式为()333C.33A.yx B.y y D.yx x x【答案】 A.【解析】点 A 向下平移 2 个单位的点为(﹣1a﹣a,3a﹣ 2),即(﹣3a,3a﹣ 2),22223 a k ,21aa23,则2,解得.32k k3 3.a2 3 a2故反比例函数解析式为 y 3 3 .x故选 A.考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC中,AC BC, ACB 900,点D在BC上,BD3, DC 1 ,点 P 是 AB 上的动点,则 PC PD 的最小值为()A. 4B.5C. 6D. 7【答案】 B.【解析】∵DC=1, BC=4,∴ BD=3,连接 BC′,由对称性可知∠ C′BE=∠CBE=45°,∴∠ CBC′=90,°∴BC′⊥ BC,∠ BCC′=∠BC′C=45,°∴ BC=BC′=4,根据勾股定理可得2222.DC′=BC ' BD 3 45故选 B.。

2017年辽宁省营口市中考真题数学

2017年辽宁省营口市中考真题数学

2017年辽宁省营口市中考真题数学一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1. -5的相反数是( )A.-5B.±5C.1 5D.5解析:根据相反数的定义直接求得结果.答案:D.2.下列几何体中,同一个几何体的三视图完全相同的是( )A.球B.圆锥C.圆柱D.三棱柱解析:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.答案:A.3.下列计算正确的是( )A.(-2xy)2=-4x2y2B.x6÷x3=x2C.(x-y)2=x2-y2D.2x+3x=5x解析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.答案:D.4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( )A.6,6B.9,6C.9,6D.6,7解析:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.答案:A.5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )A.a+b<0B.a-b>0C.ab>0D.ba<0解析:由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题.答案:D.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是( )A.75°B.85°C.60°D.65°解析:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3-∠A=115°-30°=85°.答案:B.7.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°CD解析:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=12AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=12AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=12(180°-∠EFD)=12(180°-135°)=22.5°,∴∠FDE=12∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC-∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴CD,∵AB=AC,∴CD,故D正确,不符合题意.答案:C.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为( )B.y=-xC.y=-3 xD.y=x解析:过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.答案:A.9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )A.4B.5C.6D.7解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.答案:B.10.如图,直线l的解析式为y=-x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l 的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )A.B.C.D.解析:分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断.答案:C.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____. 解析:29150000000=2.915×1010.答案:2.915×1010.12.函数y=1x+中,自变量x的取值范围是_____.解析:根据题意得:x,-1≥0且x+1≠0,解得:x≥1.答案:x≥1.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是_____个.解析:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.答案:15.14.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_____.解析:根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.答案:k>12且k≠1.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.解析:先求出CE=2CD ,求出∠DEC=30°,求出∠DCE=60°,CEB ′和三角形CDE 的面积,即可求出答案.答案:83π-16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_____.解析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间-实际所用时间=8”列方程即可. 答案:2400240081.2x x-=.17.在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为_____.解析:由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC 为直角三角形分两种情况:①当∠EFC=90°时,可得出AE 平分∠BAC ,根据角平分线的性质即可得出8610BE BE-=,解之即可得出BE 的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE 的长度. 答案:3或6.18.如图,点A 1(1,3)在直线l 1:上,过点A 1作A 1B 1⊥l 1交直线l 2:x 于点B 1,A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,…按此规律进行下去,则第n 个等边三角形A n B n C n 的面积为_____.(用含n 的代数式表示)解析:由点A 1的坐标可得出OA 1=2,根据直线l 1、l 2的解析式结合解直角三角形可求出A 1B 1的长度,由等边三角形的性质可得出A 1A 2的长度,进而得出OA 2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.2332n-⎫⎪⎝⎭.三、解答题(19小题10分,20小题10分,共20分.)19.先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中x=(13)-1-(2017-32)0,y= sin60°.解析:先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.答案:原式=()()()2222x yx yxy x y xy x y xy⎡--⎤⎢⎥⎦÷⎣-++=()()()()22x y x y xyxy x y x y⋅+-+--=2x y--,当x=(13)-1-(2017-32)0=3-1=2,sin60°32=时,原式=2322--=-4.20.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).解析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.答案:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.四、解答题(21题12分,22小题12分,共24分)21.某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_____人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.解析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.答案:(1)这四个班参与大赛的学生数是:30÷30%=100(人);(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1-30%-20%-35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×100160=1250(人).答:全校的学生中参与这次活动的大约有1250人.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,≈1.41≈1.73)解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答案:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C 的最近距离是CE , AB=30×4060=20, ∵∠NAC=45°,∠NAB=75°, ∴∠DAB=30°, ∴BD=12AB=10,由勾股定理可知:∵BC ∥AN , ∴∠BCD=45°, ∴CD=BD=10,∴+10 ∵∠DAB=30°,∴CE=12≈13.7 答:船在航行过程中与码头C 的最近距离是13.7海里.五、解答题(23小题12分,24小题12分,共24分)23.如图,点E 在以AB 为直径的⊙O 上,点C 是BE 的中点,过点C 作CD 垂直于AE ,交AE 的延长线于点D ,连接BE 交AC 于点F.(1)求证:CD 是⊙O 的切线; (2)若cos ∠CAD=45,BF=15,求AC 的长. 解析:(1)连接OC ,由点C 是BE 的中点利用垂径定理可得出OC ⊥BE ,由AB 是⊙O 的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC⊥CD,由此即可证出CD是⊙O 的切线.(2)过点O作OM⊥AC于点M,由点C是BE的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=45可求出AB的长度,在Rt△AOM中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度. 答案:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34 EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO·cos∠OAM=8,∴AC=2AM=16.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.解析:(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;(2)根据基本等量关系:利润=(每台空调订购价-每台空调成本价-增加的其他费用)×生产量即可得出答案.答案:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920-2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920-2000-20(40+2x-50)]×(40+2x)=-80(x-4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=()()()2184******** 8044608510x xx x+≤≤⎧⎪⎨--+≤⎪⎩<.六、解答题(本题满分14分)25.在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系_____;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC=mAB ,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,连接AE ′,DF ′,请在图3中画出草图,并直接写出AE ′与DF ′的数量关系.解析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则AB ,再证明△BEF 为等腰直角三角形得到BE ,所以BE ,从而得到AE ;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB==,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE==(2)先画出图形得到图3,利用勾股定理得到AB ,再证明△BEF ∽△BAD 得到BE BFBA BD =,则BF BDBE BA==,接着利用旋转的性质得∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,所以BF BDBE BA'==',然后根据相似三角形的判定方法得到△ABE ′∽△DBF ′,再利用相似的性质可得DF BDAE BA'=='答案:(1)①∵四边形ABCD 为正方形, ∴△ABD 为等腰直角三角形,∴AB , ∵EF ⊥AB ,∴△BEF 为等腰直角三角形,BE ,∴BE ,即AE ;②AE.理由如下:∵△EBF 绕点B 逆时针旋转到图2所示的位置,∴∠ABE=∠DBF ,∵BF BE =BDAB = ∴BF BD BE AB=, ∴△ABE ∽△DBF ,∴DF BFAE BE==即AE ; (2)如图3,∵四边形ABCD 为矩形, ∴AD=BC=mAB ,∴=,∵EF ⊥AB , ∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BFBA BD =,∴BF BD BE BA== ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′, ∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF BDBE BA'==' ∴△ABE ′∽△DBF ′,∴DF BDAE BA'=='即DF ′′.七、解答题(本题满分14分)26.如图,抛物线y=ax 2+bx-2的对称轴是直线x=1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E.(1)求抛物线解析式;(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.解析:(1)由抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,-2),求得BC 的解析式为y=12x-2,设D(m ,0),得到E(m ,12m-2),P(m ,14m 2-12m-2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5, 74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n ,12n-2),①以BD 为对角线,根据菱形的性质得到MN 垂直平分BD ,求得n=4+12,于是得到N(92,-14);②以BD 为边,根据菱形的性质得到MN ∥BD ,MN=BD=MD=1,过M 作MH ⊥x 轴于H ,根据勾股定理列方程即可得到结论.答案:(1)∵抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,∴()2122220b a a b ⎧-=⎪⎨⎪---=⎩,解得:1412a b ⎧=⎪⎪⎨⎪=-⎪⎩,抛物线解析式为y=14x 2-12x-2;(2)令y=14x 2-12x-2=0,解得:x 1=-2,x 2=4,当x=0时,y=-2, ∴B(4,0),C(0,-2),设BC 的解析式为y=kx+b ,则402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴y=12x-2, 设D(m ,0), ∵DP ∥y 轴,∴E(m,12m-2),P(m,14m2-12m-2),∵OD=4PE,∴m=4(14m2-12m-2-12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD-S△EBD=171133 5124228⨯⨯-⨯⨯=;(3)存在,设M(n,12n-2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,-14);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH 2+DH 2=DM 2, 即(12n-2)2+(n-5)2=12, ∴n 1=4(不合题意),n 2=5.6, ∴N(4.6,310), 同理(12n-2)2+(4-n)2=1,∴n 1=4+5(不合题意,舍去),n 2=4-4,∴N(5-5,5), ③以BD 为边,如图3,过M 作MH ⊥x 轴于H , ∴MH 2+BH 2=BM 2, 即(12n-2)2+(n-4)2=12,∴n 1n 2不合题意,舍去),∴N(5+5,5),综上所述,当N(92,-14)或(4.6,310)或(5-55)或(5+5,5),以点B ,D ,M ,N 为顶点的四边形是菱形.。

2017各地中考真题-2017年辽宁省营口市中考数学试卷

2017各地中考真题-2017年辽宁省营口市中考数学试卷

2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A nB nC n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。

辽宁省营口市中考数学真题试题(含解析)

辽宁省营口市中考数学真题试题(含解析)

辽宁省营口市2017年中考数学真题试题第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.) 1.-5的相反数是( ) A . -5 B .5± C .15D .5 【答案】D. 【解析】试题分析:根据相反数的定义直接求得结果.因为只有符号不同的两个数互为相反数,所以﹣5的相反数是5.故选D . 考点:相反数.2. 下列几何体中,同一个几何体的三视图完全相同的是( ) A . 球 B .圆锥 C .圆柱 D .三棱柱 【答案】A. 【解析】确. 故选A .考点:简单几何体的三视图. 3. 下列计算正确的是( )A .()22224xy x y -=- B .632x x x ÷= C .()222x y x y -=- D . 235x x x +=【答案】D. 【解析】试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A 、(﹣2xy )2=4x 2y 2,故本选项错误; B 、x 6÷x 3=x 3,故本选项错误;C 、(x ﹣y )2=x 2﹣2xy+y 2,故本选项错误; D 、2x+3x=5x ,故本选项正确; 故选D .考点:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式. 4. 为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( ) A . 6,6 B . 9,6 C. 9,6 D .6,7 【答案】B. 【解析】考点:众数;中位数.5. 若一次函数y ax b =+的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +< B .0a b -> C. 0ab > D .0ba< 【答案】D. 【解析】试题分析:由于一次函数y=ax+b 的图象经过第一、二、四象限,由此可以确定a <0,b >0,然后一一判断各选项即可解决问题.∵一次函数y=ax+b 的图象经过第一、二、四象限, ∴a <0,b >0,∴a+b 不一定大于0,故A 错误,a ﹣b <0,故B 错误, ab <0,故C 错误,ba <0,故D 正确. 故选D .考点:一次函数图象与系数的关系.6. 如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,02115∠=,则1∠的度数是( )A .75°B . 85° C. 60° D .65° 【答案】B. 【解析】考点:平行线的性质.7. 如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠= D .AB =【答案】C. 【解析】由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC ﹣∠FED=45°,从而判断C 错误;在等腰Rt △ADC 中利用勾股定理求出CD ,又AB=AC ,等量代换得到CD ,从而判断D 正确. ∵AB=AC ,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt △ADC 中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC , ∴∠ECD=∠ACB+∠ACD=112.5°,故A 正确,不符合题意; ∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,FE ∥AB , ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F 是AC 的中点,∠ADC=90°,AD=DC ,∴FD=12AC ,DF ⊥AC ,∠FDC=45°, ∵AB=AC ,∴FE=FD , ∴∠FDE=∠FED=12(180°﹣∠EFD )=12(180°﹣135°)=22.5°, ∴∠FDE=12∠FDC ,∴DE 平分∠FDC ,故B 正确,不符合题意; ∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC ﹣∠FED=45°,故C 错误,符合题意; ∵Rt △ADC 中,∠ADC=90°,AD=DC ,∴,∵AB=AC ,∴,故D 正确,不符合题意. 故选C .考点:三角形中位线定理;等腰三角形的性质;勾股定理.8. 如图,在菱形ABOC 中,060A ∠=,它的一个顶点C 在反比例函数ky x=的图像上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A.y x =-B.y x =- C. 3y x=- D.y x = 【答案】A. 【解析】点A 向下平移2个单位的点为(﹣12a ﹣aa ﹣2),即(﹣32aa ﹣2),则,12232ka k a =⎪⎪-=⎪⎩,解得a k ⎧=⎪⎨=-⎪⎩.故反比例函数解析式为y = 故选A .考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC ∆中,0,90AC BC ACB =∠=,点D 在BC 上,3,1BD DC ==,点P 是AB 上的动点,则PC PD +的最小值为( )A . 4B .5 C. 6 D .7 【答案】B. 【解析】∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°, ∴BC′⊥BC ,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得5==. 故选B .考点:轴对称﹣最短路线问题;等腰直角三角形.10. 如图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于,A B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于,C D 两点,运动时间为t 秒(04t ≤≤),以CD 为斜边作等腰直角三角形CDE (,E O 两点分别在CD 两侧),若CDE ∆和OAB ∆的重合部分的面积为S ,则S 与t 之间的函数关系的图角大致是( )A .B . C. D .第二部分(主观题)【答案】C. 【解析】故答案为C .考点:动点问题的函数图象;分类讨论.二、填空题(每小题3分,共24分,将答案填在答题纸上)11. 随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____________.【答案】2.915×1010.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.29150000000=2.915×1010.故答案为:2.915×1010.考点:科学记数法—表示较大的数.12.函数y=x的取值范围是___________.【答案】x≥1.【解析】考点:函数自变量的取值范围.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.【答案】15.【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.考点:利用频率估计概率.14.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值范围是 . 【答案】k >12且k ≠1. 【解析】试题分析:根据一元二次方程的定义和判别式的意义得到k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.根据题意得k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0, 解得:k >12且k ≠1. 故答案为:k >12且k ≠1. 考点:根的判别式;一元二次方程的定义.15.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A B C D ''''的位置,2,4AB AD ==,则阴影部分的面积为 .【答案】83π-【解析】故答案为:83π-考点:扇形面积的计算;旋转的性质.16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 .【答案】2400240081.2x x-=. 【解析】试题分析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x , 根据题意可得:2400240081.2x x-=, 故答案为:2400240081.2x x-=. 考点:由实际问题抽象出分式方程.17. 在矩形纸片ABCD 中,8,6,AD AB E ==是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当EFC ∆为直角三角形时,BE 的长为___________. 【答案】3或6. 【解析】△EFC 为直角三角形分两种情况: ①当∠E FC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F 在对角线AC 上, ∴AE 平分∠BAC ,∴BE EC AB AC =,即8610BE BE-=,∴BE=3; ②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°, ∴四边形ABEF 为正方形,∴BE=AB=6. 综上所述:BE 的长为3或6. 故答案为:3或6.考点:翻折变换(折叠问题);勾股定理;正方形的判定与性质;矩形的性质.18. 如图,点(1A 在直线1:l y =上,过点1A 作111A B l ⊥交直线2:l y =于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的面积为__________.(用含n 的代数式表示)2332n -⎫⎪⎝⎭.【解析】在Rt △OA 1B 1中,OA 1=2,∠A 1OB 1=30°,∠OA 1B 1=90°,∴A 1B 1=12OB 1,∴A 1B 1∵△A 1B 1C 1为等边三角形,∴A 1A 2A 1B 1=1,∴OA2=3,A2B2同理,可得出:A3B3,A4B4A nB n=232n-⎛⎫⎪⎝⎭∴第n个等边三角形A n B n C n的面积为2321322nn nA B-⎫=⎪⎝⎭.2332n-⎫⎪⎝⎭.考点:一次函数图象上点的坐标特征;等边三角形的性质;探索规律.三、解答题(19小题10分,20小题10分,共20分.)19. 先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中10132017,6032x y-⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭. 【答案】-4.【解析】原式=2322--=﹣4.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.20. 如图,有四张背面完全相同的纸牌A B C D、、、,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A B C D、、、表示).【答案】(1)34;(2)12.【解析】(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.四、解答题(21题12分,22小题12分,共24分)21. 某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【答案】(1)100;(2)见解析;(3)108°;(4)1250. 【解析】30÷30%=100(人);故答案为100;(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:考点:条形统计图;扇形统计图;样本估计总体.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.1 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.五、解答题(23小题12分,24小题12分,共24分)23. 如图,点E在以AB为直径的O上,点C是BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是O的切线;(2)若4cos,155CAD BF∠==,求AC的长.【答案】(1)见解析;(2)16.【解析】试题解析:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO•cos∠OAM=8,∴AC=2AM=16.考点:切线的判定与性质;解直角三角形;平行线的性质;垂径定理;圆周角定理角平分线的性质.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.【答案】(1)y=40+2x(1≤x≤10);(2)()()()2184********,80446080510x xWx x+≤≤⎧⎪=⎨--+<≤⎪⎩,第5天,46000元.【解析】台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,考点:二次函数的应用;分段函数. 六、解答题(本题满分14分)25.在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF AB ⊥. (1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系___________;②将EBF ∆绕点B 逆时针旋转到图2所示的位置,连接,AE DF ,猜想AE 与DF 的数量关系并说明理由; (2)如图3,若四边形ABCD 为矩形,BC mAB =,其它条件都不变,将EBF ∆绕点B 顺时针旋转()00090αα<<得到E BF ''∆,连接,AE DF '',请在图3中画出草图,并直接写出AE '与DF '的数量关系.【答案】(1)①,②,理由见解析;(2. 【解析】试题分析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则,再证明△BEF 为等腰直角三角形得到,所以BD ﹣,从而得到;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB=,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE=(2)先画出图形得到图3,利用勾股定理得到,再证明△BEF ∽△BAD 得到BE BFBA BD=,则BF BDBE AB =接着利用旋转的性质得∠ABE′=∠DBF′,BE′=BE,BF′=BF,所以''BF BDBE BA =然后根据相似三角形的判定方法得到△ABE′∽△DBF′,再利用相似的性质可得''DF BDAE BA=试题解析:(1)①∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴,∵EF ⊥AB ,∴△BEF 为等腰直角三角形,,∴BD ﹣,即;故答案为;②.理由如下:∴AD=BC=mAB ,∴, ∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BF BA BD =,∴BF BDBE AB=∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E'BF', ∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴''BF BDBE BA=∴△ABE′∽△DBF′,∴''DF BDAE BA=即考点:旋转的性质;矩形和正方形的性质;相似三角形的判定和性质.七、解答题(本题满分14分)26.如图,抛物线22y ax bx =+-的对称轴是直线1x =,与x 轴交于,A B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .(1)求抛物线解析式;(2)若点P 在第一象限内,当4OD PE =时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点,,,B D M N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【答案】(1)y=14x 2﹣12x ﹣2;(2)338;(3)y=14x 2﹣12x ﹣2;(2);(3)N (92,﹣14)或(4.6,310)或(5)或(),以点B ,D ,M ,N 为顶点的四边形是菱形. 【解析】试题分析:(1)由抛物线y=ax 2+bx ﹣2的对称轴是直线x=1,A (﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=12x﹣2,设D(m,0),得到E(m,1 2m﹣2),P(m,14m2﹣12m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n,12n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+12,于是得到N(92,﹣14);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,设D(m,0),∵DP∥y轴,∴E(m,12m﹣2),P(m,14m2﹣12m﹣2),∵OD=4PE,∴m=4(14m2﹣12m﹣2﹣12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD﹣S△EBD=12×5×74﹣12×1×12=338;(3)存在,设M(n,12n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,﹣14);②以BD为边,如图2,∴n1(不合题意,舍去),n2=4,∴N(5),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(12n﹣2)2+(n﹣4)2=12,考点:二次函数的图象的性质;待定系数法求一次函数;二次函数的解析式;勾股定理;三角形的面积公式;菱形的性质.。

2017年辽宁省营口市中中考数学试卷(附答案解析版)

2017年辽宁省营口市中中考数学试卷(附答案解析版)

2017年省市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C. D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下)A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB 上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A. B.C. D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到元,将用科学记数法表示为.12.(3分)函数y=中,自变量x的取值围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四纸牌背面朝上洗匀.(1)从中随机摸出一,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一,若摸出的两牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.-5的相反数是( )A . -5B .5±C .15D .5 【答案】D.【解析】试题分析:根据相反数的定义直接求得结果. 因为只有符号不同的两个数互为相反数,所以﹣5的相反数是5.故选D .考点:相反数.2. 下列几何体中,同一个几何体的三视图完全相同的是( )A . 球B .圆锥C .圆柱D .三棱柱【答案】A.【解析】确.故选A .考点:简单几何体的三视图.3. 下列计算正确的是( )A .()22224xy x y -=-B .632x x x ÷=C .()222x y x y -=- D . 235x x x += 【答案】D.【解析】试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A 、(﹣2xy )2=4x 2y 2,故本选项错误;B 、x 6÷x 3=x 3,故本选项错误;C 、(x ﹣y )2=x 2﹣2xy +y 2,故本选项错误;D 、2x +3x=5x ,故本选项正确;故选D .考点:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式.4. 为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/3m 4 5 6 8 9 10户数 6 7 9 5 2 1则这30户家庭的月用水量的众数和中位数分别是( )A . 6,6B . 9,6 C. 9,6 D .6,7【答案】B.【解析】考点:众数;中位数.5. 若一次函数y ax b =+的图象经过第一、二、四象限,则下列不等式一定成立的是( )A .0a b +<B .0a b -> C. 0ab > D .0b a < 【答案】D.【解析】试题分析:由于一次函数y=ax +b 的图象经过第一、二、四象限,由此可以确定a <0,b >0,然后一一判断各选项即可解决问题.∵一次函数y=ax +b 的图象经过第一、二、四象限,∴a <0,b >0,∴a +b 不一定大于0,故A 错误,a ﹣b <0,故B 错误,ab <0,故C 错误,b a<0,故D 正确. 故选D .考点:一次函数图象与系数的关系.6. 如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,02115∠=,则1∠的度数是( )A .75°B . 85° C. 60° D .65°【答案】B.【解析】考点:平行线的性质.7. 如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠=D .2AB CD =【答案】C.【解析】 由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC ﹣∠FED=45°,从而判断C 错误; 在等腰Rt △ADC 中利用勾股定理求出2,又AB=AC ,等量代换得到2,从而判断D 正确.∵AB=AC ,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt △ADC 中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC ,∴∠ECD=∠ACB +∠ACD=112.5°,故A 正确,学.科*网不符合题意;∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,FE ∥AB ,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F 是AC 的中点,∠ADC=90°,AD=DC ,∴FD=12AC ,DF ⊥AC ,∠FDC=45°,∵AB=AC ,∴FE=FD ,∴∠FDE=∠FED=12(180°﹣∠EFD )=12(180°﹣135°)=22.5°,∴∠FDE=12∠FDC ,∴DE 平分∠FDC ,故B 正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC ﹣∠FED=45°,故C 错误,符合题意;∵Rt △ADC 中,∠ADC=90°,AD=DC ,∴2CD ,∵AB=AC ,∴AB=2,故D 正确,不符合题意.故选C .考点:三角形中位线定理;等腰三角形的性质;勾股定理.8. 如图,在菱形ABOC 中,060A ∠=,它的一个顶点C 在反比例函数k y x =的图像上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A .33y x =-B .3y x =- C. 3y x=- D .3y x = 【答案】A.【解析】点A 向下平移2个单位的点为(﹣12a ﹣a 3a ﹣2),即(﹣32a 3a ﹣2), 则3,123232k a k a =⎪⎪-=⎪⎩,解得23,3 3.a k ⎧=⎪⎨=-⎪⎩. 故反比例函数解析式为33y = 故选A .考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC ∆中,0,90AC BC ACB =∠=,点D 在BC 上,3,1BD DC ==,点P 是AB 上的动点,则PC PD +的最小值为( )A . 4B .5 C. 6 D .7【答案】B.【解析】∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC ,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=2222'345BC BD +=+=.故选B .考点:轴对称﹣最短路线问题;等腰直角三角形.10. 如图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于,A B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于,C D 两点,运动时间为t 秒(04t ≤≤),以CD 为斜边作等腰直角三角形CDE (,E O 两点分别在CD 两侧),若CDE ∆和OAB ∆的重合部分的面积为S ,则S 与t 之间的函数关系的图角大致是( )A .B . C. D .第二部分(主观题)【答案】C.【解析】故答案为C .考点:动点问题的函数图象;分类讨论.二、填空题(每小题3分,共24分,将答案填在答题纸上)11. 随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到元,将用科学记数法表示为_____________.【答案】2.915×1010.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. =2.915×1010.故答案为:2.915×1010. 考点:科学记数法—表示较大的数.12.函数11x y x -=+中,自变量x 的取值围是___________. 【答案】x ≥1. 【解析】考点:函数自变量的取值围.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 个. 【答案】15. 【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数. 根据题意得摸到红色、黄色球的概率为10%和15%, 所以摸到蓝球的概率为75%, 因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个. 故答案为15.考点:利用频率估计概率.14.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值围是 .【答案】k >12且k ≠1. 【解析】试题分析:根据一元二次方程的定义和判别式的意义得到k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.根据题意得k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0, 解得:k >12且k ≠1. 故答案为:k >12且k ≠1.考点:根的判别式;一元二次方程的定义.15.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A B C D ''''的位置,2,4AB AD ==,则阴影部分的面积为 .【答案】8233π-.【解析】故答案为:8233π-.考点:扇形面积的计算;旋转的性质.16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 . 【答案】2400240081.2x x-=. 【解析】试题分析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x , 根据题意可得:2400240081.2x x-=, 故答案为:2400240081.2x x-=. 考点:由实际问题抽象出分式方程.17. 在矩形纸片ABCD 中,8,6,AD AB E ==是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,学&科网当EFC ∆为直角三角形时,BE 的长为___________. 【答案】3或6.【解析】△EFC 为直角三角形分两种情况: ①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F 在对角线AC 上, ∴AE 平分∠BAC ,∴BE EC AB AC =,即8610BE BE-=,∴BE=3; ②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°, ∴四边形ABEF 为正方形,∴BE=AB=6. 综上所述:BE 的长为3或6. 故答案为:3或6.考点:翻折变换(折叠问题);勾股定理;正方形的判定与性质;矩形的性质. 18. 如图,点()11,3A 在直线1:3l y x =上,过点1A 作111A B l ⊥交直线23:3l y x =于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的面积为__________.(用含n 的代数式表示)【答案】233322n -⎛⎫⎪⎝⎭.【解析】在Rt △OA 1B 1中,OA 1=2,∠A 1OB 1=30°,∠OA 1B 1=90°, ∴A 1B 1=12OB 1,∴A 1B 1=23∵△A 1B 1C 1为等边三角形,∴A 1A 23A 1B 1=1, ∴OA 2=3,A 2B 23同理,可得出:A 3B 3=332,A 4B 4=934,…,A n B n =2332n -⎛⎫ ⎪⎝⎭,∴第n 个等边三角形A n B n C n 的面积为23213332222n n n A B -⎛⎫⨯= ⎪⎝⎭.故答案为:233322n -⎛⎫⎪⎝⎭.考点:一次函数图象上点的坐标特征;等边三角形的性质;探索规律.三、解答题 (19小题10分,20小题10分,共20分.)19. 先化简,再求值:222212x y x y xy yx xy xy ⎛⎫⎛⎫+-÷- ⎪ ⎪++⎝⎭⎝⎭,其中10132017,3sin 6032x y -⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭. 【答案】-4. 【解析】原式=2322--=﹣4.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.20. 如图,有四背面完全相同的纸牌A B C D 、、、,其正面分别画有四个不同的几何图形,将这四纸牌背面朝上洗匀.(1)从中随机摸出一,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一,若摸出的两牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A B C D 、、、表示). 【答案】(1)34;(2)12.【解析】(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两牌都是轴对称图形的有6种,,因此这个游戏公平.∴P(两都是轴对称图形)=12考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.四、解答题(21题12分,22小题12分,共24分)21. 某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【答案】(1)100;(2)见解析;(3)108°;(4)1250.【解析】30÷30%=100(人);故答案为100;×100%=35%,(2)丁所占的百分比是:35100丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:考点:条形统计图;扇形统计图;样本估计总体.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.123 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.五、解答题(23小题12分,24小题12分,共24分)23. 如图,点E在以AB为直径的O上,学*科网点C是BE的中点,过点C作CD垂直于AE,交AE 的延长线于点D,连接BE交AC于点F.(1)求证:CD是O的切线;(2)若4cos,155CAD BF∠==,求AC的长.【答案】(1)见解析;(2)16.【解析】试题解析:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BFAE AB=.∵cos∠CAD=45,∴34EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO•cos∠OAM=8,∴AC=2AM=16.考点:切线的判定与性质;解直角三角形;平行线的性质;垂径定理;圆周角定理角平分线的性质.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x 天生产空调y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少. 【答案】(1)y=40+2x (1≤x ≤10);(2)()()()2184********,80446080510x x W x x +≤≤⎧⎪=⎨--+<≤⎪⎩,第5天,46000元. 【解析】台,∴由题意可得出,第x 天生产空调y 台,y 与x 之间的函数解析式为:y=40+2x (1≤x ≤10); (2)当1≤x ≤5时,W=(2920﹣2000)×(40+2x )=1840x +36800, ∵1840>0,∴W 随x 的增大而增大,∴当x=5时,W 最大值=1840×5+36800=46000; 当5<x ≤10时,W=[2920﹣2000﹣20(40+2x ﹣50)]×(40+2x )=﹣80(x ﹣4)2+46080,考点:二次函数的应用;分段函数.六、解答题(本题满分14分)25.在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF AB ⊥. (1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系___________;②将EBF ∆绕点B 逆时针旋转到图2所示的位置,连接,AE DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC mAB =,学&科.网其它条件都不变,将EBF ∆绕点B 顺时针旋转()00090αα<<得到E BF ''∆,连接,AE DF '',请在图3中画出草图,并直接写出AE '与DF '的数量关系.【答案】(1)①2AE ,②2,理由见解析;(2)DF′21m +. 【解析】试题分析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则2,再证明△BEF为等腰直角三角形得到2,所以BD ﹣22BE ,从而得到2; ②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB=2则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE=2; (2)先画出图形得到图3,利用勾股定理得到BD=21m +,再证明△BEF ∽△BAD 得到BE BF BA BD =,则BF BDBE AB =21m +ABE′=∠DBF′,BE′=BE ,BF′=BF ,所以''BF BDBE BA=21m +ABE′∽△DBF′,再利用相似的性质可得''DF BDAE BA=21m + 试题解析:(1)①∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴2,∵EF ⊥AB ,∴△BEF 为等腰直角三角形,2BE , ∴BD ﹣2AB 2BE ,即2AE ; 故答案为2AE ;②DF=2AE .理由如下:∴AD=BC=mAB ,∴22AB AD +21m +, ∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD , ∴BE BF BA BD =,∴BF BDBE AB=21m + ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E'BF', ∴∠ABE′=∠DBF′,BE′=BE ,BF′=BF , ∴''BF BDBE BA=21m + ∴△ABE′∽△DBF′, ∴''DF BDAE BA=21m + 即21m +.考点:旋转的性质;矩形和正方形的性质;相似三角形的判定和性质.七、解答题(本题满分14分)26.如图,抛物线22y ax bx =+-的对称轴是直线1x =,与x 轴交于,A B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E . (1)求抛物线解析式;(2)若点P 在第一象限,当4OD PE =时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系一点,是否存在这样的点M 和点N ,使得以点,,,B D M N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【答案】(1)y=14x2﹣12x﹣2;(2)338;(3)y=14x2﹣12x﹣2;(2);(3)N(92,﹣14)或(4.6,310)或(5﹣255,55)或(5+255,55),以点B,D,M,N为顶点的四边形是菱形.【解析】试题分析:(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=12x﹣2,设D(m,0),得到E(m,12m﹣2),P(m,14m2﹣12m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n,12n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+12,于是得到N(92,﹣14);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,设D(m,0),∵DP∥y轴,∴E(m,12m﹣2),P(m,14m2﹣12m﹣2),∵OD=4PE,∴m=4(14m2﹣12m﹣2﹣12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD ﹣S△EBD=12×5×74﹣12×1×12=338;(3)存在,设M(n,12n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,﹣14);②以BD为边,如图2,∴n1=4+255(不合题意,舍去),n2=4﹣254,∴N(5﹣255,55),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(12n﹣2)2+(n﹣4)2=12,考点:二次函数的图象的性质;待定系数法求一次函数;二次函数的解析式;勾股定理;三角形的面积公式;菱形的性质.。

最新中考数学辽宁省营口市中考数学试卷(含答案)

最新中考数学辽宁省营口市中考数学试卷(含答案)

2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A nB nC n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。

辽宁省营口市2017年中考数学真题试题-中考真题

辽宁省营口市2017年中考数学真题试题-中考真题

则 PC PD 的最小值为( )
A. 4
B.5
C. 6
D.7
10. 如图,直线 l 的解析式为 y x 4 ,它与 x 轴和 y 轴分别相交于 A, B 两点,平行于直线 l 的直线 m 从
原点 O 出发,沿 x 轴的正方向以每秒 1 个单位长度的速度运动.它与 x 轴和 y 轴分别相交于 C, D 两点,运
牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸 牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?
请用列表法(或树状图)说明理由(纸牌用 A、B、C、D 表示).
22.如图,一艘船以每小时 30 海里的速度向北偏东 75°方向航行,在点 A 处测得码头 C 的船的东北方向, 航行 40 分钟后到达 B 处,这时码头 C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程 中与码头 C 的最近距离.(结果精确的 0.1 海里,参考数据 2 1.41, 3 1.73 )
在 OA1B1 外侧作等边三角形 A1B1C1 ,再过点 C1 作 A2B2 l1 ,分别交直线 l1 和 l2 于 A2 , B2 两点,以 A2B2 为
边在 OA2B2 外侧作等边三角形 A2B2C2 ,按此规律进行下去,则第 n 个等边三角形 An BnCn 的面积为 __________.(用含 n 的代数式表示)
A. 6,6
B. 9,6
C. 9,6
D.6,7
5. 若一次函数 y ax b 的图象经过第一、二、四象限,则下列不等式一定成立的是( )

2017年辽宁省营口市中考数学试卷(解析版)

2017年辽宁省营口市中考数学试卷(解析版)

2017年辽宁省营口市中考数学试卷(解析版)题号一二三得分注意事项:1.本试卷共XX页,三个大题,满分140分,考试时间为100分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共50分)评卷人得分1.﹣5的相反数是( )(5分)A. ﹣5B. ±5C.D. 52.下列几何体中,同一个几何体的三视图完全相同的是( )(5分)A. 球B. 圆锥C. 圆柱D. 三棱柱3.下列计算正确的是( )(5分)A. (﹣2xy)2=﹣4x2y2B. x6÷x3=x2C. (x﹣y)2=x2﹣y2D. 2x+3x=5x4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/m3 4 5 6 8 9 10户数 6 7 9 5 2 1则这30户家庭的月用水量的众数和中位数分别是( )(5分)A. 6,6B. 9,6C. 9,6D. 6,75.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )(5分)A. a+b<0B. a﹣b>0C. ab>0D.6.(5分)A. 75°B. 85°C. 60°D. 65°7.(5分)A. ∠ECD=112.5°B. DE平分∠FDCC. ∠DEC=30°D. AB=CD8.(5分)A.B.C.D. 9.(5分)A. 4B. 5C. 6D. 710.(5分)A.B.C.D.二、填空题(共40分)评卷人得分11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.(5分)12.(5分)13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是(5分)14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是(5分)15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为(5分)16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.(5分)17.在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为(5分)18.(5分)三、解答题(共50分)评卷人得分资料19.小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).(5分)20.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(5分)资料某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:21.(5分)22.求图1中甲班所对应的扇形圆心角的度数;(5分)23.请你补全两幅统计图;(5分)24.这四个班参与大赛的学生共人;(5分)资料夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.25.若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.(5分)26.设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(5分)27.先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.(10分)******答案及解析****** 一、单选题(共50分)1.答案:D2.答案:A3.答案:D4.答案:B5.答案:D6.答案:B7.答案:C8.答案:A9.答案:B10.答案:C二、填空题(共40分)11.答案:2.915×1010 12.答案:x≥113.答案:1514.答案:15.答案:16.答案:17.答案:3或618.答案:三、解答题(共50分)19.答案:20.答案:共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;21.答案:22.答案:甲班级所对应的扇形圆心角的度数是:30%×360°=108°23.答案:24.答案:100 25.答案:26.答案:∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);27.答案:。

2017年辽宁省各地市中考数学试题及答案汇编(精编版)

2017年辽宁省各地市中考数学试题及答案汇编(精编版)

2017年辽宁省各地市中考数学试题及答案汇编1、大连市2017年中考数学试题及答案--022、鞍山市2017年中考数学试题及答案--173、抚顺市2017年中考数学试题及答案--314、阜新市2017年中考数学试题及答案--415、葫芦岛市2017年中考数学试题及答--496、辽阳市2017年中考数学试题及答案--677、盘锦市2017年中考数学试题及答案--858、沈阳市2017年中考数学试题及答案--999、营口市2017年中考数学试题及答案-1131.大连市2017年中考数学试题及答案一、单一选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A.B.C.D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5 C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82° C.72° D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= .10.下表是某校女子排球队队员的年龄分布:则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B 处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:(+1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在?ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n 的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过?ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S?ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.。

009--2017年辽宁省营口市2017年中考数学试题(含答案)

009--2017年辽宁省营口市2017年中考数学试题(含答案)

A B C D2017年初中毕业生毕业升学考试数学试卷考试时间:120分钟试卷满分:150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)()A.5-B.5±C.51D.52.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为05475000000元,用科学记数法表示这个数为()A.1110475.5⨯元B.1010475.5⨯元C.11105475.0⨯元D.8105475⨯元3.如图,下列水平放置的几何体中,主视图是三角形的是()4.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元6.不等式组⎩⎨⎧+>-+xxx2125)5(2的解集在数轴上表示正确的是()≥6B C DA队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是 ( )A.25060-=x x B.x x 50260=- C .25060+=x x D .xx 50260=+ 8.如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A D C 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7=x 时,点E 应运动到 ( )A .点C 处B .点D 处C .点B 处D .点A 处二、填空题(每小题3分,共24分)9.函数5-=x y 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s , 45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 . 12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.14.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 2cm . 15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = . 16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边第8题图1第12题图A CB E长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则 第n 个正方形与第n 个等腰直角三角形的面积和n S = . 三、解答题(17、18、19小题,每小题8分,共24分)17.先化简,再求值:122)13154(22+-+÷---+x x x x x x ,其中3=x .18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点). (1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD .第18题图(1)求证:△ABC ≌△CDA ;(2)若∠ACB =60,求证:四边形ABCD 是菱形.四、解答题(20小题10分,21小题10分,共20分)20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一其他其他家车交车行 行车282420161284第20题图第19题图DAB FDC个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下..的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛. (1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.五、解答题(22小题8分,23小题10分,共18分)22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P处再测得该建筑物顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直,垂足第22题图为点.D(1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.六、解答题(本题满分12分)入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =802+-x .设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?七、解答题(本题满分14分)25.如图1,△ABC 为等腰直角三角形,90=∠ACB ,F 是AC 边上的一个动点(点F与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形,CDEF 连接BF 、AD .(1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形,CDEF 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF 交AC 于点H ,交AD于点O ,请你判断①中得到的结论是否仍然成立,并选取图.2.证明你的判断. (2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,90=∠ACB ,正方形CDEF 改为矩形CDEF ,如图4,且4=AC ,3=BC ,=CD 34,1=CF ,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求22AF BD +的值.八、解答题(本题满分14分)图1图2图3F图4ABE F H OC26.如图,抛物线与x 轴交于A ()0,1 、)03(, B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标. (2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P2017年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。

辽宁省营口市中考数学试卷

辽宁省营口市中考数学试卷

辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,O D=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CE B′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A nB nC n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。

辽宁省营口市中考数学试卷

辽宁省营口市中考数学试卷

人教版七年级数学测试卷(考试题)2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C.D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:4568910月用水量/m3户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:4568910月用水量/m3户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年辽宁省营口市中考数学试卷
一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()
A.﹣5 B.±5 C .D.5
2.(3分)下列几何体中,同一个几何体的三视图完全相同的是()
A.球B.圆锥C.圆柱D.三棱柱
3.(3分)下列计算正确的是()
A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:
则这30户家庭的月用水量的众数和中位数分别是()
A.6,6 B.9,6 C.9,6 D.6,7
5.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()
A.a+b<0 B.a﹣b>0 C.ab>0 D.<0
6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()
A.75°B.85°C.60°D.65°
7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()
A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD
8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=
的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()
A.y=﹣B.y=﹣ C.y=﹣D.y=
9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()
A.4 B.5 C.6 D.7
10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()
A.B.C.
D.
二、填空题(每小题3分,共24分,将答案填在答题纸上)
11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.
12.(3分)函数y=中,自变量x的取值范围是.
13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.
15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.
16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.
17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)
三、解答题(19小题10分,20小题10分,共20分.)
19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.
20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).
四、解答题(21题12分,22小题12分,共24分)
21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
(1)这四个班参与大赛的学生共人;
(2)请你补全两幅统计图;
(3)求图1中甲班所对应的扇形圆心角的度数;
(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.
22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,参考数据≈1.41,≈1.73)
五、解答题(23小题12分,24小题12分,共24分)
23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
(1)求证:CD是⊙O的切线;
(2)若cos∠CAD=,BF=15,求AC的长.
24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
六、解答题(本题满分14分)
25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的
一点,且EF⊥AB.
(1)若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;
(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.
七、解答题(本题满分14分)
26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.
(1)求抛物线解析式;
(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;
(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.
【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】
2017年辽宁省营口市中考数学试卷
参考答案
一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.D;2.A;3.D;4.B;5.D;6.B;7.C;8.A;9.B;10.C;
二、填空题(每小题3分,共24分,将答案填在答题纸上)
11.2.915×1010;12.x≥1;13.15;14.k>且k≠1;15.π﹣2;16.
﹣=8;17.3或6;18.;
三、解答题(19小题10分,20小题10分,共20分.)
19.;20.;
四、解答题(21题12分,22小题12分,共24分)
21.100;22.;
五、解答题(23小题12分,24小题12分,共24分)
23.;24.;
六、解答题(本题满分14分)
25.DF=AE;
七、解答题(本题满分14分)
26.;。

相关文档
最新文档