基于STM32的数控电流源设计

合集下载

STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路为工业场合开发的设备通常情况下都会具有4-20mA输出接口,在以往没有DAC模块的单片机系统,需要外加一主片DAC实现模拟量的控制,或者采用PWM来摸拟DA,但也带来温漂和长期稳定性问题。

在以STM32为中心的设备中,使用它自带的DAC即可非常方便的实现4-20mA的输出接口,具有精度高、稳定性好、漂移小以及编程方便等特点。

在STM32单片机系统中,100脚以下没有外接出VREF引脚,但这样使得DAC的参考端和VCC共用,带来较大误码差,为解决这一问题,可以使用廉价的TL431来解决供电问题,TL431典型温漂为30ppm,所以在一般应用中已非常足够。

选用两只低温漂电阻,调整输出使TL431的输出电压在3V-3.6V之间,它的并联稳压电流可达到30mA,正好能满足一般STM32核心的功耗需求。

利用TL431解决了供电问题,余下的就是4-20mA的转换电路,如下图:上图即为非常精确的转换电路,OPA333是一颗非常优异的单电源轨至轨运算放大器,其工作电压为2.7-5.5V,其失调电压仅为10uV,实测最低输出为30uV,最高输出可达VCC-30uV。

电路组成压控恒流源,其关键在于OPA333这颗芯片的优异性能,使得以上电路获得了极高的精度和稳定性。

DACOUT来自于STM32的DAC1或者DAC2输出,由C25进行数字噪场滤波之后进入运算,进行1:1缓冲,后经过Q2进行电流放大,在R7上形成检测电压,C17进行去抖动处理。

4-20mA信号由AN_OUT+/AN_OUT-之间输出。

上图中,负载中的电流在R7上形成压降,经运放反馈后得到Vdacout=Vr7=I*R7,所以:I=Vdacout/R7,当Vdacout在400mV到2000mV之间变化时,可得到4-20mA的输出。

改变R7的大小,便可改变DACOUT的需求范围。

电路中,R2的基射极之间将有0.7V左右的偏压,所以Vb[MAX]=2V+0.7V=2.7V,这正好在OPA333的输出范围之内。

基于单片机的数控恒流源电路的设计

基于单片机的数控恒流源电路的设计

基于单片机的数控恒流源电路的设计方式,一种是根据工业应用的需求,通过A/D 采样获取控制信号,根据在汇编程序中多次的数据实测,将固定的表格设计好,把控制数据通过查表给D/A 输出,使恒流源单元所产生的对应稳定电流得到控制。

利用手动输入的方式,对用户输入的理想电流值进行判断,然后根据查表,由D/A 来实现控制数据的输出,以此获得相应大小的电流,该功能还可以让电流的初值用户进行预设。

以上两种控制方法是不能同时起作用的,通过程序可以实现自动采样和键盘这两种不同控制方式进行自动切换。

在同时使用LED 交互显示时,为A/D 采样控制时,输出电流的大小要实时显示;为键盘控制时,用户的输入状况则要显示。

参照输入电压和恒流源输出电流的关系来制表,而且可以将一些非线性问题在指标过程与予以修正。

在制表的过程中由于还需要分写考虑到A/D的应用情况和键盘输入初值有差别所造成的情况。

以键盘初值为例来考虑:若10ma 是用户输入的电流,1v 为其所对应的控制电压,(00110010)2=(50)10 为间接对应的8 位二进制数,那么(00110010)2 则为软件表中所对应的值。

A/D 采样控制与键盘方式基本一致,只是多了一个对采样值的判断。

5 软件程序的设计首先对包括:8297 工作状态的初始化;自动采样控制标志位和标识键盘手动操作的初始化;中断初始化;一些用到的寄存器的初始化,整个系统进行初始化。

规定F0=1 时为A/D 采样控制,F0=0 时为键盘控制,初始写初始设定状态,此处为键盘的状态,LED 数码管显示为P,也是表示键盘状态,启动D/A 进行转换。

并等待键盘按下,开始循环等待。

当中还加入了一些如:。

基于stm32的数控电流源设计

基于stm32的数控电流源设计

摘要电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。

随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。

现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。

数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。

所以,高精度的数控直流电流源有很大的发展空间。

在本设计中将采用STM32单片机为系统的主控制器,能够实现多功能、宽范围、可调节等诸多功能,为更好的实现恒流提供条件,完成数控电流源的设计。

STM32片内集成的A/D转换器、D/A转换器和PWM发生模块降低了系统复杂程度,使系统简单,可靠,低价。

关键字:电源技术;数控电流源;STM32;数字化ABSTRACTPower technology, especially CNC power technology is one engineering technology with strong practice, it services for every field. Modern information technology revolution, that brought with the development of computer and communications technology, provides a broad development prospects, but also makes a higher demands in power supply technology. At the present time CNC current source on the market exists some shortcomings, such as output precision is not high, the power density is relatively low, capacity with a load is not strong, bulky, expensive, complicated operations, instability working state and so on. So the major develop direction of CNC power is specialized for these shortcomings, and to reform them. Digital intelligent power modules is made against the lacking of traditional intelligent power modules, digitize can reduce uncertainty and human participating quantity of links in the production process, and resolve some engineering problems effectively, such as reliability, intelligence, product consistency problem and so on, and greatly improve production efficiency and maintainability of the product. Therefore, high-accuracy CNC DC current source has a lot of space to develop. In this design,STM32 MCU will be used as the main controller of the whole system, it can achieve the multi-function, wide range ,adjustable, and many other functions, providing better conditions for achieving constant current and completing the design of CNC current source. It integrates A/D converter, D/A converter and PWM module in STM32 chip, thus reducing complexity of the system, keep the system simple, reliable and low price.Key words:Power technology; Numerical control current source; STM32; digital目录摘要 (Ⅰ)Abstract (Ⅱ)第1章 (1)1.1 数控电流源项目的目的和意义 (1)1.2 数控电流源在国内外的发展概况 (2)1.3 基于STM32的数控电流源的设计的内容 (4)第2 章 (5)2.1 数控电流源的核心技术原理 (5)2.2 方案的总体设计 (6)2.2.1 数控电流源的主控芯片的选择 (6)2.2.2 基于STM32的数控电流源系统结构 (8)2.2.3 恒流源模块电路的方案讨论 (9)2.3 本章小结 (9)第3章基于STM32数控电流源的硬件电路设计 (10)3.1 恒流源模块电路的设计方案 (10)3.1.1 以LM350A为恒流源模块的核心元件的恒流源电路 (10)3.1.2 数控宽范围调整、大电流输出恒流源电路 (14)3.2 数控部分 (16)3.3 供电电源 (18)3.3.1 三端稳压器 (18)3.3.2 供电电源电路 (19)3.4 本章小结 (20)第4 章 (21)4.1 主程序设计 (21)4.2 负载电流取样子程序设计 (22)4.3 键盘中断程序设计 (23)4.4 LCD1062显示程序设计 (24)4.5 本章小结 (24)结束语 (25)参考文献 (26)致谢 (28)附录 (29)附录A (29)附录B (31)第1章引言1.1 数控电流源项目的目的和意义电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。

基于单片机的数控恒流源设计-----硬件设计(DOC)

基于单片机的数控恒流源设计-----硬件设计(DOC)
系统需要多个电源,单片机、D/A使用+5V稳压电源,运放需要+15V稳压电 源。此外,主电源+VC(要为负载提供电流与电压,需要具有较大输出功率。 方案一:分立元件构成直流电压源
典型的串联型稳压电路见下图2所示。是由调整环节,比较放大环节,基准 环节和取样环节所组成的电压负反馈闭环系统。
取样环节:由R1、R2和R组成的分压电路。它将输出电压U0的变化取回 一部分UF(称取样电压)送刀比较放大器的基极。
构成的电路来驱动。74LS164是高速硅门CMOS器件,与低功耗肖特基型TTL (LSTTL)器件的引脚兼容。74LS164是8位边沿触发式移位寄存器,串行输入 数据,然后并行输出。数据通过两个输入端(DSA或DSB)之一串行输入;任一 输入端可以用作高电平使能端,控制另一输入端的数据输入。显示电路如下:
采用模/数转换芯片MC14433和电压跟随器实现数据采集模块。为了能够更好 地实现电路隔离,电压跟随器用运算放大器来构成, 使得其输入阻抗高,几乎不 从信号源吸收电流,输出阻抗低,可视为电压源。MC14433S片的最大输出电压
有199.9mV和1.999V两档,本系统设计选择1.999V档位
2.5辅助电路由以下几部分组成:电源模块,MCI微
控制器、键盘、显示模块、D/A转换模块、恒流源模块、数据采集模块,以下就 各电路模块给出设计方案。
2.1MCU控制方案
采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB算术
功能强,软件编程灵活、 可以通过ISP方式将程序快速下载到芯片, 方便的实现 程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和 逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。
最小系统的核心为STC89C52为了方便单片机引脚的使用,我们将单片机的引

基于STM32的数控可调直流电源设计

基于STM32的数控可调直流电源设计

第37卷第4期2023年7月兰州文理学院学报(自然科学版)J o u r n a l o fL a n z h o uU n i v e r s i t y ofA r t s a n dS c i e n c e (N a t u r a l S c i e n c e s )V o l .37N o .4J u l .2023收稿日期:2023G03G10基金项目:淮南师范学院自然科学研究重点项目(2022X J Z D 026);教育部产学合作协同育人项目(220906517261925)作者简介:戴文俊(1987G),男,安徽长丰人,讲师,硕士,研究方向为电力电子与电气传动控制.E Gm a i l :a w j k a o ya n @163.c o m.㊀㊀文章编号:2095G6991(2023)04G0074G05基于S TM 32的数控可调直流电源设计戴文俊,胡艳丽,阚绪月(淮南师范学院机械与电气工程学院,安徽淮南232038)摘要:为了提高电源的输出电压精度和减小负载调整率,采用S TM 32单片机作为控制核心设计数控可调电源.硬件包括主电路㊁驱动电路㊁控制电路㊁检测电路㊁辅助电源电路㊁液晶显示电路和保护电路.单片机通过检测电路采集输出电压和电流信号,采用模糊自适应P I D 和P WM 算法控制输出电压达到期望值并趋于稳定.实验测试结果显示:本数控电源空载输出电压精度达99.4%,负载输出电压精度为98%,且具有输出电压双向可调㊁步进幅度可设置㊁实时显示和保护等功能.关键词:S TM 32;可调直流电源;模糊自适应P I D ;数控中图分类号:T N 86;T P 368.1㊀㊀㊀文献标志码:AD e s i g no fN u m e r i c a l C o n t r o lA d j u s t a b l eD CP o w e r S u p p l y Ba s e do nS T M 32D A IW e n Gj u n ,HUY a n Gl i ,K A N X u Gyu e (S c h o o l o fM e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,H u a i n a nN o r m a lU n i v e r s i t y,H u a i n a n232038,A n h u i ,C h i n a )A b s t r a c t :I no r d e r t o i m p r o v e t h e o u t p u t v o l t a g e a c c u r a c y o f t h e p o w e r s u p p l y an d r e d u c e t h e l o a d a d j u s t m e n t r a t e ,S T M 32s i n g l e c h i p m i c r o c o m p u t e r i s u s e da s t h e c o n t r o l c o r e t od e s i gn t h eN Ca d j u s t a b l e p o w e r s u p p l y.T h eh a r d w a r e i n c l u d e sm a i nc i r c u i t ,d r i v ec i r c u i t ,c o n t r o l c i r c u i t ,d e t e c t i o n c i r c u i t ,a u x i l i a r yp o w e r c i r c u i t ,l i q u i dc r y s t a l d i s p l a y c i r c u i t a n d p r o t e c t i o n c i r c u i t .T h e s i n g l e c h i p m i c r o c o m p u t e r c o l l e c t s t h e o u t p u t v o l t a g e a n d c u r r e n t s i g n a l t h r o u gh t h e d e t e c t i o n c i r c u i t ,a n du s e s f u z z y a d a p t i v eP I Da n dP WMa l g o r i t h m s t o c o n t r o l t h eo u t p u t v o l t a g e t o r e a c h t h e e x p e c t e d v a l u e a n d t e n d s t o b e s t a b l e .T h e e x pe r i m e n t a l r e s u l t s s h o wt h a t t h e p r e c i s i o nof n o Gl o a d o u t p u t v o l t ag e i s 99.4%,th e p r e ci s i o n o f l o a d o u t p u t v o l t a ge i s 98%.I t h a s t h ef u n c t i o n s o f b i d i r e c t i o n a l a d j u s t a b l e o u t p u t v o l t ag e ,a d j u s t a b l e s t e p a m p l i t u d e ,r e a l Gt i m e d i s p l a y an d p r o t e c t i o n .K e y w o r d s :S T M 32;a d j u s t a b l eD C p o w e r s u p p l y ;f u z z y a d a p t i v eP I D ;n u m e r i c a l c o n t r o l ㊀㊀电源是各种电子设备必不可少的组成部分,其性能的优劣直接关系到整个设备的安全性与可靠性指标.随着科技的发展,各种先进设备已经普及到生产㊁生活和科研等各个领域,也对电源的精度和性能有了更高的要求,因此,许多设备逐渐采用高精度的数控电源,比如在电力通信领域,通信电源是各种电力数据采集㊁远程控制等终端设备的能源保障[1G2];U P S 电源在轨道交通领域的作用是保障列车运行的信号系统安全㊁稳定和可持续工作[3G4].数控直流电源的设计与开发主要集中在控制芯片㊁电源变换原理等方面.在控制芯片方面,大部分采用基于冯诺依曼结构的8051系列单片机.文献[5G6]采用A T M E L 公司的51系列单片机,文献[7G8]采用中国宏晶科技公司的51系列单片机,文献[9]采用意法半导体公司S T M8单片机,文献[10]采用A T M E L公司的A V R单片机.上述控制芯片均为8位元的单片机,属于入门级控制芯片,在数据处理方面,精度有限.所以一些A R M芯片和数字信号处理器被应用到数控电源的设计中.文献[11]所设计的便携式数控直流电源采用基于A R M C o r t e x内核的S T M32控制器,其在电源设计中可以采用更优的控制技术,发挥更高的性能.在电源变换原理方面,主要分为D/A转换芯片和电力电子变换电路两大类[5G6,8,10G11].经D/A转换芯片转换成模拟量,再通过集成运算放大器构成调理电路产生直流电压,采用独立按键调整单片机数字量值从而调节电压的输出值.这种变换方法一般是对于电压固定的直流电源进行变换,产生可调的电压值,且输出范围比较小,功率取决于提供的直流电源,控制方式一般采用开环控制,不能做到动态调整,精度较低.文献[9,12G13]采用的是基于电力电子开关器件构成的变换电路,一般采用A CGD CGD C变换方式,将输入的工频50H z的220V的交流电源进行整流(A CGD C变换),在经过变换电路(D CGD C)实现电压调节.这种电源变换需要根据实时检测的输出实际电压与设定值的误差调节控制变换电路开关器件导通和关段的控制脉冲.这种方法称为脉宽调制技术(P WM),属于闭环控制,精度较高,可实现大功率输出.根据以上文献综述,本文基于高性能单片机S T M32和电力电子器件实现数控可调电源的硬件电路设计;基于模糊自适应P I D控制算法和P WM技术实现动态调节和减小输出电压误差,提高精度.1㊀电源电路硬件设计1.1㊀电源电路结构本电源将电压值220V㊁频率50H z的输入交流电通过变压器转换为同频率的26V交流电,再通过整流桥和滤波电容器获得36V直流电(A CGD C).经直流调压电路按照设定值控制输出(D CGD C),采用O L E D液晶显示屏,实时显示电压设定值㊁输出值和电流值.电源硬件结构如图1所示.图1中,检测电路采用串联分压的方式采集电压,采用1Ω电阻作为采样电阻,检测电流转换为电压信号,利用单片机的A D转换功能,实现检测输出电压和电流的功能.工作电源电路通过三端稳压芯片78L05将12V的输入电源经过渡为5V输出,再经AM S1117低压降稳压器转为3.3V给单片机供电,同时12V的输入电源也为直流调压电路的开关管控提供驱动电压.图1㊀电源硬件结构1.2㊀驱动电路设计驱动电路的原理如图2所示.当S T M32单片机控制电路产生的P WM信号的3.3V高电平进入驱动电路时,驱动电路输出15V的电压给N M O S的栅极,使N M O S导通;当S T M32单片机控制电路产生的P WM信号的0V低电平进入驱动电路时,驱动电路输出-7V的电压给N M O S的栅极,使N M O S关断.P WM1和P WM2分别接S T M32单片机的P A7和P C6端口.1.3㊀直流调压电路设计直流调压电路采用半桥电路,如图3所示.整流电路输出的36V直流电压接入主电路中,通过驱动芯片I R2101S输出信号控制型号为I R F640的NMO S管的导通与关断.当I R F640栅极为高电平时导通,低电平时关断.同时设计了输出电压L C滤波电路,保证输出电压无杂波影响.1.4㊀故障保护电路设计保护电路如图4所示,主要针对欠压㊁过压及57第4期戴文俊等:基于S TM32的数控可调直流电源设计图2㊀驱动电路原理图3㊀直流调压电路原理图4㊀故障保护电路结构过流等故障现象对主电路进行保护.当发生故障时,故障保护电路会产生一个低电平,S T M 32对应的外部中断引脚的高电平被拉低,触发中断信号,S TM 32将进入中断保护程序.在中断保护程序中,P WM 信号的输出被关闭,P WM 输出设置变为高阻态并保持低电平,I G B T 功率器件将处于关闭状态,保护三极管处于断开状态,主电路将会一直被及时有效保护.硬件自动完成整个故障保护触发过程,能快速准确地应对和处理各种故障状态.根据原理图绘制P C B ,通过制板焊接完成数控电源如图5所示.图5㊀数控直流电源实物2㊀控制策略将设定电压值与检测到的实际电压值之间的偏差及偏差的变化值输入到模糊自适应P I D 控制器获取P WM 信号的占空比值,然后动态调节P WM 信号控制D C GD C 变换电路开关的通断,实现电压调节.控制策略结构如图6所示.图6㊀控制策略结构㊀㊀模糊自适应P I D 控制算法的表达式可表示为[14]:ut ()=k p 0+Δk p ()et()+k i 0+Δk i ()ʏt0et ()d t +k d 0+Δk d ()d et()d t,(1)式中,k p 0,k i 0和k d 0为PI D 控制算法的初始参数;67㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀兰州文理学院学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第37卷Δk p ,Δk i 为和Δk d 为去模糊化后输出的P I D 在线实时调整参数.基于上述算法,本电源的软件控制流程如图7所示.图7㊀数控直流源控制程序流程3㊀测试结果与分析3.1㊀空载输出电压测试将数字万用表接在输出端口两侧,测量电路实际输出电压,观察电路输出电压大小与预期值是否符合.共进行了3次空载试验.各试验的电压范围为5V~30V ,设定电压调整步长为1V.详细的测试数据如表1所列.测试1的11V 设定值㊁测试2的20V 设定值和测试3的26V 和30V 设定值的测试结果如图8所示.图8㊀空载实验部分测试结果表1㊀空载输出电压试验结果(单位:V )设定电压测试1输出电压绝对误差测试2输出电压绝对误差测试3输出电压绝对误差55.050.055.020.025.010.0166.020.026.020.026.030.0377.030.037.040.047.030.0388.040.048.050.058.040.0499.030.039.030.039.060.061010.010.0110.030.0310.040.041111.030.0311.040.0411.040.041212.040.0412.060.0612.050.051313.060.0613.050.0513.030.031414.050.0514.060.0614.050.051515.070.0715.060.0615.070.071616.060.0616.080.0816.060.061717.080.0817.070.0717.080.081818.070.0718.090.0918.090.091919.10.119.090.0919.10.12020.090.0920.090.0920.080.082121.10.121.10.121.10.12222.10.122.050.0522.060.062323.120.1223.090.0923.080.082424.120.1224.110.1124.10.12525.130.1325.120.1225.110.112626.120.1226.130.1326.130.132727.140.1427.130.1327.120.122828.10.128.170.1728.190.192929.160.1629.140.1429.160.163030.130.1330.150.1530.170.17㊀㊀表1所列的测试数据中,实际输出电压值与期望值之间的绝对误差最小值为0.01V ,最大值为0.17V.根据表中的数据计算每个输出电压的平均绝对误差和平均相对误差,绘制两类误差曲线,如图9和图10所示,并对误差曲线进行线性回归统计.图9㊀空载输出电压绝对误差曲线77第4期戴文俊等:基于S TM 32的数控可调直流电源设计图10㊀空载输出电压相对误差曲线㊀㊀图9的误差曲线显示,电压的绝对误差随输出电压值的增加而增大.根据图10所示的相对误差曲线,该电源的相对误差在0.3%~0.6%之间,精度较高.3.2㊀负载输出电压测试将直流电动机作为负载连接到输出端口,用数字万用表与直流电动机并联测量输出的实际电压值,观察电源的输出电压是否与负载的期望值一致.测试数据采集结果如表2所列.设定电压为5V 和8V 来测量电压和电流,测试结果如图11所示.根据表2所示的负载测试数据,当负载输出电压在5V~10V 之间时,绝对误差为0.05V~0.15V ,相对误差小于2%.表1中的空载试验数据显示,当空载输出电压在5V~10V 之间时,绝对误差为0.01V~0.14V.对比表明,负载电压误差大于空载电压误差,这是由于电路中负载电流增加造成的电压降,属于一种正常现象.负载下输出电压的相对误差小于2%,说明负载调整率较小,精度较高.表2㊀负载输出电压试验结果设定电压/V 输出电压/V测量电流/m A绝对误差/V相对误差54.95151.50.051.00%65.93317.60.071.17%76.87251.60.131.86%88.02227.20.020.25%99.05208.30.050.56%109.85200.50.151.50%图11㊀负载试验部分测试结果4㊀结论本文采用S T M 32单片机为主控芯片,设计了包括主电路㊁驱动电路㊁控制电路㊁检测电路㊁辅助电源电路㊁液晶显示电路和保护电路的数控电源硬件电路.单片机通过检测电路采集输出电压和电流信号构成闭环控制,采用模糊自适应P I D 和P WM 算法的调节控制提高了输出电压的精度,且具有输出电压双向可调㊁步进幅度可设置㊁实时显示和保护等功能,可以为各种工作电压的精密直流电器提供工作电源.参考文献:[1]陈丽娟.变电站通信电源综合监控系统的设计[J ].光源与照明,2022(11):134G136.[2]周荣娴.电力通信机房中智能通信电源实施与应用[J ].电子技术与软件工程,2022(21):99G102.[3]王颖,李新,冯前进,等.城市轨道交通信号U P S 电源系统优化配置方案[J ].铁路通信信号工程技术,2022,19(8):62G67.[4]黄俊.地铁车站U P S 电源整合方式和容量确定[J ].智能城市,2022,8(11):49G51.[5]吴彤,孙广辉.基于A T 89S 52的数控直流电源设计[J ].电子测试,2021(13):37G39.[6]胡城瑜.探析单片机的数控直流稳压电源设计与实现[J ].电子测试2017(3):13G14.[7]钟成,池尚霏.基于单片机的数控直流稳压电源的设计与实现[J ].现代信息科技,2019,03(3):38G40.[8]胡维庆,颜建军,刘哲纬.数控式直流电源设计[J ].价值工程,2015,24(15):70G72.[9]程习敏,刘华.数控直流电源设计[J ].技术创新与应用,2018(27):40G41.[10]张丽.精密数控直流电源的设计[J ].电子世界,2016(21):63G64.[11]张红宾,李晓晨,赵二刚,等.基于S TM 32的便携式数控直流电源设计[J ].实验室科学,2019,22(3):53G56.[12]王瑜.数控可调不间断直流电源设计[D ].芜湖:安徽工程大学,2017.[13]岑祺.基于多功能双向直流变换的零碳模块化电源[J ].电信快报,2023(1):24G29.[14]戴文俊,范鹏飞,凌有铸,等.模糊自适应P I D 控制器在无刷直流电机控制系统中的应用研究[J ].安徽工程大学学报,2012,27(1):64G67.[责任编辑:李㊀岚]87㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀兰州文理学院学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第37卷。

基于STM32的高精度程控电流源设计

基于STM32的高精度程控电流源设计

第40卷第6期2017年12月电子器件Chinese Journal of Electron DevicesVol.40No.6Dec.2017收稿日期:2016-09-27修改日期:2016-12-11Design of Programmable High-Precision CurrentSource Based on STM32WEN Hui 1,JIANG Yanying 2*(1.National Demonstration Center for Experimental Electronic Circuit Education (Guilin University of Electronic Technology ),Guilin Guangxi 541000;2.Institute of Information Techology of GUET ,Guilin Guangxi 541000)Abstract :In order to solve the weakness of high ripple and low precision on switching current power ,a programmablehigh-precision current source based on STM32was designed by linear current regulator.In the aspect of hardware ,the STM32microcontroller was used as control unit.The current can be controlled by system through setting the reference volt by DAC883016bit DAC.The chip of INA286and LTC240024bit ADC was used in current detection.In the aspect of software ,the parameter input interface and current interface were designed.The SCPI parser was designed so that the system can be controlled by standard instructions.The results show that it is characterized by low ripple and high accuracy.Key words :linear current regulator ;programmable current source ;current detection ;high-precision ;SCPI parserEEACC :8320doi :10.3969/j.issn.1005-9490.2017.06.035基于STM32的高精度程控电流源设计文辉1,蒋艳英2*(1.桂林电子科技大学电子电路国家级实验教学示范中心,广西桂林541000;2.桂林电子科技大学信息科技学院,广西桂林541000)摘要:针对传统开关型电流源纹波大,精度低的缺点,采用线性稳流结构设计出一种基于STM32的高精度程控电流源。

stm32直接控制mos的极高效率的电源设计电源充电器

stm32直接控制mos的极高效率的电源设计电源充电器

stm32直接控制mos的极高效率的电源设计电源充电器鉴于目前大家常用的开关电源工作效率都不太高的现状,我和@2545889167深感痛心,并且决定打造一款极高效率的双向DC-DC 电源,它使用stm32f334作为主控,直接产生高频pwm控制mos管的通断,并配合同步整流,达到极高的工作效率。

先来两张电源总体的图片。

至于工作效率,来一张降压的图展示一下。

输入30.17V,电流0.706A,输出20.76V,电流1.0036A,于是可得降压效率为97.8%,效率还OK吧。

再来一张升压的图片输入16.70V ,电流1.858A,输出30.78V,电流 0.9962A,效率98.82%。

这两张是我们这个电源极高工作效率的一个缩影。

一般来说,对于16~36V的输入,工作电流1~2A,降压效率都在95%以上,升压效率略高,在96%左右。

1L先简单解释这个电源的原理,2L将详细介绍。

这个电源采用双向半桥拓扑结构,结构极其简单,仅由两个mos管,一个电感,一个mos驱动芯片组成。

mos驱动芯片型号为ucc27211,TI家的,mos 驱动电流最大4A,典型应用电路为这款芯片内置自举二极管,因此,外部元件极其少。

事实上,我们电源的实际电路就如上图所示,只是变压器的地方是一个电感而已。

实际电路图在2L有介绍。

这个电路的核心为pwm的产生和mos管的选择。

因此,我们选择了意法半导体专门为工业应用设计的334型号来作为主控,产生高频pwm。

mos 管方面,应当选择导通电阻小的mos管,这个电源设计中,我们选择了irf3205,8mOhm的导通电阻,使得我们电源的热损耗极其小。

1L 的简介到此为止,详细介绍请移步2L。

这个电源呢,算是上一个DC-DC玩耍的入门贴“分享最近折腾几片DC-DC芯片的经验,QC3.0快充原理(TPS61088 SX1308 PT4103)|/read.php?tid=2134373”的进阶版本。

基于STM32处理器的数控电源设计

基于STM32处理器的数控电源设计

基于ARM处理器的数控电源设计摘要:电源是现代完成产品设计的最基本工具之一。

在现代科学研究和工业生产中, 制作低纹波、高精度的稳定直源有非常重要的意义。

本文详细论述了基于ARM处理器的数控电源设计的设计过程,详细介绍了每个模块的工作原理。

本设计基于ARMv7-M体系结构STM32F130VCT6单片机作为主控制系统,配合12位AD、DA、EEPOM、RTC时钟、设计相应的模拟数字硬件电路。

关键词:数控电源,ARM,12位AD,12位DADigital power supply design based on ARM processorAbstract: Power is the most basic of modern product design to complete one of the tools. In modern scientific research and industrial production, theproduction of low ripple, high accuracy and stability are very importantdirect source of meaning. This paper describes the ARMprocessor-based design of digital control power supply design, detailthe working principle of each module. The design is based onARMv7-M architecture STM32F130VCT6 MCU as the master controlsystem, with 12-bit AD, DA, EEPOM, RTC clock, the appropriatedesign of analog and digital hardware circuit.Key words:digital prower ,arm , 12bitAD, 12bitDA1前言低纹波、高精度稳定直源就是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用,同时对电源控制数字化和智能化, 实时处理大量信息, 实现电压、电流、频率、相位、波形等参数的精确控制和高效率处理来获得高性能的电源是电源设计技术的重要趋势。

基于STM32的多功能数控直流电源.docx

基于STM32的多功能数控直流电源.docx

题目:多功能数控直流电源队员:队员:队员:指导教师:完成时间: 2015/7/26摘要:利用STM32单片机系统,对键盘或者触摸屏输入的数据进行读取。

根据模式的设定,可以利用内部的DAC以及外部电路实现数控直流电源输出,分为稳压源、稳流源两种。

同时也可以实现模式可调的信号发生器,可以在方波、三角波、锯齿波以及正弦波之间进行切换。

关键词:STM32,数控,直流电源,信号发生器Abstract:Using STM32 MCU, read the input data from keyboard or touch screen. According to the mode set now, the DAC inside cooperates with outside circuits can output DC power supply, which can be set to two modes, name as voltage source and current source. The same time, it can also work as an signal generator, which can be changed between square wave, triangle wave, saw tooth wave and sine wave.Keyword:STM32, numerical control, DC power supply, signal generator目录1.设计任务与要求 (3)1.1 设计任务 (3)1.2 设计要求 (3)2. 方案论证 (3)2.1 总体设计 (3)2.2 关键问题 (4)3. 单元电路设计 (9)3.1 总体电路图 (9)3.2 参数计算 (10)4. 软件设计 (12)4.1 主程序 (12)4.2 关键子程序 (13)5. 系统测试 (19)5.1 测试条件 (19)5.2 测试方法与步骤 (19)5.3 测试数据 (21)5.4 结果分析 (23)6. 结论 (24)6.1 综合评价 (24)6.2 可改进的方向 (24)参考文献 (25)附录 (26)附录1 元器件清单 (26)附录2 电路图 (27)1.设计任务与要求1.1设计任务设计一个有一定输出电压、电流范围的多功能数控电源。

基于单片机的高性能数控恒流源设计与实现

基于单片机的高性能数控恒流源设计与实现

基于单片机的高性能数控恒流源设计与实现数控恒流源是一种功能比较强大的电子元器件。

它能够为其他电子元器件提供稳定的电流输出,这对很多电子设备的正常运行起到了重要的保障作用。

在工业生产领域,尤其是半导体、电路板等领域,数控恒流源的应用相当广泛。

在本文中,我将介绍一种基于单片机的高性能数控恒流源,让我们一起来看看吧。

一、设计原理该数控恒流源主要由单片机、操作界面、甄别功放和恒流稳压器四部分组成。

单片机和操作界面相连,利用程序控制电流的大小,同时可以显示电流大小和一些操作信息。

甄别功放是用来放大输出电流的,而恒流稳压器则是保证输出电流的稳定性。

二、具体实现1. 单片机电路在本设计中,我们选择了AVR单片机,主要是因为其性价比高以及易于编程的特点。

使用单片机所需的周边电路如晶振、电源电路等,这里就不再赘述。

2. 操作界面我们选择了一个12864的液晶显示器,以及四个按键,分别为上、下、左、右。

通过这些按键来选择电流大小和操作模式等。

3. 甄别功放甄别功放主要是用来放大输出电流的,我们选择了OPA548T 作为甄别功放。

其最大音量及输出功率分别为24V和200W,应该足够满足在工业生产领域的需求。

4. 恒流稳压器稳压芯片使用的是LM317,它可以输出1.2V至37V的电压,并可以有一个电流稳定的输出。

在本设计中,我们将其设置为输出1A的电流。

并用一个调节电阻来实现输出电流的调节。

三、总结本文介绍了一种基于单片机的高性能数控恒流源。

它具有功能强大、精度高、控制方便等优点。

在工业生产领域中,它有着广泛的应用。

希望本文能够对大家在这一领域里的设计和实现提供一些启示和帮助。

基于单片机的数控恒流源设计

基于单片机的数控恒流源设计

基于单片机的数控恒流源设计
基于单片机的数控恒流源设计是指利用单片机控制程序实现数字恒流源。

可以用于研究实验室中的电路测试,工厂自动化测试,航空电子测量,通讯等各种设备中对电流源做准确测量。

数控恒流源有效控制了输出电流大小,从而使电路中恒流保持在规定的电流值。

基于单片机的数控恒流源的设计,首先要选择单片机,单片机的功能越强大,能控制的电流越精确,相应的性能越好,如常用的均为大功率晶体管 MOS6553,MOSFET等。

然后确定电路,它拥有使能、放大两个部分,使能部分实现电流控制,当控制信号为高电平时,使能部分的电源开启,否则保持在空闲状态;放大部分实现电流的分配和调整,以此来调节输出的电流大小。

完成电路设计之后,根据电路原理编写单片机控制程序,使之可以按照所要求的电流进行调节,最后实现电路的连接,做好容错措施,便可以完成数控恒流源的设计。

基于单片机的数控恒流源设计不仅易于操作,而且可以精确控制输出电流,具备稳定可靠的特性,是我们在实际应用中的绝对优势之一。

基于单片机的数控直流电流源设计

基于单片机的数控直流电流源设计

摘要利用单片机所具有的智能测控特点,设计制作了基于单片机的“数控直流电流源”。

该电流源具有设定准确、输出电流稳定、可调范围全程线性等特点。

本设计由两大模块组成:①大功率压控电流源模块;②单片机应用系统模块。

前者是电流源的核心,起着恒流调节、抑制纹波电流的关键作用;后者则起着设定电流源输出、改善电流调节精度、消除小电流输出的非线性等作用。

本系统由单片机程控输出数字信号,经过D/A转换器(TLC5615)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数据形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。

实际测试结果表明,本系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±5mA,输出电流可在20mA~2000mA范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。

此外,还实现了变增益测量,提高了电流的测量精度。

本电流源采用LCD显示界面,使用直观方便。

关键词:单片机,数控,转换,PID控制AbstractBy making good use of the intelligent measure and control function of the Microprogrammed Control Unit(MCU), the numerical-controlled direct current source is designed and made. This direct current source not only can steadily output, but also can be accurately initialized, and adjusted linearly at a wide range. The design is composed of two basic modules: ①The high-power voltage-controlled current source module; ②The MCU application system module. The former one is the hard core of the current source, while keeping the output current steadily and restraining its ripple. The latter one controls the initialization of the output, improves the precision of the output signal and eliminates the nonlinear effect at the low output terminal made by small signals. In addition, the design realizes the measurement to make the gain variable. In the system, the digital programmable signal from SCM is converted to analog value by DAC (TCL5615),then the analog value that is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. On the other hand, The constant current source can be monitored by the SCM system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by SCM so that output current is more stable, so a stable voltage-controlled constant current power is designed. The test results have showed that the system can output a stable current, which has no influence with load and environment temperature, and can output a precise current of ±5mA error with a width, which can be set liberally in 20mA~2000mA, so it can be applied in need areas of constant current source with high stability and low power.so that we improve the measure precision of the current source. Besides, using LCD makes the direct current source more convenient to use.KEY WORDS: MCU gital-control, transition, PID control arithmetic目录摘要 (I)Abstract ..................................................................................................................... I I 目录 .. (1)第一章绪论 (3)1.1课题研究的重要意义 (3)1.2数控直流电流源的应用 (3)1.2.1 在计量领域中的应用 (3)1.2.2 在半导体器件性能测试中的应用 (4)1.2.3 在传感器中的应用 (4)1.2.4 现代大型仪器中稳定磁场的产生 (5)1.2.5 在其它领域中的应用 (5)1.3 数控直流电流源的发展历程 (6)1.3.1 电真空器件数控直流电流源的诞生 (6)1.3.2 晶体管数控直流电流源的产生和分类 (6)1.3.3 集成电路数控直流电流源的出现和种类 (6)1.4 国内外研究现状 (6)第二章系统总体方案设计 (8)第三章系统硬件电路设计 (10)3.1 电源模块 (10)3.2 单片机主模块 (12)3.3 V/I转换电路和功率放大电路 (12)3.4 输出电流采样电路 (13)3.5 D/A转换电路 (14)3.5.1 TLC5615功能简介 (15)3.5.2 TLC5615工作原理 (16)3.5.3 TLC5615与AT89C51单片机接口 (17)3.6 A/D转换电路 (18)3.7 数码管显示电路 (20)3.7.1 ZLG7289 简介 (21)3.7.2 控制指令 (23)第四章PID控制算法和控制目标的产生 (30)第五章系统的软件设计 (32)5.1 软件主模块 (32)5.2 按键显示 (32)5.3数值处理原理 (33)5.4 程序流程方框图 (34)5.4.1 主程序流程图: (34)5.4.2 PID算法程序流程图 (35)5.4.3 中文液晶显示: (35)5.5 主要程序 (36)5.5.1 MAIN_DISPLAY (36)5.5.2 NUM_CHANGE (37)5.5.3 DA_change (37)第六章性能分析与测试 (39)6.1输出电流波形测试 (39)6.2输出电流测试 (39)6.3纹波电流测试 (40)总结 (42)致谢 (44)参考文献 (45)附录:第一章绪论1.1课题研究的重要意义众所周知,许多科学实验都离不开电源,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管来显示电压或电流,搭配电位器来调整所要的电压及电流输出值:使用上若要调整精确的电压或者电流输出,须搭配精确的显示仪表监测,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。

基于STM32技术的电流检测系统设计

基于STM32技术的电流检测系统设计

基于STM32技术的电流检测系统设计电流检测系统是一种广泛应用于电力系统、工业自动化等领域的设备,用于实时监测电路中的电流大小及其波形。

本文将以STM32技术为基础,设计一种电流检测系统,并详细介绍系统的硬件和软件设计。

1.系统硬件设计1.1电流传感器电流传感器是电流检测系统的核心部件,用于将电流信号转化为电压信号。

常用的电流传感器有霍尔效应传感器和电压式传感器。

本设计选择使用霍尔效应传感器,由于其具有高精度、低功耗等特点。

1.2STM32微控制器STM32是一款由意法半导体公司推出的32位ARM Cortex-M系列微控制器。

STM32具有高性能、低功耗、丰富的外设接口等特点,非常适合用于工业自动化等应用领域。

1.3电压放大电路电流传感器输出的电压信号较小,需要经过放大电路进行放大以便进行准确的测量。

放大电路通常由运放组成,可以根据需要设计不同的放大倍数。

1.4ADC模块STM32微控制器内置了多个模数转换器(ADC)模块,用于将模拟电压信号转换为数字信号,供微控制器进行处理。

在本设计中,将使用ADC模块对放大后的电流信号进行采样。

1.5显示模块为了方便用户查看电流值,本设计将使用液晶显示模块。

STM32开发板上通常带有液晶显示接口,可以直接连接液晶显示模块。

2.系统软件设计2.1时钟初始化在STM32的软件开发中,首先需要进行时钟初始化,以使系统能够正常工作。

时钟初始化可以使用STM32提供的标准库函数进行设置。

2.2GPIO初始化为了实现与其他外设的接口,需要对STM32的GPIO口进行初始化设置。

在本设计中,需要初始化与电压放大电路和液晶显示模块相连接的GPIO口。

2.3ADC初始化为了使用STM32的ADC模块进行电流采样,需要对ADC模块进行初始化设置。

初始化时需要设置采样位数、采样通道等参数。

2.4采样与处理在ADC模块初始化完成后,可以使用STM32提供的相关函数进行电流采样。

stm32 foc电流环计算

stm32 foc电流环计算

stm32 foc电流环计算随着电动机在工业和家用领域的广泛应用,电机控制技术也变得越来越重要。

针对无刷直流电机(BLDC)和步进电机,磁场定向控制(FOC)是一种常用的控制方法,可以提高电机的效率和响应性。

在FOC控制中,电流环起着至关重要的作用。

电流环的目标是通过对电机三相电流的反馈和控制,驱动电机运行在预定的电流轨迹上。

STM32系列微控制器以其强大的性能和丰富的外设广泛应用于FOC电流环的计算。

本文将介绍STM32 FOC电流环计算的基本原理和实现步骤。

一、FOC电流环原理在FOC电流环中,通过计算得到电机三相电流的矢量,以控制电机的输出转矩和转速。

主要的计算目标是通过对两个坐标系(静止坐标系dq和旋转坐标系αβ)之间的变换,将三相电流转换为控制电机d轴和q轴的电流。

首先,在静止坐标系dq中,通过正弦定理和余弦定理将三相电流转换为dq坐标系的矢量。

然后,在dq坐标系中,计算得到电机d轴和q轴上的调节电流,其中d轴电流控制电机转矩,q轴电流控制电机磁通。

最后,通过反变换,将dq坐标系中的电流转换回三相电流,以便输出给电机驱动器。

二、STM32 FOC电流环计算步骤1. 设置电流环控制参数:在开始FOC电流环计算之前,需要设置一些控制参数,如电机的额定电流、PID控制器的参数等。

这些参数将影响电流环的性能和响应。

2. 获取电流反馈:通过采样电机三相电流,并进行A/D转换,将电流值转换为数字信号,以供后续计算使用。

3. 坐标变换:将三相电流转换为dq坐标系中的矢量。

这可以通过矩阵运算或使用DSP库中提供的函数实现。

4. 电流控制:在dq坐标系中,计算得到电机d轴和q轴上的调节电流。

可以使用PID控制器来实现电流的调节。

PID控制器可以根据电流误差调整输出电压,以达到保持电流在设定轨迹上的目标。

5. 反变换:将dq坐标系中的电流转换回三相电流,并输出给电机驱动器,驱动电机运行在设定的电流轨迹上。

stm32 foc电流环计算

stm32 foc电流环计算

STM32 FOC电流环计算1. 引言FOC(Field Oriented Control)电流环控制是一种广泛应用于交流电机和永磁同步电机控制的技术。

它通过将三相交错的交流电流转换为直流电流,再利用电流环控制实现对电机的精准控制。

在STM32单片机上实现FOC电流环计算是一项复杂但重要的任务,本文将从基本原理和具体计算方法等方面来介绍STM32 FOC电流环计算的相关知识。

2. 基本原理FOC电流环控制的基本原理是将三相交错的交流电流转换为直流电流,然后再通过PID控制器等方式对直流电流进行控制,从而实现对电机的精准控制。

在FOC电流环控制中,需要对交流电流进行坐标变换和逆变换,以及通过空间矢量调制技术来实现对电机的控制。

在STM32单片机上实现FOC电流环控制,需要充分理解FOC的基本原理,并且掌握相关的数学知识和编程技巧。

3. FOC电流环计算3.1 dq坐标变换在FOC电流环控制中,需要将三相交错的交流电流转换为直流电流,这就需要进行dq坐标变换。

dq坐标变换即是通过正弦变换和余弦变换,将三相交错的交流电流转换为直流电流,这里的变换矩阵即是Park变换矩阵和Clarke变换矩阵。

在STM32单片机上实现dq坐标变换,需要通过数学计算和定点运算来实现。

3.2 逆变换在FOC电流环控制中,还需要将控制好的直流电流逆变换为三相交错的交流电流,这就需要进行逆变换。

逆变换即是通过逆Park变换和逆Clarke变换,将控制好的直流电流逆变换为三相交错的交流电流。

在STM32单片机上实现逆变换,同样需要通过数学计算和定点运算来实现。

3.3 空间矢量调制在FOC电流环控制中,还需要通过空间矢量调制技术来实现对电机的控制。

空间矢量调制即是通过计算合适的PWM波形,来控制电机的转矩和速度等参数。

在STM32单片机上实现空间矢量调制,同样需要通过数学计算和定点运算来实现。

4. STM32 FOC电流环计算的实现在STM32单片机上实现FOC电流环控制,需要充分理解FOC的基本原理,并且掌握相关的数学知识和编程技巧。

基于STM32的程控精密电流源系统的设计

基于STM32的程控精密电流源系统的设计

基于STM32的程控精密电流源系统的设计黄远豪;李琦;赵秋明【摘要】采用STM32单片机为控制核心,设计了一种0~5 A输出的精密电流源系统。

STM32单片机通过16位A/D芯片检测输出电压和电流值,16位D/A 芯片对系统进行电流的程控设置。

硬件电路中运用预稳电压跟随电路和稳流电路作为电流源系统的主电路,以此来降低功耗,增加可靠性和精度。

所设计的电流源系统具有可预置,可步进调整,可按时间进行电流波形输出等功能和良好的人机交互界面。

电流源系统具有工作稳定、纹波电流小、精度高的特点。

%Abstact:A high-precision current source system with 0~5 A output was designed by using STM 32 microcontroller .The STM32 microcontroller chip senses the output voltage and current through 16-bit A/D, sets system current by16-bit D/A chip.U-sing the preregulator and voltage-followed circuit , high accuracy constant current circuit can reduce the power consumption of the system and increase the reliability and accuracy .The current source can be preset as well as the current can be set and adjusted step by step , by the same time it can make a current waveform according to the time and also this system has a fine interactive in -terface .The system is characterized by good stability , low ripple current and high accuracy .【期刊名称】《仪表技术与传感器》【年(卷),期】2015(000)011【总页数】4页(P42-44,48)【关键词】高精度;电流源;预稳压;STM32【作者】黄远豪;李琦;赵秋明【作者单位】桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004【正文语种】中文【中图分类】TP212电流源是能够向负载提供稳定电流的电源,广泛应用在电光源、电化学、通信、测量技术、电子仪器等领域,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作[1]。

基于stm32的数字恒流电源实习总结

基于stm32的数字恒流电源实习总结

基于stm32的数字恒流电源实习总结
这里是基于32的数字恒流电源实习总结:
电源电路的设计目的就是为了提供给负载稳定的电压或者电流。

数字恒流电源利用数字控制方法实现电流的恒定输出,相比于模拟控制方法,数字方法控制精度和稳定性更高。

本次实习设计了一个基于32的1数字恒流电源。

主要分为以下几个部分:
1. 电源线路设计。

采用电感并联整流后电容滤波的方式,利用32内部输出波形控制开关,实现不整型电源输出。

最大输出5/1。

2. 数字控制部分设计。

利用实时采集输出电流值,与设定值进行比较,利用不断调节导通时间,使输出电流保持恒定。

这里利用互补数码滤波提高控制精度。

3. 人机交互设计。

采用4个按键和显示屏进行电流值设定和显示。

利用32的和库完成按键扫描和输出。

4. 软件流程设计。

主要包含初始化、采集、输出、显示更新等部分。

利用状态机思想实现不同模式的切换。

5. 调试和测试。

实验台上测试程序和电路操作是否正确,校正设定值和输出值,测试不同负载下输出是否能稳定在设定值附近等。

整体实习验证了基于32如何利用数字控制方法实现恒流输出的原理。

在以后工作中,数字控制方法相对模拟控制更适合工控设备。

这次实习也增长了对数字控制和软件开发的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。

随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。

现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。

数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。

所以,高精度的数控直流电流源有很大的发展空间。

在本设计中将采用STM32单片机为系统的主控制器,能够实现多功能、宽范围、可调节等诸多功能,为更好的实现恒流提供条件,完成数控电流源的设计。

STM32片内集成的A/D转换器、D/A转换器和PWM发生模块降低了系统复杂程度,使系统简单,可靠,低价。

关键字:电源技术;数控电流源;STM32;数字化ABSTRACTPower technology, especially CNC power technology is one engineering technology with strong practice, it services for every field. Modern information technology revolution, that brought with the development of computer and communications technology, provides a broad development prospects, but also makes a higher demands in power supply technology. At the present time CNC current source on the market exists some shortcomings, such as output precision is not high, the power density is relatively low, capacity with a load is not strong, bulky, expensive, complicated operations, instability working state and so on. So the major develop direction of CNC power is specialized for these shortcomings, and to reform them. Digital intelligent power modules is made against the lacking of traditional intelligent power modules, digitize can reduce uncertainty and human participating quantity of links in the production process, and resolve some engineering problems effectively, such as reliability, intelligence, product consistency problem and so on, and greatly improve production efficiency and maintainability of the product. Therefore, high-accuracy CNC DC current source has a lot of space to develop. In this design,STM32 MCU will be used as the main controller of the whole system, it can achieve the multi-function, wide range ,adjustable, and many other functions, providing better conditions for achieving constant current and completing the design of CNC current source. It integrates A/D converter, D/A converter and PWM module in STM32 chip, thus reducing complexity of the system, keep the system simple, reliable and low price.Key words:Power technology; Numerical control current source; STM32; digital目录摘要 (Ⅰ)Abstract (Ⅱ)第1章 (1)1.1 数控电流源项目的目的和意义 (1)1.2 数控电流源在国内外的发展概况 (2)1.3 基于STM32的数控电流源的设计的内容 (4)第2 章 (5)2.1 数控电流源的核心技术原理 (5)2.2 方案的总体设计 (6)2.2.1 数控电流源的主控芯片的选择 (6)2.2.2 基于STM32的数控电流源系统结构 (8)2.2.3 恒流源模块电路的方案讨论 (9)2.3 本章小结 (9)第3章基于STM32数控电流源的硬件电路设计 (10)3.1 恒流源模块电路的设计方案 (10)3.1.1 以LM350A为恒流源模块的核心元件的恒流源电路 (10)3.1.2 数控宽范围调整、大电流输出恒流源电路 (14)3.2 数控部分 (16)3.3 供电电源 (18)3.3.1 三端稳压器 (18)3.3.2 供电电源电路 (19)3.4 本章小结 (20)第4 章 (21)4.1 主程序设计 (21)4.2 负载电流取样子程序设计 (22)4.3 键盘中断程序设计 (23)4.4 LCD1062显示程序设计 (24)4.5 本章小结 (24)结束语 (25)参考文献 (26)致谢 (28)附录 (29)附录A (29)附录B (31)第1章引言1.1 数控电流源项目的目的和意义电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。

当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多科学领域。

随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。

随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度,电源在使用时会造成许多不良后果。

世界各国纷纷对电源产品提出了不同的要求并制定了一系列产品精度标准,达标后才能够进入市场。

随着经济全球化的发展,满足国际标准的电源产品才能够获得通行证。

数控电源是从80年代才开始发展起来的产品,期间系统的电力电子理论开始建立。

这些理论为其后来的发展提供了良好的理论基础,在以后的时间里,数控电源技术开始长足的发展。

现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。

所以,高精度的数控直流电流源有很大的发展空间。

单片机技术及电压转换模块的出现为高精度数控电源的发展提供了有利条件。

新的变化技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用。

电源采用数字控制,具有以下明显优点:(1)易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。

(2)控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。

(3)控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。

(4)系统维护方便,一旦出现故障,可以很方便地通过RS232接口或RS485接口或USB接口进行调试,故障查询,历史记录查询,故障诊断,软件修复,甚至控制参数的在线修改、调试;也可以通过MODEM远程操作。

(5)系统的一致性好,成本低,生产制造方便。

由于控制软件不像模拟器件那样存在差异,所以,其一致性很好。

由于采用软件控制,控制板的体积将大大减小,生产成本下降。

(6)易组成高可靠性的多模块逆变电源并联运行系统。

为了得到高性能的并联运行逆变电源系统,每个并联运行的逆变电源单元模块都采用全数字化控制,易于在模块之间更好地进行均流控制和通讯或者在模块中实现复杂的均流控制算法(不需要通讯),从而实现高可靠性、高冗余度的逆变电源并联运行系统。

本课题主要研究的是基于你单片机的数控直流恒流源的设计,恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。

例如,在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。

为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。

恒流源还被广泛用于测量电路中,例如,电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。

它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数,并且在差动放大电路、脉冲产生电路中得到了广泛应用。

此外,线性扫描锯齿波的获得,有线通信远供电源、电泳、电解、电镀等化学加工装置电源,电子束加工机、离子注入机等电子光学设备中的供电电源也都必须应用恒流源。

随着电力电子技术的不断发展,数控电源在以往使用线性电源的场合中也获得日益广泛的应用。

在一些工业场合需要提供电压源和电流源,而且要求范围广、纹波低。

如果采用多台功能单一的电源设备,体积和重量都会增加很多,不经济,也不能满足工作的要求。

因此研究开发多功能、宽范围、可调节的数控电源很有意义。

1.2 数控电流源在国内外的发展概况在我国,以电力电子学为核心技术的电源产业,从二十世纪60年代中期开始形成,到了90年代以来,随着对系统更高效率和更低功耗的要求,电信与数据通信设备的技术更新推动电源行业中直流/直流转换器向更高灵活性和智能化的方向发展,电源产业进入快速发展期。

相关文档
最新文档