汽车线控转向系统的结构与技术原理分析

合集下载

线控转向系统工作原理

线控转向系统工作原理

线控转向系统工作原理线控转向系统是一种被广泛应用于汽车技术中的创新技术。

它采用电子信号传输的方式,将车辆驾驶员的转向操作转化为车辆实际转向的动作。

这项技术通过电子信号的传输实现了驾驶员和车辆之间的无线联系,为车辆的操控性、稳定性和安全性带来了明显的提升。

线控转向系统主要由三个主要组成部分构成:转向传感器、转向控制单元和转向执行器。

转向传感器是整个系统的核心部件。

它负责感知驾驶员转动方向盘的动作,并将其转化为电子信号传输给控制单元。

转向传感器通常采用压力传感器或角位传感器,它们能够准确地感测到方向盘的角度和转向力的大小。

转向控制单元是系统的控制中枢。

它接收来自转向传感器的信号,并根据这些信号判断驾驶员的意图,然后发送相应的指令给转向执行器。

控制单元通常由微处理器和电路板组成,它能够实现信号处理、指令判断和数据传输等功能。

转向执行器是系统的执行机构。

它接收来自控制单元的指令,将电子信号转化为机械动作驱动车辆转向。

转向执行器通常由电动助力转向机构、电机和转向放大器等部件组成,能够实现精确、高效的转向反应。

在工作过程中,当驾驶员转动方向盘时,转向传感器感知到驾驶员的动作,并将这个信号传输给控制单元。

控制单元根据驾驶员的转向意图,通过发送相应的指令给转向执行器,使其按照驾驶员的意愿实现车辆的转向动作。

整个过程中,驾驶员只需要轻轻转动方向盘,系统会自动识别并执行相应的转向操作。

线控转向系统的工作原理简单而高效。

它不仅能够降低驾驶员的操作难度,还能够提高车辆的操控性和稳定性,并且对于车辆安全性的提升也起到了关键作用。

这项创新技术为汽车行业带来了新的发展机遇,将在未来得到更广泛的应用和推广。

汽车线控转向系统的研究

汽车线控转向系统的研究

汽车线控转向系统的研究一、本文概述随着汽车技术的不断发展和创新,汽车线控转向系统作为一种先进的转向技术,正在逐步改变传统的机械转向方式,为驾驶者带来更加安全、舒适和智能的驾驶体验。

本文旨在对汽车线控转向系统进行深入的研究,分析其工作原理、技术特点、应用现状以及未来发展趋势,以期为汽车工程领域的发展提供有益的参考和借鉴。

本文首先介绍了汽车线控转向系统的基本概念和组成结构,阐述了其与传统机械转向系统的区别和优势。

接着,文章重点分析了线控转向系统的工作原理,包括转向信号的传递、控制策略的实现以及转向执行机构的动作等。

在此基础上,文章还探讨了线控转向系统在提高车辆稳定性、操控性以及安全性等方面的技术特点和应用优势。

本文还综述了国内外汽车线控转向系统的研究现状和发展趋势,分析了当前线控转向系统面临的挑战和未来的发展方向。

文章指出,随着智能化、电动化等技术的不断发展,汽车线控转向系统将进一步优化和完善,为未来的智能交通和自动驾驶技术提供有力支持。

本文总结了汽车线控转向系统的研究意义和价值,强调了其在推动汽车产业技术进步和产业升级方面的重要作用。

文章也指出了当前研究的不足之处和未来的研究方向,以期为相关领域的研究人员提供有益的参考和启示。

二、汽车线控转向系统基本原理与组成汽车线控转向系统,又称为线控转向系统(Steer-by-Wire,简称SBW),是一种新型的转向技术,它通过电子信号传递转向指令,取消了传统的机械连接,实现了转向系统的完全电气化。

这种系统的基本原理和组成部分,对理解其工作方式和性能优化具有重要意义。

线控转向系统的基本原理在于,驾驶员通过方向盘发出转向指令,这个指令通过传感器转化为电信号,然后通过电子控制单元(ECU)处理,最终通过执行机构实现车轮的转向。

这个过程中,电子控制单元是关键,它负责处理传感器信号,并根据车辆状态、驾驶员意图和道路环境等因素,计算出最合适的转向角度和转向力矩,实现车辆的稳定、安全和舒适行驶。

汽车线控制转向系统

汽车线控制转向系统

• 控制器对采集的信号进行分析处理,判 别汽车的运动状态,向方向盘回正力矩 电机和转向执行电机发送指令。保证各 种工况下都具有理想的车辆响应。 • 转向执行总成包括前轮转角传感器、转 向执行电机等。它接受控制器的命令, 由转向执行电机控制转向车轮转角,实 现驾驶员的转向意图。
• 自动防故障系统是线控转向系的重要模 块,它包括一系列的监控和实施算法, 针对不同的故障形式和故障等级做出相 应的处理,以求最大限度地保持汽车的 正常行驶。它采用严密的故障检测和处 理逻辑,以保证汽车的安全性能。
图3 线控转向系统原理图
线控转向系统由方向盘总成、控制器(ECU)和 转向执行总成3部分以及自动防故障系统、电源 等辅助系统组成。 • 方向盘总成包括方向盘、方向盘转角传感器、 方向盘回正力矩电机等,具功能主要是将驾驶 员的转向意图(通过测量方向盘转角)转换成数 字信号,传递给控制器;同时接收控制器送来 的力矩信号,产生方向盘回正力矩,以提供给 驾驶员相应的路感信息。
五、线控转向的国内发展现状 同济大学利用 Dspace /Autobox 为四轮驱动电 动汽车 开发了线控转向试验台架及四轮驱动、四轮 转向电动 汽车。武汉理工大学利用电磁施力器进行 转向盘力反 馈, 设计了模糊-PID 混合控制器, 开发 的线控转向系 统可以实现转向随动。吉林大学进行 了变传动比、转 向盘回正力矩和稳定性算法研究。但 是这些研究还都 处于初级阶段
汽车线控制转向系统
一、线控技术简介 线控技术(by-wire),就是由“电线”或者电信号实现传递 控制,而不是通过机械连接装置来操作的。 传统的操纵汽车的方式是:当驾驶员踩制动、踩油门、换档、 打转向盘时,都是通过机械机构来操纵汽车。 线控技术则是将动作转化为电信号,由电线来传递指令操纵汽 车。 线控系统需要高性能的控制器,比如由Freescale半导体公 司提供的MPC500/MPC5500系列微处理器。

线控转向简介介绍

线控转向简介介绍

总结词
模块化、可定制性
详细描述
该机器人的线控转向系统采用了模块化和可定制化的 设计思路,能够根据不同的应用场景和需求进行定制 化开发。该设计具有模块化和可定制性的特点,能够 提高机器人的适应性和灵活性,为机器人的应用提供 了更加广泛的可能性。
THANKS
感谢观看
环境适应性
线控转向系统可以帮助无人机和机器人更好地适应复杂的环境,如 狭窄的空间和崎岖的地形等。
人机交互
通过线控转向系统,无人机和机器人可以实现更直观和高效的人机交 互方式,例如通过遥控器或手势来控制它们的移动方向和姿态。
04
线控转向系统的关键技 术
转向信号的传输与处理技术
信号的传输
线控转向系统通过电信号传输转 向指令,具有快速、可靠和高效 的特点。
反馈控制
实时监测车辆的转向状态和驾驶员的转向输入,通过反馈控 制技术调整助力单元的辅助力,以提高转向系统的舒适性和 稳定性。
05
线控转向系统的未来发 展
提高系统的可靠性与安全性
可靠性
线控转向系统需要具备更高的可靠性,确保在各种工况下都能稳定运行。
安全性
系统设计应充分考虑安全性能,包括防止误操作、故障预警、失效保护等功能 。
案例三:某型机器人的线控转向系统实现
总结词
自主性、可扩展性
详细描述
该机器人的线控转向系统采用了自主控制技术和可扩展 的硬件架构,能够实现自主转向和路径规划。该设计具 有自主性和可扩展性的特点,能够提高机器人的自主性 和适应性,为机器人的应用提供了新的解决方案。
案例三:某型机器人的线控转向系统实现
06
线控转向系统案例分析
案例一:某型电动汽车的线控转向系统设计

线控转向原理

线控转向原理

线控转向原理
线控转向系统是一种常见的汽车转向系统,其基本原理是通过线性连接传递转向输入到车辆的转向机构,从而实现车辆的转向。

以下是线控转向系统的基本原理:
1.转向手柄或方向盘:驾驶员通过转动方向盘或转向手柄提供转向输入。

这一动作将转向输入转化为力或扭矩。

2.转向柱:转向柱是连接方向盘和转向齿轮的主要传动元件。

它将驾驶员的转向输入传递到转向齿轮。

3.转向齿轮:转向齿轮是一个重要的组件,位于车辆前轮的底部。

它通过齿轮机构将驾驶员的输入传递给车辆的转向机构。

4.连接杆:转向齿轮通过连接杆连接到车辆的前轮悬挂系统。

当转向齿轮受到转向输入时,连接杆将前轮的转向角度调整为相应的方向。

5.转向机构:车辆的转向机构通常包括齿轮、齿条、液压缸等组件,通过这些组件,将转向输入转化为前轮的转向动作。

6.传感器和电子控制单元(ECU):一些现代车辆的线控转向系统可能配备了传感器和ECU,用于监测车辆速度、驾驶员输入等信息。

ECU可以根据这些信息调整转向助力或实现一些辅助功能,如车道保持辅助。

总体而言,线控转向系统通过机械传动和传感器反馈,将驾驶员的转向输入传递到车辆的前轮,从而实现转向操作。

线控转向系统简单可靠,广泛应用于大多数传统汽车。

然而,随着汽车技术的发展,一些新型车辆采用电子助力转向系统等先进技术,提供更灵敏、舒适的转向体验。

线控四轮转向系统的结构和原理-概述说明以及解释

线控四轮转向系统的结构和原理-概述说明以及解释

线控四轮转向系统的结构和原理-概述说明以及解释1.引言1.1 概述线控四轮转向系统是一种先进的汽车转向技术,通过控制车辆的四个轮子分别转向,实现更加灵活和稳定的转向效果。

与传统的前后轮联动转向系统相比,线控四轮转向系统可以提升车辆的操控性和行驶稳定性,同时也能够实现更小的转弯半径和更高的转向效率。

该系统通过电子控制单元(ECU)来实现对车辆转向的精准控制,根据车辆速度、转向角度、操控输入等参数,动态调整四个轮子的转向角度,从而使车辆实现更加灵敏和平稳的转向操作。

此外,线控四轮转向系统还可以根据不同的行驶状态和路况,自动调整转向参数,提升车辆的驾驶安全性和舒适性。

在未来的汽车发展中,线控四轮转向系统将成为越来越重要的技术,为驾驶员提供更加便捷和安全的驾驶体验,同时也有助于提升汽车的燃油经济性和环保性能。

通过深入了解线控四轮转向系统的结构和原理,我们可以更好地理解其优势和应用前景,为未来的汽车发展指明方向。

1.2 文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和各个章节的内容安排。

本文主要分为引言、正文和结论三个部分。

在引言部分,我们将概述线控四轮转向系统的基本概念和重要性,介绍文章的结构和目的,旨在引导读者对本文进行初步了解和认识。

在正文部分,我们将详细介绍线控四轮转向系统的概述、结构和原理,包括系统的组成部分、工作原理和技术特点,以及系统在汽车行驶中的作用和应用场景。

在结论部分,我们将对本文进行总结,概括线控四轮转向系统的关键信息和特点,展望其未来的发展方向和应用前景,为读者提供对该系统的深入理解和思考。

通过以上内容安排,本文将全面介绍线控四轮转向系统的结构和原理,帮助读者深入了解和掌握该技术的核心知识和应用价值。

1.3 目的目的部分:本文旨在深入探讨线控四轮转向系统的结构和原理,旨在帮助读者更好地理解这一先进的汽车转向技术。

通过对线控四轮转向系统的概述、结构和原理进行分析和解释,读者将能够全面了解该系统的工作原理和优势,从而对其应用前景有更清晰的认识。

线控转向系统功能安全设计技术

线控转向系统功能安全设计技术

线控转向系统功能安全设计技术概述随着汽车工业的发展,车载电子系统变得越来越复杂,汽车的安全性成为了一个严峻的挑战。

线控转向系统作为汽车的重要部件之一,在提升车辆操控性和行驶安全性方面发挥着关键作用。

本文将深入探讨线控转向系统的功能安全设计技术。

二级标题1:线控转向系统的原理线控转向系统是通过电子信号控制车辆的转向动作,取代了传统的机械转向系统。

其原理是通过发送信号给转向电机,控制前轮的转向角度。

这种系统可以实现更精确、更灵敏的转向调整,并提供更多的安全功能。

二级标题2:线控转向系统的功能安全需求线控转向系统的功能安全设计技术必须满足一系列需求,以确保系统的可靠性和安全性。

以下是一些典型的功能安全需求:三级标题1:安全性目标•转向动作必须与驾驶员的意图一致,不会发生误操作或误解读。

•系统必须能够识别和纠正转向过程中的异常情况,如转向过度或转向失控。

•系统的响应速度必须达到一定的要求,以确保在紧急情况下能够及时响应。

三级标题2:故障和故障响应•系统必须能够检测和诊断任何故障,并采取相应的措施进行故障处理。

•在发生故障时,系统必须能够实现安全切换到备用模式,以确保车辆的基本操控功能仍可用。

•系统的备用模式必须经过充分测试和验证,具备相同的安全性能。

三级标题3:安全分析和验证•在设计过程中,必须进行详尽的安全分析,包括潜在的风险评估和安全性能要求分析。

•系统的安全性能必须通过严格的验证和测试来进行确认,包括功能测试、可靠性测试和温度、湿度等环境测试。

三级标题4:信息安全性•系统必须具备一定的信息安全性,以防止黑客攻击和未经授权的访问。

•通信和数据传输过程中的信息必须进行加密和认证,确保数据的完整性和机密性。

二级标题3:线控转向系统的功能安全设计技术为了满足上述的功能安全需求,线控转向系统的设计涉及到多个方面的技术。

三级标题1:双重通信和冗余设计为了提高系统的可靠性和容错能力,在线控转向系统中使用双重通信和冗余设计可以有效地降低单点故障的风险。

汽车转向系的工作原理及故障分析

汽车转向系的工作原理及故障分析

汽车转向系的工作原理及故障分析汽车转向系是指汽车用来控制车辆转向的系统,其主要由转向装置、转向机构和转向器件三部分组成。

其工作原理是通过操作方向盘,转动转向器件,从而通过转向机构使车轮发生转动,以改变车辆行驶方向。

汽车转向系的主要工作原理如下:1. 转向器件:汽车转向器件通常为转向齿轮或蜗杆。

当驾驶员操作方向盘时,转向齿轮或蜗杆会受到转向器件的作用而旋转。

2. 转向机构:转向机构将转向器件的旋转运动转换为车轮的转动。

传动杆和连杆是转向机构的核心部件,它们通过连接不同转向齿轮或蜗杆,将方向盘的旋转运动传递到车轮上。

3. 转向装置:转向装置主要由转向助力器、转向传感器和转向控制装置组成。

转向助力器增加驾驶员转动方向盘的力度,使操控更加轻松。

转向传感器感知方向盘的转动角度,并将信号传输到转向控制装置。

转向控制装置根据信号来控制转向助力器的工作,实现对转向助力的精确控制。

常见的转向系故障包括:1. 转向助力失效:转向助力器失效会导致转向变得非常困难,可能是助力器泵电机故障、泄漏或助力器传感器故障等原因引起。

2. 转向不稳:转向不稳可能是由于转向机构的松动或磨损导致的,比如传动杆或连杆松动、转向骨头磨损等。

3. 方向盘回转困难:方向盘回转困难可能是由于转向器件故障或转向机构的摩擦增大引起的,比如转向齿轮磨损、蜗杆损坏等。

4. 方向盘死位:方向盘死位是指方向盘在一定范围内转动时没有任何反应的现象,可能是由于转向机构的磨损或断裂导致的。

5. 方向盘抖动:方向盘抖动可能是由于车轮平衡不良、悬挂系统问题或传动杆松动等原因引起。

汽车转向系是确保车辆安全行驶的重要系统,故障分析可以通过检查转向器件、转向机构和转向装置三个部分来进行。

及时发现和解决转向系故障,能够保证驾驶员对车辆的精确控制,提高行驶安全性。

线控转向系统控制技术综述

线控转向系统控制技术综述

线控转向系统控制技术综述线控转向系统控制技术是一种先进的汽车控制系统技术,其目的是通过电线或电缆代替机械连接来控制车辆的转向。

本文综述了线控转向系统控制技术的原理、方法及其在汽车、船舶、飞机等领域的广泛应用,同时指出该技术所面临的挑战和问题,并探讨可能的解决方案。

关键词:线控转向,控制系统,汽车,船舶,飞机,挑战,解决方案线控转向系统控制技术是一种新兴的汽车控制系统技术,其基本原理是通过电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。

该技术的出现彻底改变了传统机械转向系统的结构,提高了车辆的机动性和稳定性。

本文将详细介绍线控转向系统控制技术的原理和方法,并探讨其在汽车、船舶、飞机等领域的广泛应用及所面临的挑战和问题。

线控转向系统控制技术的基本原理是利用电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。

该技术主要包括以下几个环节:指令发送:驾驶员通过方向盘向车辆发送转向指令。

指令传输:电线或电缆将转向指令传输到车辆的转向器上。

指令执行:车辆的转向器根据接收到的指令实现车辆的转向控制。

反馈控制:控制系统根据车辆的实时位置和速度对转向指令进行修正,以确保车辆能够准确地达到驾驶员的期望位置。

线控转向系统控制技术在近年来得到了广泛的研究和应用,已成功应用于多种车型中。

线控转向系统控制技术在汽车、船舶、飞机等领域的广泛应用线控转向系统控制技术在汽车领域的应用已经得到了广泛认可,并成为许多高档车型的标准配置。

除此之外,该技术也在船舶和飞机控制领域得到了应用。

在船舶控制中,线控转向系统控制技术可以使得船舶在狭小的水域中实现灵活的转向,提高船舶的机动性和稳定性。

在飞机控制中,该技术可以实现更加精确的飞行姿态控制,从而提高飞行的安全性和准确性。

然而,线控转向系统控制技术在应用过程中也面临着一些挑战和问题。

电线或电缆的传输距离和稳定性会受到不同程度的影响,这需要进一步提高传输技术的可靠性和稳定性。

浅谈汽车线控转向系统的结构及工作原理

浅谈汽车线控转向系统的结构及工作原理

浅谈汽车线控转向系统的结构及工作原理前言汽车转向性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要的作用。

如何合理地设计转向系统,使汽车具有良好的操纵性能,始终是设计人员的重要研究课题。

在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。

线控转向系统(Steering– By - WireSystem,简称SBW)的发展,正是迎合这种客观需求。

它是继EPS 后发展起来的新一代转向系统,具有比EPS 操纵稳定性更好的特点,而且它在转向盘和转向轮之间不再采用机械连接,彻底摆脱传统转向系统所固有的限制,在给驾驶员带来方便的同时也提高了汽车的安全性。

一、线控转向系统的发展概况德国奔驰公司在1990 年开始了前轮线控转向的研究,并将它开发的线控转向系统应用于概念车F400Carving 上。

日本Koyo 也开发了线控转向系统,但为了保证系统的安全,仍然保留了转向盘与转向轮之间的机械部分,即通过离合器连接,当线控转向失效时通过离合器结合回复到机械转向。

宝马汽车公司的概念车BMWZ22,应用了SteerByWire 技术,转向盘的转动范围减小到160°,使紧急转向时驾驶员的忙碌程度得到了很大降低。

意大利Bertone 设计开发的概念车FILO,雪铁龙越野车C-Crosser,Daimlerchrysler 概念车R129,都采用了线控转向系统。

2003 年日本本田公司在纽约国际车展上推出了LexusHPX 概念车,该车也采用了线控转向系统,在仪表盘上集成了各种控制功能,实现车辆的自动控制。

估计几年后,。

汽车线控技术系列11----线控转向系统改造

汽车线控技术系列11----线控转向系统改造

驾驶员
转向盘
驾驶员 转向操作
转向盘 转角传感器 力矩传感器
转向 控制器
转向 电机
转向拉杆 位移传感器
2-8汽车线控转向改造
3.7 线控转向改造
2、使用部分原车转向部件
传统汽车转向机械结构
助力电机
助力电机
1、助力电机在管柱上 转向管柱空间受限,难度大 更换助力电机总成 破解协议+控制模块
2、助力电机在横拉杆上 转向管柱空间较大
上来说甚至可以取消掉方向盘,实现L4以上的自动驾驶级别,也是自动驾驶必须要的转向系统配 备。
2-8汽车线控转向改造
3.4 技术应用
率先在量产车上采用线控转向的英菲 尼迪Q50采用的就是这样的冗余方式。
正常情况下,多片离合器为断开 状态,就是说,虽然转向管柱仍然存 在,但并不起作用。只有当伺服机构 发生故障的紧急情况下,离合器才会 接通。接通后,通过方向盘与转向机 构(齿轮齿条机构)的刚性连接仍然 能够实现转向操作,只是手感会变重 一些。
2-8汽车线控转向改造 3.2 SBW(线控转向)系统结构及原理图
1.故障处理电机 2.转向执行电机 3.车轮角速度传感器 4.转向柱转角传感器 5.回正力矩电机 6.车速传感器、横摆角速度传感器、车身加速度传感器
2-8汽车线控转向改造 3.3 线控转向系统的关键-安全性
如果取消了转向管柱,传感器或者 伺服机构发生故障应当如何应对?
助力电机
助力电机
3、助力电机在横拉杆上 转向管柱空间较大
2-8汽车线控转向改造
3.8 线控转向改造
3、自主加装(电动观光车)
电动观光车、高尔夫球车、电动巡逻车转向机械结构
2-8汽车线控转向改造
3.9线控转向改造

线控转向系统(SBW)

线控转向系统(SBW)

线控转向系统(SBW)在车辆高速化、驾驶人员大众化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要.线控转向系统(Steering-By-Wire Systerm,简称SBW)的发展,正是满足这种客观需求。

它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,它取消转向盘与转向轮之间的机械连接,完全由电能实现转向,彻底摆脱传统转向系统所固有的限制,提高了汽车的安全性和驾驶的方便性。

5.1线控转向系统的构成SBW系统一般由转向盘模块、转向执行模块和主控制器ECU、自动防故障系统以及电源等模块组成。

转向盘模块包括路感电机和转向盘转角传感器等,转向盘模块向驾驶员提供合适的转向感觉(也称为路感)并为前轮转角提供参考信号。

转向执行模块包括转向电机、齿条位移传感器等,实现2个功能:跟踪参考前轮转角、向转向盘模块反馈轮胎所受外力的信息以反馈车辆行驶状态.主控制器控制转向盘模块和转向执行模块的协调工作。

5。

2线控转向系统的工作原理当转向盘转动时,转向传感器和转向角传感器检测到驾驶员转矩和转向盘的转角并转变成电信号输入到ECU,ECU根据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。

5.3线控转向系统特点(1)取消了方向盘和转向车轮之间的机械连接,通过软件协调它们之间的运动关系,因而消除了机械约束和转向干涉问题,可以根据车速和驾驶员喜好由程序根据汽车的行驶工况实时设置传动比.(2)去掉了原来转向系统各个模块之间的刚性机械连接,采用柔性连接,使转向系统在汽车上的布置更加灵活,转向盘的位置可以方便地布置在需要的位置。

(3)提高了汽车的操纵性.由于可以实现传动比的任意设置,并针对不同的车速,转向状况进行参数补偿,从而提高了汽车的操纵性.(4)改善驾驶员的“路感”。

关于汽车线控转向技术研究

关于汽车线控转向技术研究

• 65•当前,我国的私家车数量迅速增加,而为了实现对汽车更加良好的控制,线控转向技术被逐渐应用其中。

基于此,本文首先介绍了汽车线控转向系统的基本组成及其工作原理,研究了汽车线控转向系统中的关键技术,希望通过文章内容,大家能够对汽车线控转向技术有更进一步的认识。

目前,汽车转向系统中普遍采用线控转向技术,这是一种较为先进的转向技术。

利用该种转向技术的汽车车轮与转向盘之间无需进行机械连接,能够对汽车传动比进行任意设计,主动控制转向轮,同时可以根据车辆行驶速度相关参数的改变实施补偿,确保理想的转向特性得以良好实现,而且给底盘的布置提供了便利,符合当前汽车发展的特点,是一种值得大力推广的技术。

1 汽车线控转向系统的基本组成及其工作原理1.1 汽车线控转向系统的基本组成汽车线控转向有多种实现方式,例如:前后轮的线控转向以及四轮的线控转向。

其中前轮的线控转向又被分成多种,比如,汽车运用轮毂对电机形成的牵引力会使绕主销的转向力矩得以产生,实现汽车的转向;或是利用两个相对独立的电机对汽车左右两个轮胎进行驱动,完成阿克曼转角。

当前比较常用的线控转向系统,采用的是转向电机对齿轮齿条转向器驱动的方式,具体结构如图1所示。

图1 汽车线控转向系统基本结构关于汽车线控转向系统,主要由控制器、前轮子系统以及转向盘子系统等几个部分组成。

针对控制器,其包含如下算法:转向盘前车轮的转角算法以及正力矩的算法,分别对前轮子系统的协调处理及转向盘子系统加以控制;针对前轮子系统,其包含转向电机等系统,具有如下作用:追踪参考前轮的转角,给转向盘子系统反馈相关信息内容,如汽车行驶状况以及车胎受到外界作用力的实际情况;针对转向盘子系统,其中包含转向盘转角传感器和路感电机等部件,具有的作用如下:给汽车驾驶人员提供适宜的转向感觉,同时给前轮转角提供相关参考信号。

1.2 汽车线控转向系统的工作原理驾驶人员转动方向盘的过程中,控制器会依据方向盘转角传感器以及车辆行驶速度传感器发出的信号,通过前车轮转角的相应算法计算出参考前轮转角,并给转向电机传送相关控制信号,令转向电机实施PI 与PD 控制,确保这一参考前轮转角得以实现。

汽车线控转向系统分析

汽车线控转向系统分析

汽车线控转向系统分析本文通过阐述汽车转向系统在汽车运行时的功能和作用,并介绍了线性转向系统的结构和性能,最后分析了线性转向系统中虚拟现实技术、人工神经网络、模糊控制等关键技术,并对2个自由度的整车动力学模型进行论述。

标签:转向系统线控转向系统0引言转向系统是与汽车主动安全性能相关的重要系统,其操纵稳定性好坏对汽车性能影响很大。

操纵性是汽车准确的按照驾驶员意图行驶:稳定性是汽车在危险工况(侧滑或横摆)下汽车仍稳定行驶。

为提高操纵稳定性,出现了ESP(电子稳定程序)、主动转向、4WS(4轮转向)等。

ESP判断产生不足转向或过度转向时相应在后轮、前轮产生制动力,产生横摆力矩即纠偏力矩。

主动前轮转向(AFS-Active front steering)通过电机根据车速和行驶工况改变转向传动比。

低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向传动比较大,提高车辆的稳定性和安全性。

同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。

四轮转向的后轮也参与转向。

低速时,后轮与前轮反向转向,减小转弯半径,提高机动灵活性。

高速时,后轮与前轮同向转向,提高汽车的稳定性。

其控制目标是质心侧偏角为零。

然而这些汽车转向系统却处于机械传动阶段,由于其转向传动比固定,汽车的转向响应特性随车速而变化。

因此驾驶员就必须提前针对汽车转向特性的幅值和相位变化进行一定的操作补偿,从而控制汽车按其意愿行驶。

如果能够将驾驶员的转向操作与转向车轮之间通过信号及控制器连接起来,驾驶员的转向操作仅仅是向车辆输入自己的驾驶指令,由控制器根据驾驶员指令、当前车辆状态和路面状况确定合理的前轮转角,从而实现转向系统的智能控制,必将对车辆操纵稳定性带来很大的提高,降低驾驶员的操纵负担,改善人一车闭环系统性能。

因而线控转向系统(Steering-By-Wire System,简称SBW)应运而生。

线控转向系统的组成和工作原理

线控转向系统的组成和工作原理

线控转向系统的组成和工作原理一、线控转向系统组成线控转向系统由6部分组成:1、导航仪:导航仪是线控转向系统的核心部件,它可以实时获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据,以便操纵员对车辆实现更精确的控制和定位。

2、操纵杆:操纵杆是由操纵员直接控制车辆运行的手柄,操纵杆的操纵如同手控方向盘一样,操纵员通过操纵杆控制车辆的行驶方向和速度,经过线控转向系统的控制后驱动车辆向指定方向行驶。

3、指令接收器:指令接收器是接收来自导航仪发出的指令信息,并将其转换成机械和电气信号,传递给电控单元,从而实现车辆按照指定路线行驶。

4、电控单元:电控单元是将指令接收器获取的信号转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。

5、操纵机构:操纵机构是将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。

6、速度控制器:速度控制器是实现车辆的速度控制的装置,它可以根据实时获取的信息,控制车辆的行驶速度,以免超速等异常行为发生。

二、线控转向系统工作原理线控转向系统是由导航仪、操纵杆、指令接收器、电控单元、操纵机构和速度控制器组成,是自动驾驶技术的重要组成部分。

1、导航仪获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据。

2、操纵杆接收来自导航仪反馈的指令信息,并将其转换成电气信号传递给电控单元。

3、电控单元将指令信息转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。

4、操纵机构将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。

5、速度控制器根据实时获取的信息控制车辆的行驶速度,以免超速等异常行为发生。

汽车线控转向系统分析

汽车线控转向系统分析

汽车线控转向系统分析汽车线控转向系统的主要组成部分包括电子控制单元(ECU)、电动转向助力装置(EPAS)、转向传感器、角度传感器和驱动电机等。

ECU是系统的中央控制单元,它接收来自转向传感器和角度传感器的信号,并根据车辆条件和驾驶员的意图来控制电动转向助力装置和驱动电机的工作。

EPAS是系统的核心装置,它通过控制驱动电机的转向力矩来实现车辆的转向操作。

汽车线控转向系统相比传统的机械转向系统具有多种优势。

首先,它可以根据驾驶员的意图自动调整转向力矩,使转向操作更加轻松、流畅且精确,减少驾驶的疲劳感。

其次,它可以通过调整转向力矩的大小和方向来提高车辆的稳定性和操控性能,增加驾驶的安全性。

此外,它还可以根据行驶速度和路面状况等因素主动调整转向力矩,以提供最佳的驾驶体验。

汽车线控转向系统的关键技术包括转向算法和电动转向助力装置设计。

转向算法根据转向传感器和角度传感器的数据以及驾驶员的意图,计算出合适的转向力矩,并将其发送给EPAS。

电动转向助力装置设计需要考虑转向力矩的输出范围和响应速度,以及与车辆其他系统的协同工作等问题。

汽车线控转向系统在汽车工程领域具有广泛的应用前景。

随着自动驾驶技术的不断发展,线控转向系统可以与其他相关系统集成,实现自动驾驶和智能驾驶功能。

同时,它还可以与电子稳定系统等安全辅助系统结合,提供更高的安全性能。

此外,随着电动汽车的推广,线控转向系统可以与电动驱动系统相结合,进一步提高能源利用效率和车辆的性能。

总之,汽车线控转向系统是现代汽车的重要组成部分,它通过利用电子和传感器技术来实现车辆的转向操作。

它具有精度高、操控性强和安全性能好等优势,并且在自动驾驶和智能驾驶等领域具有广泛的应用前景。

随着科技的不断发展,汽车线控转向系统将继续迎来新的突破和创新。

汽车线控驱动系统的工作原理

汽车线控驱动系统的工作原理

汽车线控驱动系统的工作原理
汽车线控驱动系统是一种新型的汽车驱动技术,它通过电子控制系统来实现对车辆动力的精确控制。

下面是汽车线控驱动系统的工作原理:
1. 传感器监测:车辆上的各种传感器,如车速传感器、油门踏板传感器、转向角传感器等,实时监测车辆的状态和驾驶员的操作。

2. 电子控制单元(ECU):ECU 是汽车线控驱动系统的核心部件,它接收来自传感器的信号,并根据预设的控制策略进行处理和计算,生成相应的控制指令。

3. 执行器:根据 ECU 发出的指令,执行器(如电机、电磁阀等)将电能转化为机械能,实现对车辆动力的精确控制。

例如,在油门控制中,ECU 会根据驾驶员的油门踏板操作和车辆的行驶状态,计算出合适的油门开度,并通过电机或电磁阀来控制油门的开合程度,从而实现对发动机输出功率的精确控制。

4. 通信网络:汽车线控驱动系统中的各个部件之间通过通信网络(如 CAN 总线)进行数据传输和交互,以确保整个系统的协调工作。

5. 驾驶员控制:驾驶员通过操作油门踏板、刹车踏板、方向盘等部件,向汽车线控驱动系统发送操作指令。

通过汽车线控驱动系统,驾驶员可以更加精确地控制车辆的动力输出,提高了驾驶的舒适性和安全性。

同时,线控驱动系统还可以实现更加高效的能源利用,降低排放,为环保做出贡献。

汽车线控转向系统的结构与技术原理分析

汽车线控转向系统的结构与技术原理分析

汽车线控转向系统的结构与技术原理分析一、线控转向系统的结构及工作原理(一)线控转向系统的结构汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成。

1.转向盘模块转向盘模块包括转向盘组件、转向盘转角传感器、力矩传感器、转向盘回正力矩电机。

其主要功能是将驾驶员的转向意图(通过测量转向盘转角)转换成数字信号并传递给主控制器,同时主控制器向转向盘回正力矩电机发送控制信号,产生转向盘回正力矩,以提供给驾驶员相应的路感信息。

2.前轮转向模块前轮转向模块包括前轮转角传感器、转向执行电机、电机控制器和前轮转向组件等。

其功能是将测得的前轮转角信号反馈给主控制器,并接受主控制器的命令,控制转向盘完成所要求的前轮转角,实现驾驶员的转向意图。

3.主控制器主控制器对采集的信号进行分析处理,判别汽车的运动状态,向转向盘回正力矩电机和转向电机发送命令,控制两个电机协调工作。

主控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。

当汽车处于非稳定状态或驾驶员发出错误指令时,前轮线控转向系统将自动进行稳定控制或将驾驶员错误的转向操作屏蔽,以合理的方式自动驾驶车辆,使汽车尽快恢复到稳定状态。

4.自动防故障系统自动防故障系统是线控转向系统的重要模块,它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度的保持汽车的正常行驶。

线控转向技术采用严密的故障检测和处理逻辑,以最大程度地提高汽车安全性能。

(二)线控转向系统的工作原理其工作过程:来自转向盘传感器和各种车辆当前状态的信息送给电子控制子系统后,利用计算机对这些信息进行控制运算,然后对车辆转向子系统发出指令,使车辆转向。

同时车轮转向子系统中的转向阻力传感器给出的信息也经电子控制子系统,传给转向盘子系统中模拟路感的部件。

二、线控转向系统的性能特点由于线控转向系统中的转向盘和转向轮之间没有机械连接,是断开的,通过总线传输必要的信息,故该系统也称作柔性转向系统。

简述线控转向系统的组成

简述线控转向系统的组成

简述线控转向系统的组成一、引言线控转向系统是现代汽车的重要组成部分,它可以让驾驶员通过方向盘来控制车辆的转向。

本文将对线控转向系统的组成进行详细介绍。

二、线控转向系统的概述线控转向系统是由多个部件组成的,主要包括方向盘、转向柱、传感器、电动助力器和传动机构等。

方向盘是驾驶员用来控制车辆转向的手柄,而转向柱则将驾驶员通过方向盘的操作信号传递给其他部件。

三、方向盘和转向柱方向盘通常由一个圆形或半圆形的轮子和一个中心轴组成。

中心轴上有一个齿轮,这个齿轮与传动机构相连。

当驾驶员旋转方向盘时,中心轴上的齿轮也会随之旋转,从而使传动机构产生相应的运动。

转向柱则负责将驾驶员旋转方向盘时产生的信号传递给其他部件。

在一些现代汽车中,还会加入防抖装置来减少因路面颠簸等因素导致的抖动。

四、传感器传感器是线控转向系统的重要组成部分,它可以检测驾驶员的操作信号并将其转换为电信号。

这些电信号会被送往电动助力器和其他部件,从而实现车辆的转向。

常见的传感器有角度传感器和扭矩传感器。

角度传感器可以检测方向盘旋转的角度,而扭矩传感器则可以检测驾驶员施加在方向盘上的力量大小。

五、电动助力器电动助力器是线控转向系统中最重要的部件之一。

它通过产生一个旋转力矩来帮助驾驶员控制车辆转向。

在一些高档车型中,还会加入主动转向功能,即车辆能够根据路面情况自动调整方向。

六、传动机构传动机构是将驾驶员通过方向盘产生的运动信号传递给轮胎的部件。

它包括齿轮、链条、轴等多个组成部分。

当驾驶员旋转方向盘时,中心轴上的齿轮也会随之旋转,并通过传动机构将运动信号传递给轮胎。

七、总结线控转向系统是现代汽车中不可或缺的部件之一,它通过多个部件的协作来实现驾驶员对车辆转向的控制。

在未来,随着自动驾驶技术的发展,线控转向系统也将会有更多的创新和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车线控转向系统的结构与技术原理分

一、线控转向系统的结构及工作原理
(一)线控转向系统的结构
汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成。

1.转向盘模块
转向盘模块包括转向盘组件、转向盘转角传感器、力矩传感器、转向盘回正力矩电机。

其主要功能是将驾驶员的转向意图(通过测量转向盘转角)转换成数字信号并传递给主控制器,同时主控制器向转向盘回正力矩电机发送控制信号,产生转向盘回正力矩,以提供给驾驶员相应的路感信息。

2.前轮转向模块
前轮转向模块包括前轮转角传感器、转向执行电机、电机控制器和前轮转向组件等。

其功能是将测得的前轮转角信号反馈给主控制器,并接受主控制器的命令,控制转向盘完成所要求的前轮转角,实现驾驶员的转向意图。

3.主控制器
主控制器对采集的信号进行分析处理,判别汽车的运动状态,向转向盘回正力矩电机和转向电机发送命令,控制两个电机协调工作。

主控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。

当汽车处于非稳定状态或驾驶员发出错误指令时,前轮线控转向系统将自动进行稳定控制或将驾驶员错误的转向操作屏蔽,以合理的方式自动驾驶车辆,使汽车尽快恢复到稳定状态。

4.自动防故障系统
自动防故障系统是线控转向系统的重要模块,它包括一系列的监控和实施
算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度的保持
汽车的正常行驶。

线控转向技术采用严密的故障检测和处理逻辑,以最大程度
地提高汽车安全性能。

(二)线控转向系统的工作原理
其工作过程:来自转向盘传感器和各种车辆当前状态的信息送给电子控制
子系统后,利用计算机对这些信息进行控制运算,然后对车辆转向子系统发出
指令,使车辆转向。

同时车轮转向子系统中的转向阻力传感器给出的信息也经
电子控制子系统,传给转向盘子系统中模拟路感的部件。

二、线控转向系统的性能特点
由于线控转向系统中的转向盘和转向轮之间没有机械连接,是断开的,通
过总线传输必要的信息,故该系统也称作柔性转向系统。

具有如下性能特点:
柔性转向能消除转向干涉问题,为实现多功能全方位的自动控制,以及汽
车动态控制系统和汽车平顺性控制系统的系统集成提供了显着的先决条件。

对前轮驱动轿车,在安装发动机时需要考虑刚性转向轴占用空间,转向轴
必须依据汽车是左侧驾驶还是右侧驾驶安装在发动机附近,设计人员必须协调
处理各种需要安排部件。

而柔性转向去掉了原来转向系各个功能模块之间的刚
性机械连接,大大方便了系统的总布置。

舒适性得到提高。

在刚性转向系统中,路面不平和转向轮的不平衡,可以
回传到转向图1线控转向系统的结构示意图图2线控转向系统的工作原理图轴,而柔性系统不能。

转向回正力矩能够通过软件依据驾驶员的要求进行调整。

因此在不改变设
计的情况下,可以个性化地适合特定的驾驶者和驾驶环境,与转向有关的驾驶
行为都可以通过软件来实现。

消除了碰撞事故中转向柱引起伤害驾驶员的可能性,不必设立转向防扭机构。

驾驶员腿部活动空间增加,出入更方便自由。

三、线控转向的关键技术
(一)传感器技术
现代汽车技术发展特征之一就是越来越多的部件采用电子控制。

汽车电子控制系统控制效果依赖于传感器的信息采集和反馈的精度,传感器科技含量直接影响整个汽车电子控制系统的性能。

汽车SBW系统需要的相关传感器有:角位移传感器、转矩传感器、车速传感器、侧向加速度传感器、横摆角速度传感器等。

(二)总线技术
随着汽车总线技术的发展,存在着多种汽车总线标准,未来将会使用到具有高速实时传输特性的一些总线标准和协议。

这一类总线标准主要有TTP、Bytef-light和FlexRay。

TTP(时间触发协议)是一个应用于分布式实时控制系统的完整的通信协议,能够支持多种容错策略,具有节点的恢复和整合功能;BMW公司的Byte-light可用于汽车线控系统的通信网络,其特点是既能满足某些高优先级消息需要时间触发,以保证确定延迟的要求,又能满足某些消息需要事件触发,需要中断处理要求;而其他汽车制造商目前计划采用FlexRay,这是一种特别适合下一代汽车应用的网络通信系统,具有容错功能和确定的消息传输时间,能够满足汽车控制系统的高速率通信要求。

BMW、Daimler-Chryler,Motorola和Philips联合开发和建立了FlexRay标准,GM公司,Boseh公司和Volkswagen公司也加入了联合开发协会,现在已经有7个核心成员,共同致力于开发汽车分布式控制系统中高速总线系统的标准。

日前FlexRay标准的物理层标准已经由Philips公司开发完成,通迅协议正在研发中。

该标准的出台不仅提高了信息传输的一致性、可靠性,而且还简化了信息开发和使用过程,并降低了成本。

从现在的发展来看,由于FlexRay是基于时间和事件的触发协议,要优于TTP。

基于总线技术的SBW系统将传统的机械转向系统变成通过高速容错通信总线相连的电气系统,实现系统的自动化、智能化、网络化与信息化。

(三)动力电源
动力电源承担着SBW系统中电子控制单元、4个电动机的供电(2个冗余转
矩反馈电动机和2个冗余转向电动机),2个转矩反馈电动机功率大约为50~80W,2个转向电动机功率大约为500~800W,电源负荷相当重,因此要保证整个系统
的稳定工作,动力电源的性能至关重要。

随着电子元件及其高功耗零部件的不
断增加,使得汽车负荷成倍增加。

若继续维持12V供电系统,就必须通过提高
电流来获得更多的功率,但是过高的电流将给整个系统带来安全隐患,汽车电
路上的热能消耗大大增加,所以汽车供电系统必须提高电压以满足现代汽车电
气系统负荷日益增长的需要。

于是,42V供电系统应运而生。

42V电源的采用也为发展SBW系统创造了条件:电动机的质量减轻了20%;减小了线束直径,降
低了设计与使用成本,方便安装;降低了负载电流;提高了电子元件的集成度等。

这些优点对其开发具有决定性的影响,必将大大推动SBW系统的电动机以
及相关部件的发展。

(四)可靠性技术
线控转向系统发展过程中最大的困扰是可靠性的问题。

由于线控转向系统
中转向盘和转向车轮之间没有直接的机械连接,当电控系统出现故障时,车辆
将无法保证转向功能,处于失控状态。

随着技术的发展,电控系统的可靠性不
断得到提高,在系统设计中大量引入了"冗余设计"的理念,比如:传感器的冗余、电机的冗余、车载电源系统的冗余等,使线控转向系统的可靠性得到了明
显提高。

图3所示为线控转向系统冗余设计的一个典型代表。

为保证线控转向系统有充足的电能供应,而且为防止电源故障,必须使用
更加安全的42V电源系统。

在转向盘下方安置2个转向传感器,保证可以辨识
出驾驶员的操纵意图。

转向盘电机的供电采用了两路冗余设计;为保证转向盘
电机损坏时也可以施加回正力矩,在转向盘下方安装1个扭转弹簧或者安装第
二个转向盘电机。

为保证车辆前轮具有转向能力,使用了两路转向电机,相应
地配备了2个转向传感器。

在ECU的设计和控制软件的设计上也都采用了冗余
设计的思想。

由于采用了上述种种措施,大大提高了线控转向系统的可靠性。

为SBW系统在汽车上的应用提供了保障。

相关文档
最新文档