线控转向系统的性能特点

合集下载

[分享]线控技术

[分享]线控技术

SBW的英文全称是Steering By Wire。

中文意思是“线控转向系统”。

该系统去掉了转向盘和转向轮之间的机械连接,减轻了大约5kg重量,消除了路面的冲击,具有降低噪声和隔振等优点。

目前国外著名汽车公司和汽车零部件厂家竞相研究具有智能化的新一代转向系统,如美国Delphi公司、TRW公司、日木三菱公司、Koyo公司、德国Bosch公司、ZF公司、BMW公司等都相继在研制各自的SBW系统,国内也开始涉足这一相关研究领域。

SBW系统由方向盘模块、转向执行模块和ECU3个主要部分以及自动防故障系统、电源等辅助模块组成。

方向盘模块包括方向盘、方向盘转角、力矩传感器、方向盘回正力矩电机。

方向盘模块的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号并传递给主控制器;同时接受ECU送来的力矩信号,产生方向盘回正力矩以提供给驾驶员相应的路感信号。

转向执行模块包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等。

转向执行模块的功能是接受ECU的命令,控制转向电机实现要求的前轮转角,完成驾驶员的转向意图。

ECU对采集的信号进行分析处理,判别汽车的运动状态,向方向盘回正力电机和转向电机发送命令,控制两个电机的工作。

自动防故障系统是线控转向系的重要模块,它包括一系列监控和实施算法,针对不同的故障形式和等级作出相应处理,以求最大限度地保持汽车的正常行驶。

汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。

SBW的工作原理是当转向盘转动时,转向传感器和转向角传感器将测量到的驾驶员转矩和转向盘的转角转变成电信号输入到ECU,ECU依据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。

线控转向系统技术综述与实车应用(一)

线控转向系统技术综述与实车应用(一)

◆文/江苏 高惠民线控转向系统技术综述与实车应用(一)一、概述汽车线控技术(X-by-wire)起源于飞机的电传操纵系统,飞行员不再通过传统的机械回路或液压回路来控制飞机的飞行姿态,而是通过安装在操纵杆处的传感器检测飞行员施加在其上的力和位移,并将其转换为电信号,在电控单元中将信号进行处理,然后传递到执行机构,从而实现对飞机的控制。

随着线控技术的发展,这一技术逐渐应用到汽车。

图1所示为集成线控系统线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统示意图。

汽车线控技术就是将驾驶员的操纵动作经过传感器转变为电信号,通过电缆直接传输到执行机构的一种系统。

目前,汽车的线控技术主要有线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统、线控驱动(Drive by Wire,简称DBW)系统、线控悬架(Suspension by Wire)系统、线控换挡(Shift by Wire)系统。

通过分布在汽车各处的传感器实时获取驾驶员的操作意图和汽车行驶过程中的各种参数信息,传递给电控单元,电控单元将这些信息进行分析和处理,得到合适的控制参数传递给各个执行机构,进行对汽车的控制,极大的提高车辆的动力性、制动性、操纵稳定性和平顺性。

其中,SBW作为线控底盘系统的关键组成部分,一直是国内外汽车厂商及学术界研究的热点。

根据我国《智能网联汽车技术路线图》规划,将在2025年实现智能线控底盘系统产业化推广应用。

SBW就是通过线控化、智能化实现个性驾驶、辅助驾驶、自动驾驶等目标,是智能网联汽车落地的关键技术。

二、SBW系统的结构及工作原理汽车转向系统大致经历了机械转向系统、液压助力转向系统(Hydraulic Power Steering,HPS)、电控液压助力转向系统 (Electro Hydraulic Power Steering,EH PS)、电动助力转向系统 (El ectr ic Power Steering,EPS)的一个发展过程。

汽车线控转向系统的研究

汽车线控转向系统的研究

汽车线控转向系统的研究一、本文概述随着汽车技术的不断发展和创新,汽车线控转向系统作为一种先进的转向技术,正在逐步改变传统的机械转向方式,为驾驶者带来更加安全、舒适和智能的驾驶体验。

本文旨在对汽车线控转向系统进行深入的研究,分析其工作原理、技术特点、应用现状以及未来发展趋势,以期为汽车工程领域的发展提供有益的参考和借鉴。

本文首先介绍了汽车线控转向系统的基本概念和组成结构,阐述了其与传统机械转向系统的区别和优势。

接着,文章重点分析了线控转向系统的工作原理,包括转向信号的传递、控制策略的实现以及转向执行机构的动作等。

在此基础上,文章还探讨了线控转向系统在提高车辆稳定性、操控性以及安全性等方面的技术特点和应用优势。

本文还综述了国内外汽车线控转向系统的研究现状和发展趋势,分析了当前线控转向系统面临的挑战和未来的发展方向。

文章指出,随着智能化、电动化等技术的不断发展,汽车线控转向系统将进一步优化和完善,为未来的智能交通和自动驾驶技术提供有力支持。

本文总结了汽车线控转向系统的研究意义和价值,强调了其在推动汽车产业技术进步和产业升级方面的重要作用。

文章也指出了当前研究的不足之处和未来的研究方向,以期为相关领域的研究人员提供有益的参考和启示。

二、汽车线控转向系统基本原理与组成汽车线控转向系统,又称为线控转向系统(Steer-by-Wire,简称SBW),是一种新型的转向技术,它通过电子信号传递转向指令,取消了传统的机械连接,实现了转向系统的完全电气化。

这种系统的基本原理和组成部分,对理解其工作方式和性能优化具有重要意义。

线控转向系统的基本原理在于,驾驶员通过方向盘发出转向指令,这个指令通过传感器转化为电信号,然后通过电子控制单元(ECU)处理,最终通过执行机构实现车轮的转向。

这个过程中,电子控制单元是关键,它负责处理传感器信号,并根据车辆状态、驾驶员意图和道路环境等因素,计算出最合适的转向角度和转向力矩,实现车辆的稳定、安全和舒适行驶。

汽车线控转向系统研究进展综述

汽车线控转向系统研究进展综述

汽车线控转向系统研究进展综述一、本文概述随着汽车科技的飞速发展,线控转向系统(Steer-by-Wire,简称SBW)作为一种先进的转向技术,正逐渐受到行业内的广泛关注。

本文旨在全面综述汽车线控转向系统的研究进展,包括其基本原理、技术特点、应用领域以及存在的挑战和未来的发展趋势。

线控转向系统作为一种新型的转向技术,通过电子信号传递驾驶员的转向意图,实现了转向系统与车辆其他控制系统的全面整合。

这种技术不仅提高了转向的精确性和响应速度,还为车辆主动安全、智能驾驶等高级功能提供了坚实的基础。

因此,对汽车线控转向系统的研究具有重要的理论价值和实践意义。

本文将从线控转向系统的基本原理出发,详细阐述其工作机制和关键技术。

接着,通过对国内外相关文献的梳理和评价,全面分析线控转向系统在技术研发、试验验证以及产业化应用等方面取得的进展。

本文还将深入探讨线控转向系统在实际应用中面临的挑战,如安全性、可靠性、成本等问题,并对未来的发展趋势进行展望。

通过本文的综述,旨在为读者提供一个全面、深入的了解汽车线控转向系统研究进展的平台,为推动该技术的进一步发展和应用提供有益的参考。

二、汽车线控转向系统的基本构成和原理汽车线控转向系统(Steer-by-Wire,简称SBW)是一种全新的转向系统,它取消了传统的机械连接,完全通过电子信号传递驾驶员的转向意图给转向执行机构,实现车辆的转向。

SBW系统主要由转向盘总成、转向执行总成和主控制器(ECU)三个部分组成。

转向盘总成包括转向盘、转向盘转角传感器、力矩传感器和转向盘回正力矩电机等部件。

驾驶员通过操作转向盘发出转向指令,转角传感器和力矩传感器分别检测转向盘的转角和驾驶员施加在转向盘上的力矩,并将这些信息转换为电信号传递给主控制器。

主控制器是SBW系统的核心,它接收来自转向盘总成的电信号,根据预设的控制算法计算出目标转向角度和转向力矩,然后向转向执行总成发出指令。

转向执行总成包括转向电机、转向器、转向角传感器和车速传感器等部件。

汽车线控技术转向系统概述3

汽车线控技术转向系统概述3

汽车线控转向系统概述汽车线控转向系统概述摘要:汽车线控转向系统与传统转向系统相比具有明显的技术优势,成为当前汽车技术研究的热点。

为此,介绍了线控转向系统的结构、工作原理、特点和关键技术,并对其发展前景进行了展望。

关键词:线控转向;路感;传感器;关键技术Summarization of Automobile Steering-By-Wire System Abstract:Steering-by-Wire System(SBW) as a new technology is much better than traditional steering system, and become the study hot point of auto technology. It is introduce the structure, function, characters and key technology of the SBW, and foresee the trend of SBW.Key words:road feeling; sensor; key technology1前言汽车转向系统的作用是保证汽车按驾驶员的要求进行转向和正常行驶,其性能的好坏直接影响汽车的操纵稳定性。

如何合理的设计转向系统,使汽车具有良好的操纵性能,始终是汽车设计人员研究的方向。

线控转向系统(System,简称SBW 系统)作为最新一代的转向系统,与传统转向系统相比,具有明显的技术优势。

线控转向系统去掉了方向盘和转向轮之间的机械连接,减少了路面的冲击,降低了噪声,消除了碰撞时方向柱对驾驶员的伤害,增大了驾驶员腿部Steering-by-Wire活动空间,提高了驾驶舒适度。

国外著名的汽车公司和汽车零部件厂家正竞相研究这一智能化的转向系统,并在某些概念车上应用了这一技术,如宝马的BMW Z22,戴姆勒-克莱斯勒的R129等,图1为ZF 公司开发的完整的线控转向系统。

线控转向简介介绍

线控转向简介介绍

总结词
模块化、可定制性
详细描述
该机器人的线控转向系统采用了模块化和可定制化的 设计思路,能够根据不同的应用场景和需求进行定制 化开发。该设计具有模块化和可定制性的特点,能够 提高机器人的适应性和灵活性,为机器人的应用提供 了更加广泛的可能性。
THANKS
感谢观看
环境适应性
线控转向系统可以帮助无人机和机器人更好地适应复杂的环境,如 狭窄的空间和崎岖的地形等。
人机交互
通过线控转向系统,无人机和机器人可以实现更直观和高效的人机交 互方式,例如通过遥控器或手势来控制它们的移动方向和姿态。
04
线控转向系统的关键技 术
转向信号的传输与处理技术
信号的传输
线控转向系统通过电信号传输转 向指令,具有快速、可靠和高效 的特点。
反馈控制
实时监测车辆的转向状态和驾驶员的转向输入,通过反馈控 制技术调整助力单元的辅助力,以提高转向系统的舒适性和 稳定性。
05
线控转向系统的未来发 展
提高系统的可靠性与安全性
可靠性
线控转向系统需要具备更高的可靠性,确保在各种工况下都能稳定运行。
安全性
系统设计应充分考虑安全性能,包括防止误操作、故障预警、失效保护等功能 。
案例三:某型机器人的线控转向系统实现
总结词
自主性、可扩展性
详细描述
该机器人的线控转向系统采用了自主控制技术和可扩展 的硬件架构,能够实现自主转向和路径规划。该设计具 有自主性和可扩展性的特点,能够提高机器人的自主性 和适应性,为机器人的应用提供了新的解决方案。
案例三:某型机器人的线控转向系统实现
06
线控转向系统案例分析
案例一:某型电动汽车的线控转向系统设计

线控四轮转向系统的结构和原理-概述说明以及解释

线控四轮转向系统的结构和原理-概述说明以及解释

线控四轮转向系统的结构和原理-概述说明以及解释1.引言1.1 概述线控四轮转向系统是一种先进的汽车转向技术,通过控制车辆的四个轮子分别转向,实现更加灵活和稳定的转向效果。

与传统的前后轮联动转向系统相比,线控四轮转向系统可以提升车辆的操控性和行驶稳定性,同时也能够实现更小的转弯半径和更高的转向效率。

该系统通过电子控制单元(ECU)来实现对车辆转向的精准控制,根据车辆速度、转向角度、操控输入等参数,动态调整四个轮子的转向角度,从而使车辆实现更加灵敏和平稳的转向操作。

此外,线控四轮转向系统还可以根据不同的行驶状态和路况,自动调整转向参数,提升车辆的驾驶安全性和舒适性。

在未来的汽车发展中,线控四轮转向系统将成为越来越重要的技术,为驾驶员提供更加便捷和安全的驾驶体验,同时也有助于提升汽车的燃油经济性和环保性能。

通过深入了解线控四轮转向系统的结构和原理,我们可以更好地理解其优势和应用前景,为未来的汽车发展指明方向。

1.2 文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和各个章节的内容安排。

本文主要分为引言、正文和结论三个部分。

在引言部分,我们将概述线控四轮转向系统的基本概念和重要性,介绍文章的结构和目的,旨在引导读者对本文进行初步了解和认识。

在正文部分,我们将详细介绍线控四轮转向系统的概述、结构和原理,包括系统的组成部分、工作原理和技术特点,以及系统在汽车行驶中的作用和应用场景。

在结论部分,我们将对本文进行总结,概括线控四轮转向系统的关键信息和特点,展望其未来的发展方向和应用前景,为读者提供对该系统的深入理解和思考。

通过以上内容安排,本文将全面介绍线控四轮转向系统的结构和原理,帮助读者深入了解和掌握该技术的核心知识和应用价值。

1.3 目的目的部分:本文旨在深入探讨线控四轮转向系统的结构和原理,旨在帮助读者更好地理解这一先进的汽车转向技术。

通过对线控四轮转向系统的概述、结构和原理进行分析和解释,读者将能够全面了解该系统的工作原理和优势,从而对其应用前景有更清晰的认识。

线控转向系统课件

线控转向系统课件
线控转向系统依赖于电子技术和软件控制,因此 对其可靠性和稳定性要求较高。如果系统出现故 障,可能会导致转向失灵等严重后果。
法律法规限制
目前针对线控转向系统的相关法律法规还不够完 善,例如在发生交通事故时如何划分责任等问题, 这可能会限制线控转向系统的广泛应用。
成本问题
线控转向系统的制造成本较高,因为其中涉及大 量的电子元件和软件控制模块。这使得搭载线控 转向系统的车型价格较高,可能会影响其市场竞 争力。
执行器模块的主要功能是实现 转向助力的精确控制,确保汽 车能够按照驾驶员的意图进行 转向。
03
线控转向系统的优点与挑战
优点
• 提高驾驶安全性:线控转向系统通过电子信号传输取代了传统的机械连接,减 少了由于机械连接造成的延迟,从而提高了车辆在紧急情况下的响应速度,提 高了驾驶安全性。
挑战
技术可靠性
机器人技 术
在机器人技术领域,线控转向系统可用于机器人的关节控制和移动控制,实现更 加灵活和精确的机器人运动控制。
线控转向系统在机器人技术领域的应用还可以提高机器人的工作效率和精度,拓 展机器人的应用范围。
05
线控转向系统的未来展望
技术发展趋势
智能化
随着人工智能和传感器技术的发 展,线控转向系统将更加智能化,
虽然线控转向系统市场前景广阔,但也面临着技术成熟度、成本压力和法规标准等方面的 挑战。同时,随着新能源汽车和智能网联汽车的快速发展,也将为线控转向系统带来更多 的机遇和空间。
THANKS
感谢观看
技术突破
20世纪90年代,随着传感器、 控制理论和电力电子技术的进 步,线控转向系统逐渐成熟。
当前应用
现代高级汽车已经广泛应用线 控转向系统,以提高驾驶安全 性和舒适性。

汽车线控转向系统分析

汽车线控转向系统分析

汽车线控转向系统分析本文通过阐述汽车转向系统在汽车运行时的功能和作用,并介绍了线性转向系统的结构和性能,最后分析了线性转向系统中虚拟现实技术、人工神经网络、模糊控制等关键技术,并对2个自由度的整车动力学模型进行论述。

标签:转向系统线控转向系统0引言转向系统是与汽车主动安全性能相关的重要系统,其操纵稳定性好坏对汽车性能影响很大。

操纵性是汽车准确的按照驾驶员意图行驶:稳定性是汽车在危险工况(侧滑或横摆)下汽车仍稳定行驶。

为提高操纵稳定性,出现了ESP(电子稳定程序)、主动转向、4WS(4轮转向)等。

ESP判断产生不足转向或过度转向时相应在后轮、前轮产生制动力,产生横摆力矩即纠偏力矩。

主动前轮转向(AFS-Active front steering)通过电机根据车速和行驶工况改变转向传动比。

低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向传动比较大,提高车辆的稳定性和安全性。

同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。

四轮转向的后轮也参与转向。

低速时,后轮与前轮反向转向,减小转弯半径,提高机动灵活性。

高速时,后轮与前轮同向转向,提高汽车的稳定性。

其控制目标是质心侧偏角为零。

然而这些汽车转向系统却处于机械传动阶段,由于其转向传动比固定,汽车的转向响应特性随车速而变化。

因此驾驶员就必须提前针对汽车转向特性的幅值和相位变化进行一定的操作补偿,从而控制汽车按其意愿行驶。

如果能够将驾驶员的转向操作与转向车轮之间通过信号及控制器连接起来,驾驶员的转向操作仅仅是向车辆输入自己的驾驶指令,由控制器根据驾驶员指令、当前车辆状态和路面状况确定合理的前轮转角,从而实现转向系统的智能控制,必将对车辆操纵稳定性带来很大的提高,降低驾驶员的操纵负担,改善人一车闭环系统性能。

因而线控转向系统(Steering-By-Wire System,简称SBW)应运而生。

线控四轮转向系统的研究综述及技术总结

线控四轮转向系统的研究综述及技术总结

线控四轮转向系统的研究综述及技术总结近年来,随着科技的不断发展,机器人技术已经发展成为一个非常热门的领域。

其中,线控四轮转向系统技术的研究已经受到了越来越多的关注。

本文旨在对此类技术的研究进行综述,并对其中几种典型技术进行总结和探讨。

一、线控四轮转向系统的定义与特点线控四轮转向系统是机器人的一个重要部件,主要用于控制机器人的行驶方向。

它的主要特点是与车辆发动机并无直接的机械连接,而是通过电子线控系统实现转向的控制。

二、线控四轮转向系统技术的发展历程线控四轮转向技术最初出现于上世纪70年代后期,当时主要用于汽车的制动系统中。

到了80年代,此技术开始向轮胎转向控制领域扩展,成为了轮胎转向控制系统不可或缺的组成部分。

而随着数字化技术的不断发展,线控四轮转向系统的精度和速度得到了大幅提升。

三、线控四轮转向系统技术的类型1. 前轮转向类型:该类型的系统将前轮作为控制方向的主导部件,能够实现车辆的小半径转弯。

但是在高速行驶时显得力不从心。

2. 后轮转向类型:该类型的系统将后轮作为控制方向的主导部件,能够在高速行驶时实现更好的稳定性。

3. 四轮转向类型:该类型的系统能够实现前、后轮同时转向,从而大幅提高车辆的操控性和稳定性。

四、线控四轮转向系统的优缺点线控四轮转向系统的优点主要体现在其能够提高车辆的操控性,减小车身侧倾,提高车辆的稳定性和安全性。

缺点在于其成本较高,而且维护和保养相对困难。

五、结论线控四轮转向系统技术的研究是现代机器人技术的重要组成部分,其可以提高机器人的行驶稳定性和操控性。

但是目前该技术在成本和维护等方面还存在问题,需要进一步的研究和探索。

在今后的研究中,我们希望能够不断地完善技术,提高其的可靠性和实用性。

六、线控四轮转向系统技术的应用领域线控四轮转向系统技术的应用领域非常广泛,主要包括汽车制造、机械制造、工业自动化等领域。

在汽车制造领域中,四轮转向技术已经逐渐普及,许多高端品牌的汽车甚至都将其作为标配。

线控四轮转向系统的研究综述及技术总结

线控四轮转向系统的研究综述及技术总结
21 转 向 结 构 .
汽 车 线 控 四轮转 向系 统 由方 向盘 总 成 、 独 4个 立 的转 向 电机 、C 故 障处理 控制 器及 各种 传感 器 E U、 组成 。方 向盘总成 包 括方 向盘 、 向盘转 角传感 器 、 方
式 ,都 没 有改 变驾驶 员通 过 机械机 构操 纵转 向器 的 方式 。由于其转 向传动 比往往 固定 或变 化范 围有 限 , 汽车 的转 向 响应 特性 随车速 而变化 ,因此 驾驶 员必

技 术纵横
轻型 汽 车技 术
2 1 ( / 总 2324 0 2 5 6) 7 / 7
蔽 , 自动进行 稳定 控制 , 汽车尽 快地恢 复 到稳 定 而 使 状态 。其结 构 图如 图 1 示 。 所
奔驰 公 司 于 19 开 始 了前 轮线 控 转 向 系统 9 0年
的深人研究 l l I ,并将其开发的线控转 向系统安装于 F O C  ̄ig的概 念 车上 。德 国凯 撒 斯 劳滕 (asr 4O a n Ki — e
极 进行 了线控转 向系统 的开发研 究 。 20 年 的第 在 01 7 届 E内瓦 国际汽 车展 览 会 上 ,意 大利 的 B r n 1 t eoe t
汽 车设 计 及 开 发 公 司展 示 了新 型概 念 车 “ I O FL ”,
转 向数据 ,然后通过数据总线将信号传递给车上的 E U, 从转 向控 制 系统 获得 反馈命 令 ; 向控 制 系 C 并 转 统 也从 转 向操纵 机构 获得 驾驶员 的转 向指令 ,并从
线控转向系统模型 该模型忽略 了侧滑 , 以很好 , 可 地控制 横摆 角速度 , 保持 不足转 向的特性 , 并 有效 地
轻 型汽 车技 术

线控转向系统简介及要求2精选全文完整版

线控转向系统简介及要求2精选全文完整版

可编辑修改精选全文完整版线控转向系统(SBW,Steering-by-wire)一、功能简介(1)取消了转向盘和转向轮之间的机械连接,减轻了大约5 kg重量;(2)消除了路面的冲击,具有降低噪声和隔振等优点。

(3)为今后的辅助驾驶系统和无人驾驶汽车的研发提供技术支持。

优点:①取消转向柱、转向器后,有利于提高汽车碰撞安全性和整车主动安全性。

②提高了整车设计自由度,便于操控系统布置。

例如没有了机械连接,可以很容易把左舵驾驶换为右舵驾驶。

③转动效率高,响应时间短。

控制单元接收各种数据,可以在瞬时转向条件下,立刻提供转向动力,转动车轮。

④改善驾驶特性,增强操纵性。

基于车速、牵引力控制以及其它相关参数基础上的转向比率(转向盘转角和车轮转角的比值)不断变化,低速行驶时,转向比率低,可以减少转弯或停车时转向盘转动的角度;高速行驶时,转向比率变大,能够获得更好的直线行驶条件。

图1 线控转向系统示意图•转向盘模块的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号并传递给主控制器;同时接受ECU送来的电信号,控制路感模拟电机产生相应的方向盘回正力矩以提供给驾驶员相应的路感信号。

•前轮转向模块包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等。

转向执行模块的功能是接受ECU的命令,控制转向执行电机实现要求的前轮转角,完成驾驶员的转向意图。

•ECU对采集的信号进行分析处理,判别汽车的运动状态,向方向盘回正力电机和转向电机发送命令,控制两个电机的工作。

二、基本要求1、路感模拟电机涉及驱动程序的开发要求转向操纵轻便。

根据光洋转向试验室的经验数据,对于轻型轿车,在现实中作用于方向盘的回正力矩值一般在2-3Nm左右,其最值也不会超过5Nm;根据美国国家公路交通安全管理局(NHTSA)的调查,驾驶员在进行紧急避让的时候,方向盘转速最大为1.5r/S (轿车),一般情况下,方向盘平均转速为:500°/s。

自动驾驶汽车线控转向系统

自动驾驶汽车线控转向系统

自动驾驶汽车线控转向系统线控转向是自动驾驶汽车实现路径跟踪与避障避险必要的关键技术,其性能直接影响主动安全与驾乘体验。

在国际汽车工程师协会(Society of Automotive Engi⁃neers,SAE)发布的5级自动驾驶体系中:▪第1级为驾驶辅助,要求对转向或加、减速中单独一项进行自动控制;▪第2级为部分自动驾驶,要求对转向和加、减速中的2项进行自动控制;▪第3级及以上分别为有条件自动驾驶、高度无人驾驶和完全自动驾驶,要求转向逐步与其他子系统实现高度自主协同。

线控转向系统为自动驾驶汽车实现自主转向提供了良好的硬件基础,且线控转向系统被认为是实现高级自动驾驶的关键部件之一,具有以下优点:线控转向技术由于可实现驾驶员操作和车辆运动的解耦可提高紧急情况下转向操作正确性和驾驶员安全性采用电机控制直接驱动实现车辆转向,因此更容易与车辆其他主动安全控制子系统进行通讯和集成控制。

与传统的转向系统不同,线控转向系统取消了从转向盘到转向执行器之间的机械连接,完全由电控系统实现转向,可以摆脱传统转向系统的各种限制,汽车转向的力传递特性和角度传递特性的设计空间更大,更方便与自动驾驶其他子系统(如感知、动力、底盘等)实现集成,在改善汽车主动安全性能、驾驶特性、操纵性以及驾驶员路感方面具有优势。

1.线控转向系统发展概况线控转向的概念起源于20世纪50年代,美国天合(TRW)公司最早提出用控制信号代替转向盘和转向轮之间的机械连接,之后德国Kasselmann 和Keranen设计了早期的线控转向模型。

受制于电子控制技术,直到20世纪90年代,线控转向技术才有较大进展,美国、欧洲、日本在线控转向的研发与推广方面比较活跃,一些采用线控转向系统的概念车陆续展出。

2013年,英菲尼迪的“Q50”成为第1款应用线控转向技术的量产车型。

该线控转向系统由路感反馈总成、转向执行机构和3个电控单元组成,其中双转向电机的电控单元互相实现备份,可保证系统的冗余性能,转向柱与转向机间的离合器能够在线控转向系统出现故障时自动接合,保证紧急工况下依然可实现对车辆转向的机械操纵。

线控转向系统的性能特点

线控转向系统的性能特点

• (3)减速机构 • 6)减速机构:用来增大电动机的输出扭矩。主要有两种形式:蜗 轮蜗杆减速机构和双行星齿轮减速机构。前者主要用于转向轴助 力式转向系统,后者主要用于齿轮助力式和齿条助力式转向系统。 电磁离合器:对于动力的工作范围限定在某一速度区域内。如果超 过规定速度,电动机停转,且离合器分离,不再起传递动力的作 用。在不加助力的情况下,离合器可以清除电动机惯性的影响。 同时,在系统发生故障时,因离合器分离,又可以恢复手动控制 转向。 • (4)电子控制单元 电子控制单元:是整个控制系统的核心,完成对各个传感器输入信 号的处理,依据控制规则计算出所需的参数值,通过驱动电路, 实现对电机的控制。 • 3、EPS的分类 • (1)转向轴助力式 • 电动机固定在转向轴一侧,由离合器与转向轴相连接,直接驱动 转向轴助力转向。
第3章 四轮转向和电动转向
• 9、四轮转向(4WS)控制种类 • (1)机械控制式 • (2)机械+电子控制式 • (3)电子控制液压工作式 • (4)液压控制液压工作式 • (5)电子控制电动工作式 • 10、举例说明4WS的控制原理 (1)机械控制式(本田公司4ws系统) 机械式四轮转向系统是最早开发的四轮转向系统的一种。它包括前轮的齿 轮齿条转向系和前后转向系之间的传动轴。随着前轮偏转,转向力通过传动轴 传到后轮。机械式四轮转向系统中有时也为后轮加装第二套转向器来帮助转向。
• 2、EPS的关键部件 • (1)扭矩传感器和车速传感器 用于检测作用于转向盘上的扭矩信号的大小与方向,由力矩传感 器和旋转速度传感器组成。力矩传感器感知转向盘的转向力矩大 小,旋转传感器感知转向盘的旋转速度,并把感知的这两个信号 传递到电子控制单元。目前采用较多的转矩传感器是扭杆式电位 计传感器。 车速传感器:用于检测汽车的行驶速度,并进行自诊断,把检测到 的信号送入电子控制单元。常采用电磁感应式传感器,安装在汽 车变速器输出轴上。 • (2)电动机 电动机:电动助力转向系统的动力源,通常采用无刷永磁式直 流电动机,其功能是根据电子控制单元(ECU)的指令产生相应的输 出扭矩。电动机是影响EPS性能的主要因素之一,不仅要求低转速 大扭矩、波动小、转动惯量小、尺寸小、质量轻,而且要求可靠 性高、控制性能好。

线控转向名词解释

线控转向名词解释

线控转向1. 简介线控转向是一种汽车技术,通过电子信号控制转向系统,使车辆的转向动作更加精确和灵活。

传统的机械转向系统通过转向轴和传动装置来将驾驶员的操控信号传递到前轮,而线控转向则利用电子系统来实现这一功能。

2. 线控转向的实现原理线控转向系统主要由以下几个部分组成: - 转向传感器:通过感知驾驶员转动方向盘的角度和力度,将这些信号转换为电子信号。

- 控制单元:接收来自转向传感器的信号,并根据预设的算法进行处理,然后发送控制信号给转向执行机构。

- 转向执行机构:根据控制信号,控制车辆的前轮转向角度和速度。

3. 线控转向的优势与传统的机械转向系统相比,线控转向具有以下优势: - 精准控制:线控转向系统通过电子信号的控制,可以实现更精确的转向控制,使驾驶员的操控更加准确和灵敏。

- 个性化设置:线控转向系统可以根据驾驶员的喜好和驾驶习惯进行个性化设置,如转向助力的大小、方向盘的灵敏度等。

- 防滑功能:部分线控转向系统还可以通过监测车辆的速度或路面情况,自动调整转向助力,提供更好的防滑功能,提高行驶安全性。

- 动态调节:线控转向系统可以根据车辆的行驶状态自动调节转向助力,如在高速行驶时降低转向助力的大小,提高稳定性。

4. 线控转向的应用线控转向技术目前已广泛应用于各种类型的车辆,包括乘用车、商用车、电动车等。

随着智能驾驶和自动驾驶技术的发展,线控转向系统也逐渐融入到这些系统中,为自动驾驶提供更精确的转向控制。

5. 线控转向的发展趋势随着科技的不断进步,线控转向技术也在不断演进和发展。

未来的线控转向系统可能具有以下特点: - 更高的精度和灵敏度:通过优化算法和传感器技术,线控转向系统可以实现更高的精度和灵敏度,使驾驶员的操控更加准确自如。

- 更智能的功能:线控转向系统可能会与其他智能驾驶辅助系统相结合,如自动泊车、自适应巡航等,实现更智能化的驾驶体验。

- 更高的安全性:未来的线控转向系统可能会进一步提高车辆的安全性,如通过预测转向需求,主动调节转向助力,提供更好的驾驶控制和防滑功能。

线控转向系统控制技术综述

线控转向系统控制技术综述

线控转向系统控制技术综述线控转向系统控制技术是一种先进的汽车控制系统技术,其目的是通过电线或电缆代替机械连接来控制车辆的转向。

本文综述了线控转向系统控制技术的原理、方法及其在汽车、船舶、飞机等领域的广泛应用,同时指出该技术所面临的挑战和问题,并探讨可能的解决方案。

关键词:线控转向,控制系统,汽车,船舶,飞机,挑战,解决方案线控转向系统控制技术是一种新兴的汽车控制系统技术,其基本原理是通过电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。

该技术的出现彻底改变了传统机械转向系统的结构,提高了车辆的机动性和稳定性。

本文将详细介绍线控转向系统控制技术的原理和方法,并探讨其在汽车、船舶、飞机等领域的广泛应用及所面临的挑战和问题。

线控转向系统控制技术的基本原理是利用电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。

该技术主要包括以下几个环节:指令发送:驾驶员通过方向盘向车辆发送转向指令。

指令传输:电线或电缆将转向指令传输到车辆的转向器上。

指令执行:车辆的转向器根据接收到的指令实现车辆的转向控制。

反馈控制:控制系统根据车辆的实时位置和速度对转向指令进行修正,以确保车辆能够准确地达到驾驶员的期望位置。

线控转向系统控制技术在近年来得到了广泛的研究和应用,已成功应用于多种车型中。

线控转向系统控制技术在汽车、船舶、飞机等领域的广泛应用线控转向系统控制技术在汽车领域的应用已经得到了广泛认可,并成为许多高档车型的标准配置。

除此之外,该技术也在船舶和飞机控制领域得到了应用。

在船舶控制中,线控转向系统控制技术可以使得船舶在狭小的水域中实现灵活的转向,提高船舶的机动性和稳定性。

在飞机控制中,该技术可以实现更加精确的飞行姿态控制,从而提高飞行的安全性和准确性。

然而,线控转向系统控制技术在应用过程中也面临着一些挑战和问题。

电线或电缆的传输距离和稳定性会受到不同程度的影响,这需要进一步提高传输技术的可靠性和稳定性。

汽车线控转向系统的结构与技术原理分析

汽车线控转向系统的结构与技术原理分析

汽车线控转向系统的结构与技术原理分析一、线控转向系统的结构及工作原理(一)线控转向系统的结构汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成。

1.转向盘模块转向盘模块包括转向盘组件、转向盘转角传感器、力矩传感器、转向盘回正力矩电机。

其主要功能是将驾驶员的转向意图(通过测量转向盘转角)转换成数字信号并传递给主控制器,同时主控制器向转向盘回正力矩电机发送控制信号,产生转向盘回正力矩,以提供给驾驶员相应的路感信息。

2.前轮转向模块前轮转向模块包括前轮转角传感器、转向执行电机、电机控制器和前轮转向组件等。

其功能是将测得的前轮转角信号反馈给主控制器,并接受主控制器的命令,控制转向盘完成所要求的前轮转角,实现驾驶员的转向意图。

3.主控制器主控制器对采集的信号进行分析处理,判别汽车的运动状态,向转向盘回正力矩电机和转向电机发送命令,控制两个电机协调工作。

主控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。

当汽车处于非稳定状态或驾驶员发出错误指令时,前轮线控转向系统将自动进行稳定控制或将驾驶员错误的转向操作屏蔽,以合理的方式自动驾驶车辆,使汽车尽快恢复到稳定状态。

4.自动防故障系统自动防故障系统是线控转向系统的重要模块,它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度的保持汽车的正常行驶。

线控转向技术采用严密的故障检测和处理逻辑,以最大程度地提高汽车安全性能。

(二)线控转向系统的工作原理其工作过程:来自转向盘传感器和各种车辆当前状态的信息送给电子控制子系统后,利用计算机对这些信息进行控制运算,然后对车辆转向子系统发出指令,使车辆转向。

同时车轮转向子系统中的转向阻力传感器给出的信息也经电子控制子系统,传给转向盘子系统中模拟路感的部件。

二、线控转向系统的性能特点由于线控转向系统中的转向盘和转向轮之间没有机械连接,是断开的,通过总线传输必要的信息,故该系统也称作柔性转向系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电控式四轮转向系的组成
第3章 四轮转向和电动转向
4.1 四轮转向技术
11、与2WS相比, 4WS的优点:
(1)提高了汽车在高速行驶时和在滑溜路面上的转向性 能。 (2)驾驶员操纵方向盘反映灵敏,动作准确。 (3)在不良路面和侧风等条件下,汽车业具有较好的方 向稳定性,提高了高速下的直线行驶稳定性。 (4)提高了汽车高速转弯的行驶稳定性,不但便于转向 操纵,而且在进行急转弯时,也能保持汽车的行驶稳定性。 (5)通过使后轮转向与前轮转向相反,减小了低速行驶 时的转弯半径,不但便于在狭窄路面上进行 U型转弯,而 且在驶入车库等情况下便于驾驶。
第3章 四轮转向和电动转向
4.2 电动转向(EPS)
一、综述
所谓电动转向(EPS),就是在机械转向系统中,用电池作为能源, 电机为动力,以转向盘的转速和转矩以及车速为输入信号,通过电子 控制装置,协助人力转向,并获得最佳转向力特性的伺服系统。 主要是速度控制和电动机电流控制。速度控制是当速度高于某一值时, 系统应停止对电动机供电, 离合器处于分离状态,这时就按普通的转 向控制方式工作。系统确定电动机电流的大小是按照汽车转向力矩和 车速信号。当车速很低时,转向需要的助力大,此时供给电动机的电 流值就应大;当车速接近45km/h时,转向需要的助力减少,此时供给 电动机的电流值就应减少;当车速超过45km/h时,若无需助力,此时 就应切断电动机的电流。
横向加速度 车速感应型
其结构是在前轮的动力转向器上,再安装一个后轮专用的控制 阀,产生一个大致与横向加速度成比例的,与前轮转向器阻力相 平衡的油压,把该压力的油液送到后轮执行机构。 在执行机构中, 装入高刚性弹簧,当与送来的油压达到平衡状态时,输出杆便产 生位移,从而带动后轮开始转向。
前轮转角 车速感应型
在该系统中,从油泵出来的油液直接流入电磁阀,车速传感器, 转角传感器分别将车速和前轮转角信号输入计算机。按计算机指 令,控制油液流入后轮执行机构。
• 前轮转角传感型:为了把前轮转角传给后轮,在前轮 齿轮齿条式转向器的齿条轴上,安装了后轮转向齿轮, 其角位移,通过中间传动轴,传给后轮转向器。后轮 具有小转角同相转向,大转角逆相转向的功能。在微 小转向的高速行驶时,形成了同相转向,获得了行驶 稳定性,在大转角转向的极低速行驶时,变成逆相转 向,获得了小半径转向性能。 • 前轮转角比例车速感应型 在动力传至后轮转向轴之前, 与前者基本相同,但后轮的执行机构由相位控制部分 和动力补助部分构成。动力补助部分以油压为动力, 由后轮滑阀和动力缸构成。相位控制部分能实现对后 轮同相位或逆相位的控制。
第3章 四轮转向和电动转向
(3)电控式四轮转向系统

目前,四轮转向系统正越来越多地使用电子和计算机控制。电 控式四轮转向系统允许后轮与前轮以相同的方向偏转(在高速时) 或者以相反的方向偏转(在低速时)。 • 为实现这些功用,用计算机连接两个传感器和两个执行器。 图5-27说明了其输入和输出的工作流程。首先,车速传感器把确 切的车速信号传给计算机,计算机据此决定后轮与前轮是以相同 或者相反的方向偏转。同时,前轮转角传感器把前轮的实际转角 信号传给计算机。计算机通过后轮传感器和后轮转角传感器得到 后轮的实际转角信号。根据这些输入信号,计算机分别告诉前、 后轮转向器各自的偏转量。图4-28所示为电控式四轮转向系统主 要部件的布置位置。 • 另外,还有许多附件也是必要的;如液压泵(如果用液压 执行器而不是电动机)、电磁线圈、断路阀等。上述部件及其它 部件的不断改进,将更好地提高四轮转向系统效率和可靠性。
第3章 四轮转向和电动转向
• 9、四轮转向(4WS)控制种类 • (1)机械控制式 • (2)机械+电子控制式 • (3)电子控制液压工作式 • (4)液压控制液压工作式 • (5)电子控制电动工作式 • 10、举例说明4WS的控制原理 (1)机械控制式(本田公司4ws系统) 机械式四轮转向系统是最早开发的四轮转向系统的一种。它包括前轮的齿 轮齿条转向系和前后转向系之间的传动轴。随着前轮偏转,转向力通过传动轴 传到后轮。机械式四轮转向系统中有时也为后轮加装第二套转向器来帮助转向。
属于转向传感型,其后轮的偏转与车速无关,只与方向盘转角有一定关系。
当方向盘转角约为120左右,后轮与前轮转向一致,当方向盘转角大于240时,后轮 转向与前轮相反。
第3章 四轮转向和电动转向
(2)液压式四轮转向系统 • 第二代四轮转向系统利用液压系统来控制转向。这种类型的四轮 转向系统的后轮只能偏转1.5度左右,并且也只有在速度高于 22mile/h时才起作用。典型的液压式四轮转向系统如图4-26所示。 开始时,基本的齿轮齿条转向器使前轮偏转;同时把部分转向液 压送到后轮转向系统的控制阀中,控制该控制阀(滑阀)的位置。 前轮向某一方向偏转时,该滑阀向一个方向移动;前轮向另一方 向偏转时,该滑阀向与前面相反方向移动。 • • 然后该滑阀控制着第二套液压回路工作。这个回路利用由又驱动 一个齿轮齿条转向器像前轮的一样工作。但第二个齿轮齿条转向 器只能在很小的范围内移动。后轮的偏转角不得超过1.5度。
第3章 四轮转向和电动转向
4.1 四轮转向技术
12、4WS今后发展趋势
对4WS提出异议的理由: (1)转向性能没有明显改善。 (2)性能上仅有微小改变,但结构很复杂 (3)实用性技术目前还没有达到成熟的地步。 如果把研制费花在提高轮胎性能和改善悬架设计会收到更 好的效果。 13、各公司的4WS系统特性比较
第4章 四轮转向和电动转向
4.1 四轮转向技术
6、四轮转向(4WS)在改变形式路线时的性能
7、低速下的小转弯半径的行驶 8、后轮转向的控制类型 (1)转角传感型 后轮偏转角与前轮的偏转角之间存在某种函数关系。即后 轮可以按与前轮同方向或反方向旋转。 (2)车速传感型 根据车速设定程序,当车速达到某一预定值时,后轮与前 轮同方向偏转,而低于这一预定值时,则方向相反。
相关文档
最新文档