专题05 倍长中线问题(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 倍长中线问题
【要点提炼】
一、【倍长中线法】
中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)+倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
二、【倍长中线法拓展;两次全等】
通常,在倍长中线后的第一组全等只是一个基础,往往还需证明第二组全等,但是难点就在于如何去倍长中线,倍长中线后去连接什么线,这是问题的关键。
这时一般需要去试错,尤其是当有两个中点时,一般是倍长中线后大概率会有另一组的全等。
三、【倍长中线的常见类型】
1.基本型
如图1,在中,为边上的中线.
延长至点E,使得.
若连结,则;
若连结,则;
若连结则四边形是平行四边形.
2.中点型
如图2, C为AB的中点.
若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;
若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.
总结:在线段AB 外,与中点C 连结的点有E 和D .事实上,EC 和DC 分别是ABE ∆和ABD ∆的中线,只不过是三角形不完整罢了,本质就是隐蔽的“基本型”
3.中点+平行线型
如图3, //AB CD ,点E 为线段AD 的中点.延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.
小结 若按“中点型”来倍长,则需证明点F 在AB 上,为了避免证明三点共线,点F 就直接通过延长相交得到.因为有平行线,内错角相等,故根据“AAS ”或“ASA ”证明全等.这里“中点+平行线型”可以看做是“中点型”的改良版.
【专题训练】
一、解答题(共14小题)
1.小明遇到这样一个问题,如图1,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值
范围.
小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.
请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)
(2)AD的取值范围是
小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.
参考小明思考问题的方法,解决问题:
如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.
【答案】【第1空】SAS
【第2空】1<AD<6
【解答】解:(1)如图2中,延长AD到E,使DE=AD,连接BE.
在△BED和△CAD中,
,
∴△BED≌△CAD(SAS).
(2)∵△BED≌△CAD,
∴BE=AC=5,∵AB=7,
∴2<AE<12,
∴2<2AD<12,
∴1<AD<6.
故答案分别为SAS,1<AD<6.
解决问题:如图3中,
解:延长GE交CB的延长线于M.
∵四边形ABCD是正方形,
∴AD∥CM,
∴∠AGE=∠M,
在△AEG和△BEM中,
,
∴△AEG≌△BEM,
∴GE=EM,AG=BM=2,
∵EF⊥MG,
∴FG=FM,
∵BF=4,
∴MF=BF+BM=2+4=6,
∴GF=FM=6.
【知识点】四边形综合题
2.自主学习,学以致用
先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD 和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.
在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.
解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.
【解答】
证明:延长AD到G,使DF=DG,连接CG,
∵AD是中线,
∴BD=DC,
在△BDF和△CDG中
∴△BDF≌△CDG,
∴BF=CG,∠BFD=∠G,
∵∠AFE=∠BFD,
∴∠AFE=∠G,
∵BF=CG,BF=AC,
∴CG=AC,
∴∠G=∠CAF,
∴∠AFE=∠CAF,
∴AE=EF.
【知识点】全等三角形的判定与性质
3.阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.证明:延长AD至E使得DE=AD,连接EC,则AE=2AD ∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
,
∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=;(2)把(1)中的结论用简洁的语言描述出来.
【答案】>
【解答】解:(1)证明:延长CD至E使DE=CD,连接EB,AE.
∵CD为Rt△ABC的中线,
∴AD=CD,
∵CD=DE,∠ADC=∠EDB,
∴△ADC≌△EDB,
∴∠ACD=∠DEB,AC=BE,
∴AC∥BE,
∴四边形ACBE是平行四边形,
又∵∠ACB=90°,
∴平行四边形ACBE是矩形,
∴AB=CE,CD=DE=AD=BD,
∴CD=AB;
(2)直角三角形斜边上的中线等于斜边的一半.
【知识点】直角三角形斜边上的中线、全等三角形的判定与性质
4.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC
绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.
【解答】解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,
故答案为.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,
故答案为4.
(2)结论:AD=BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠MB′A,∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴AD=BC.
(3)存在.
理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接P A、PD、PC,作△PCD的中线PN.
连接DF交PC于O.
∵∠ADC=150°,
∴∠MDC=30°,
在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,
∴CM=2,DM=4,∠M=60°,
在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,
∴EM=BM=7,
∴DE=EM﹣DM=3,
∵AD=6,
∴AE=DE,∵BE⊥AD,
∴P A=PD,PB=PC,
在Rt△CDF中,∵CD=2,CF=6,
∴tan∠CDF=,
∴∠CDF=60°
∴∠ADF=90°=∠AEB,
∴∠CBE=∠CFD,
∵∠CBE=∠PCF,
∴∠CFD=∠PCF,
∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,
∴∠CPF=∠CDF=60°=∠CDF
易证△FCP≌△CFD,
∴CD=PF,∵CD∥PF,
∴四边形CDPF是矩形,
∴∠CDP=90°,
∴∠ADP=∠ADC﹣∠CDP=60°,
∴△ADP是等边三角形,
∴∠ADP=60°,∵∠BPF=∠CPF=60°,
∴∠BPC=120°,
∴∠APD+∠BPC=180°,
∴△PDC是△P AB的“旋补三角形”,
∵AB=2.
∴△P AB的“旋补中线”长=AB=.
【知识点】四边形综合题
5.我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫
做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC 与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE 就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
特例感知:
(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
①当△ABC是一个等边三角形时,AF与BC的数量关系是:;
②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
拓展应用:
(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△P AD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
【解答】解:(1)
∵△ABC与△ADE是一对“夹补三角形”,
∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
①∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=60°
∴AD=AE=AB=AC,∠DAE=120°,
∴∠ADE=30°,
∵AF是“夹补中线”,
∴DF=EF,
∴AF⊥DE,
在Rt△ADF中,AF=AD=AB=BC,
故答案为:AF=BC;
②当△ABC是直角三角形时,∠BAC=90°,
∵∠DAE=90°=∠BAC,
易证,△ABC≌△ADE,
∴DE=BC,
∵AF是“夹补中线”,
∴DF=EF,
∴AF=DE=BC=a,
故答案为a;
(2)解:猜想:AF=BC,
理由:如图1,延长DA到G,使AG=AD,连EG
∵△ABC与△ADE是一对“夹补三角形”,
∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
∴AG=AB,∠EAG=∠BAC,AE=AC,
∴△AEG≌△ACB,
∴EG=BC,
∵AF是“夹补中线”,
∴DF=EF,
∴AF=EG,
∴AF=BC;
(3)证明:如图4,
∵△P AD是等边三角形,
∴DP=AD=3,∠ADP=∠APD=60°,
∵∠ADC=150°,
∴∠PDC=90°,
作PH⊥BC于H,
∵∠BCD=90°
∴四边形PHCD是矩形,
∴CH=PD=3,
∴BH=6﹣3=3=CH,
∴PC=PB,
在Rt△PCD中,tan∠DPC==,
∴∠DPC=30°
∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,
∴∠APB+∠CPD=180°,
∵DP=AP,PC=PB,
∴△PCD是△PBA的“夹补三角形”,
由(2)知,CD=,
∴△P AB的“夹补中线”==.
【知识点】四边形综合题
6.如图1,在△ABC中,点D是BC的中点,延长AD到点G,使DG=AD,连接CG,可以得到△
ABD≌△GCD,这种作辅助线的方法我们通常叫做“倍长中线法”.
如图2,在△ABC中,点D是BC的中点,点E是AB上一点,连接ED,小明由图1中作辅助线的方法想到:延长ED到点G,使DG=ED,连接CG.
(1)请直接写出线段BE和CG的关系:;
(2)如图3,若∠A=90°,过点D作DF⊥DE交AC于点F,连接EF,已知BE=3,CF=2,其它条件不变,求EF的长.
【答案】BE=CG
【解答】解:(1)∵点D是BC的中点,
∴BD=CD,
在△EBD和△GCD中,
∵,
∴△EBD≌△GCD(SAS),
∴BE=CG,
故答案为:BE=CG;
(2)如图,连接GF,
由(1)知△EBD≌△GCD,
∴∠B=∠GCD,BE=CG=3,
又∵∠A=90°,
∴∠B+∠BCA=90°,
∴∠GCD+∠BCA=90°,即∠GCF=90°,
∵CG=3,CF=2,
∴FG==,
∵DF⊥DE,且DE=DG,
∴EF=FG=.
【知识点】全等三角形的判定与性质
7.[方法呈现]
(1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.
解决此问题可以用如下方法:
延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣
CE<AE<AC+CE,从而可得中线AD长的取值范围是.
[探究应用]
(2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.
(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
【答案】2<AD<8
【解答】解:(1)由题意知AC﹣CE<AE<AC+CE,即5﹣4<AD<5+3,
∴2<AD<8,
故答案为:2<AD<8;
(2)如图②,延长AE,DC交于点F,
∵AB∥CD,
∴∠BAF=∠F,
在△ABE和△FCE中
CE=BE,∠BAF=∠F,∠AEB=∠FEC,
∴△ABE≌△FEC(AAS),
∴CF=AB,
∵AE是∠BAD的平分线,
∴∠BAF=∠F AD,
∴∠F AD=∠F,
∴AD=DF,
∵DC+CF=DF,
∴DC+AB=AD.
(3)如图③,延长AE,DF交于点G,
同(2)可得:AF=FG,△ABE≌△GEC,
∴AB=CG,
∴AF+CF=AB.
【知识点】四边形综合题
8.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是
BC的中点,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.
(1)求证:△ADC≌△EDB
证明:∵延长AD到点E,使DE=AD
在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)
∴△ADC≌△EDB()
(2)探究得出AD的取值范围是;
【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE =90°,求AE的长.
【答案】【第1空】对顶角相等
【第2空】SAS
【第3空】1<AD<7
【解答】解:(1)证明:延长AD到点E,使DE=AD,在△ADC和△EDB中,
AD=ED(已作),
∠ADC=∠EDB(对顶角相等),
CD=BD(中点定义),
∴△ADC≌△EDB(SAS),
故答案为:对顶角相等,SAS;
(2)∵△ADC≌△EDB,
∴BE=AC=6,
8﹣6<AE<8+6,
∴1<AD<7,
故答案为:1<AD<7;
(3)延长AD交EC的延长线于F,
∵AB⊥BC,EF⊥BC,
∴∠ABD=∠FCD,
在△ABD和△FCD中,
,
∴△ABD≌△FCD,
∴CF=AB=2,AD=DF,
∵∠ADE=90°,
∴AE=EF,
∵EF=CE+CF=CE+AB=4+2=6,
∴AE=6.
【知识点】三角形综合题
9.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A
逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.
(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;
(2)如图2,若∠BAC=90°,求证:AD=BC;
(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.
【解答】解:(1)如图1中,
∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC=4,
(2)证明:如图2中,
∵AB绕点A旋转得到AB',AC绕点A旋转得到AC',
∴AB′=AB,AC'=AC,
∵∠BAC=90°,α+β=180°,∠B′AC′=360°﹣(α+β)﹣∠BAC,
∴∠B′AC′=360°﹣180°﹣90°=90°,
∴∠BAC=∠B′AC′,
∴△BAC≌△B′AC′(SAS)
∴BC=B′C′,
∵AD是△AB'C'边B'C'上的中线,∠B′AC′=90°.
∴AD=B′C′.
∴AD=BC.
(3)结论AD=BC成立.
理由:如图3中,延长AD到A′,使得AD=DA′,连接B′A′,C′A′.
∴AD=AA′,
∵B′D=DC′,AD=DA′,
∴四边形AB′A′C′是平行四边形,
∴AC′=B′A′=AC,
∵∠BAC+∠B′AC′=360°﹣180°=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠AB′A′,∵AB=AB′,
∴△BAC≌△AB′A′(SAS)
∴BC=AA′,
∴AD=BC.
【知识点】几何变换综合题
10.阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边
的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:
AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:
解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,
同理可得:AC2=AE2+CE2,AD2=AE2+DE2,
为证明的方便,不妨设BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=…
(1)请你完成小明剩余的证明过程;
理解运用:
(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;
②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,
点E、F分别为AO、BC的中点,则EF的长为;
拓展延伸:
(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A (﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.
请你利用上面的方法和结论,求出AD长的最大值.
【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,
∴AB2+AC2=2AE2+(x+y)2+(x﹣y)=2AE2+2x2+2y2、
=2AE2+2BD2+2DE2=2AD2+2BD2.
(2)①∵AB2+AC2=2AD2+2BD2,
∴62+42=2AD2+2×42,
∴AD=
②如图3中,
∵AF是△ABC的中线,EF是△AEO的中线,OF是△BOC的中线,
∵2EF2+2AE2=AF2+OF2,
2AF2+2BF2=AB2+AC2,
OF2=OB2﹣BF2,
∴4EF2=2OB2﹣4AE2=2OB2﹣OA2,
∴EF2=OB2﹣OA2=16,
∴EF=4(负根以及舍弃),
故答案为.4.
(3)如图4中,连接OA,取OA的中点E,连接DE.
由(2)的②可知:DE═OB2﹣OA2=,
在△ADE中,AE=,DE=,
∵AD≤AE+DE,
∴AD长的最大值为+=10.
【知识点】圆的综合题
11.[问题提出]
如图①,在△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.
[问题解决]
解决此问题可以用如下方法,延长AD到点E使DE=AD,再连结BE(或将△ACD绕着点D逆时针装转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是
[应用]
如图②,如图,在△ABC中,D为边BC的中点,已知AB=5,AC=3,AD=2.求BC的长
[拓展]
如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作DF⊥DE交边AC于点F,连结EF,已知BE=4,CF=5,则EF的长为
【解答】解:(1)在△DAC和△DEB中,
,
∴△DAC≌△DEB(SAS),
∴AC=EB=4,
∵AB﹣BE<AE<AB+BE,AB=6,
∴2<AE<10,
∴1<AD<5,
故答案为:1<AD<5;
(2)延长AD到E,使得AD=DE,连接BE,如图②,
在△DAC和△DEB中,
,
∴△DAC≌△DEB(SAS),
∴AC=EB=3,
∵AE=2AD=4,AB=5,
∴BE2+AE2=AB2,
∴∠AEB=90°,
∴BD=,
∴BC=2BD=2;
(3)延长FD到G,使得DG=FD,连接BG,EG,如图③,
在△BDG和△CDF中,
,
∴△BDG≌△CDF(SAS),
∴BG=CF=5,DG=DF,∠DBG=∠DCF,
∵DE⊥DF,
∴EG=EF,
∵∠A=90°,
∴∠ABC+∠ACB=90°,
∴∠ABC+∠DBG=90°,
∴EG=,
∴EF=,
故答案为:.
【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、垂线段最短、三角形三边关系、解直角三角形
12.我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC
绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证
明.
【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;
理由:∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,
故答案为.
②如图3,当∠BAC=90°,BC=8时,则AD长为4.
理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,
故答案为4.
(2)猜想.
证明:如图,延长AD至点Q,则△DQB'≌△DAC',
∴QB'=AC',QB'∥AC',
∴∠QB'A+∠B'AC'=180°,
∵∠BAC+∠B'AC'=180°,
∴∠QB'A=∠BAC,
又由题意得到QB'=AC'=AC,AB'=AB,
∴△AQB'≌△BCA,
∴AQ=BC=2AD,
即.
【知识点】几何变换综合题
13.如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除
外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)判断AD与BE是否相等,请说明理由;
(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;
(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.
【解答】解:(1)AD=BE.理由如下:
∵△ABC,△CDE都是等边三角形,
∴AC=BC,CD=CE,
∵∠ACD+∠BCD=∠ACB=60°,
∠BCE+∠BCD=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∵,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)如图,过点C作CN⊥BQ于点N,
∵CP=CQ,
∴PQ=2PN,
∵△ABC是等边三角形,AM是中线,
∴CM⊥AD,CM=BC=×8=4,
∴CN=CM=4(全等三角形对应边上的高相等),
∵CP=CQ=5,
∴PN===3,
∴PQ=2PN=2×3=6;
(3)PQ的长为定值6.
∵点D在线段AM的延长线(或反向延长线)上时,△ACD和△BCE全等,
∴对应边AD、BE上的高线对应相等,
∴CN=CM=4是定值,
∴PQ的长是定值.
【知识点】全等三角形的判定与性质、等边三角形的性质
14.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到
AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A 叫做“旋半中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;
②如图3,当∠BAC=90°,BC=4时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用:
(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.
【解答】解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AC=2AB′=2AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,
故答案为:.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC∽△B′AC′,
∴BC=2B′C′,
∵B′D=DC′,
∴AD=B′C′=BC==1,
故答案为:1;
(2)结论:AD=BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,
∵AB=AB′,
∴△BAC∽△AB′M,
∴BC=2AM,
∴AD=BC.
(3)如图4,
∵AD=BC,BC=4,
∴AD=1,
∴D在以A为圆心,以1为半径的圆上,
∴当D运动到直线OA与半圆相交时OD最大,
∵A(4,3),
∴OA=5,
∵AD=1,
∴OD的最大值是6.
过A作AE⊥x轴于E,过D作DF⊥x轴于F,
∴AE∥DF,
∴△AOE∽△DOF,
∴==,
∵OE=4,AE=3,
∴OF=,DF=,
∴D(,).【知识点】几何变换综合题。