小学六年级数学《比的基本性质》教学设计教案(精选10篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学《比的基本性质》教学设计教案
小学六年级数学《比的基本性质》教学设计教案(精选10篇)
作为一名默默奉献的教育工作者,通常需要准备好一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
那么你有了解过教学设计吗?以下是小编为大家整理的小学六年级数学《比的基本性质》教学设计教案,希望能够帮助到大家。
小学六年级数学《比的基本性质》教学设计教案篇1
教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。
同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。
接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。
(比的基本性质)
5.质疑辨析,深化认识。
【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。
合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2.从下列各比中找出最简整数比,并简述理由。
3:4;18:12;19:10;;0.75:2。
(二)初步应用。
1.化简前项、后项都是整数的比。
(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=():()。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2.化简前项、后项出现分数、小数的比。
(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。
教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。
有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。
化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16;48:40;0.15:0.3;
【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。
因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(PPT课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()
【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。
第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。
第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。
拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
小学六年级数学《比的基本性质》教学设计教案篇2
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据
比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重点:
探索并掌握比例的基本性质。
教学难点:
根据乘法等式写出正确的比例。
教学准备:
多媒体课件
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。
在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程
一、旧知铺垫导入。
1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
2、比和比例有什么区别?
【设计意图】
注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。
生阅读后,请同学说出黑板上比例各部分的名称。
【设计意图】
组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。
(投影出示)
先小组之内说一说,然后在指名回答。
重点说分数形式的比例外项和内项。
【设计意图】
这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。
重点突出分数形式下怎么去找比例的内项和外项。
四、探究比例的基本性质
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。
然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。
并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
【设计意图】
这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)
3、根据比例的基本性质,在( )里填上适当的数。
(投影出示)
六、全课总结:
这节课你有什么收获。
【设计意图】
关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15
小学六年级数学《比的基本性质》教学设计教案篇3
教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。
使学生体验数学学习成功的快乐。
教学重点和难点:
1.理解并掌握比例的基本性质。
2.探究、发现比例的基本性质。
教学准备:多媒体课件
教学过程:
一、复习旧知
1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。
2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为4∶8 = 1∶2
3∶6 =1∶2
所以6∶10 = 9∶15 生2:因为20∶5 = 4∶1
28∶7 = 4∶1
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。
)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。
]
二、探究比例的基本性质1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。
回答问题:?把原来的三角形按几比几来缩小的?
两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。
2.认识比例的项
(1)观察这几组比例,它们有什么共同点?
说明:组成比例的四个数,叫作比例的项。
两端的两项叫作比例的外项,中间的两项叫作比例的內项。
(2)结合6:3=4:2具体说一说在比例6:3=4:2中,组成比例的四个数“
6、
3、
4、2”叫作这个比例的项。
两端的两项“6和2”叫作比例的外项。
中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
3.探究比例的基本性质
认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。
4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什
么?(ad=bc)6.小结
其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。
(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。
8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
(2)应用比例的基本性质判断能否组成比例
(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。
然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。
]
三、巩固练习
1.完成“练一练”第1题。
(1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。
)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。
这样一共能写出几个比例?
2、练习七第2题
(1)下面四个数
5、
7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,
然后观察能写出的有什么规律?
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。
若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。
一个写,另一个判断。
4.我是小法官,对错我来判。
(1)在比例中,两个外项的积减去两个内项的积,差是0。
( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。
( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。
( ) 5.完成“练一练”第2题
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。
(2)学生独立完成第2小题。
四、全课总结
今天我们学习了什么内容?你有什么收获?
小学六年级数学《比的基本性质》教学设计教案篇4
教学目标:
1.认识比例各部分名称,理解比例的基本性质。
2.能根据比例的基本性质,正确判断两个比能否组成比例。
3.在自主探究、观察比较中,培养学生分析、概括能力。
教学重、难点:
重点:理解比例的基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学过程:
一、引入
同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)
对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)
对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到
家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?
生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。
二、探索新知
师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?
(给出数据:20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)
反馈板书:20∶30=10∶15
30∶15=20∶10
10∶15=20∶30
20∶10=30∶15 讲解:内项与外项
刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。
(板书)
观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈:在比例里,两个内项的积等于两个外项的积。
师:同意吗?
师:说说你是怎么想的,(板书:20×15=30×10)
师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?
学生写并小组内交流。
谁再来说一说这一发现?
师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
)
如果a∶b=c∶d,那么这个规律可以表示成什么?
学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?
说一说1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。
313115 ∶ 和∶ 511133( )×( )=( ) ( )×( )=( ) 填一填
根据比例的基本性质,在括号里填上合适的数。
2∶3=4∶( )(口答) 再出示:
2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填为什么都填的是6?
看来用
2、
3、
4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。
反馈:有什么好方法能写的又对又快。
三、课堂小结
小学六年级数学《比的基本性质》教学设计教案篇5
一、教学目标
1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。
二、教学重难点
重点:理解比的基本性质,掌握化简比的方法。
难点:理解化简比与求比值的不同。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:
某珠宝店发生了一起失窃案。
小偷在现场只留了一个脚印,柯南
根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。
你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?
想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。
【新授】
活动一:
上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。
两个数的比表示两个数相除。
那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。
我们带来看一看12 : 16等于12÷16,所以比值是12 / 16约分3/4。
我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。
真是一个爱动脑筋的好孩子,请坐。
6:8,前项和后项都乘2,就变成了12 : 16。
同学们还记得我们之前学过的商不变的规律吗?谁来说一说。
请你来说。
说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。
那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的8x2等于12÷16。
同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4
活动二:
那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12 : 16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。
开始。
老师看同学们都已经做的很端正了。
哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。
思路非常清晰,请坐。
利用比和除法的关系来研究6÷8写成比的'形式,就是6:8。
而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。
又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。
接下来继续,12÷16写成比的形式就是12 : 16。
同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。
其他小组还有不同的发现吗?二组同学请你来说。
说的非常有条理,请坐。
6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。
又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。
最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。
我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。
比的前项和后项同时乘或除以一个相同的数,比值不变。
那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。
同学们可真棒,这么快就探索出了比的这么重要的规律。
其实这就是我们这节课所要学习的内容,比的基本性质。
活动三:
刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?
同桌之间相互合作,来试一试。
老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简。