九年级数学上册22.1.2二次函数y=ax2的图象和性质教学
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。
通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。
但对于二次函数的图象和性质,可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。
三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。
2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.二次函数的一般形式和图象特征。
2.二次函数的增减性和对称性。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。
2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.二次函数图象和性质的相关教学素材。
3.学生分组合作学习的材料。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。
同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。
呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。
学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。
操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。
学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。
人教版九年级数学上册22.1.2二次函数y=ax2的图象和性质一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册22.1.2《二次函数y=ax2的图像和性质》教学设计一、教材分析1、地位作用:本节课是新人教版九年级数学上册第二十二章第一节第二课时。
学生在前面已熟知了画函数图象的方法:列表、描点、连线,也学习了一次函数的图像画法及形状,这为探究函数y=ax2的图象做好了知识上的准备。
学生也具备了基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
但它的图像有不同于前面,学生容易造成错误和模糊,在具体探究过程中还需教师的指导。
在学习了二次函数的概念后,就要学习函数的图像,这也是学习函数的第二步。
本节课要使学生明了简单的函数y=ax2的图象是抛物线,这是研究一般二次函数图象的基础,并通过列表及画图,使学生理解y=ax2的性质,这也是本节课的重难点。
只有学好本节课的知识,才能深入研究一般的二次函数y=ax2+bx+c的性质。
2、教学目标:(1)知道二次函数的图象是一条抛物线;(2)会画二次函数y=ax2的图象;(3)掌握二次函数y=ax2的性质,并会灵活应用.3、教学重、难点:教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
突破难点的方法:学习二次函数关键是学习其性质(开口方向,顶点坐标,对称轴,增减性等),而用描点法画函数图像是我们发现函数图象的特征和了解其性质的一个重要途径。
因此,在教学过程中应让学习画出函数图象,引导学生观察图像的特点,概括出函数的性质。
在此过程中,可用“特殊----一般,具体----抽象“的方法来学习二次函数的图像和性质,给学习足够的探索和交流的时间,让学生在自己动手体验中得出结果。
二、教学准备:多媒体课件、导学案三、教学过程四、教学反思本节课只是学习二次函数y=ax2的图像和性质,并用其性质解决实际问题,在教学过程中让学生通过观察说明性质,向学生渗透了数形结合的思想:让学生自主探索函数的开口方向,对称轴和顶点坐标。
人教版九年级上册数学 22.1.2 二次函数y=ax2的图象和性质 优秀教案
22.1.2 二次函数y =ax 2的图象和性质1.会用描点法画出y =ax 2的图象,理解抛物线的概念.2.掌握形如y =ax 2的二次函数图象和性质,并会应用.一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢? 二、合作探究 探究点一:二次函数y =ax 2的图象 【类型一】图象的识别已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( ) 解析:本题进行分类讨论:(1)当a >0时,函数y =ax 2的图象开口向上,函数y =ax 图象经过一、三象限,故排除选项B ;(2)当a <0时,函数y =ax 2的图象开口向下,函数y =ax 图象经过二、四象限,故排除选项D ;又因为在同一直角坐标系中,函数y=ax 与y =ax 2的图象必有除原点(0,0)以外的交点,故选择C.方法总结:分a >0与a <0两种情况加以讨论,并且结合一些特殊点,采取“排除法”.【类型二】实际问题中图象的识别已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间),则函数图象为()解析:根据h 关于t 的函数关系式为h =12gt 2,其中g 为正常数,t 为时间,因此函数h =12gt 2图象是受一定实际范围限制的,图象应该在第一象限,是抛物线的一部分,故选A.方法总结:在识别二次函数图象时,应该注意考虑函数的实际意义.探究点二:二次函数y =ax 2的性质 【类型一】利用图象判断二次函数的增减性作出函数y =-x 2的图象,观察图象,并利用图象回答下列问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比较y 1与y 2的大小; (2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比较y 3与y 4的大小; (3)由(1)、(2)你能得出什么结论?解析:根据画出的函数图象来确定有关数值的大小,是一种比较常用的方法.解:(1)图象如图所示,由图象可知y 1>y 2,(2)由图象可知y 3<y 4;(3)在y 轴左侧,y 随x 的增大而增大,在y 轴右侧,y随x 的增大而减小.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图进行观察和分析以免解题时产生错误.【类型二】二次函数的图象与性质的综合题已知函数y =(m +3)xm 2+3m -2是关于x 的二次函数.(1)求m 的值;(2)当m 为何值时,该函数图象的开口向下?(3)当m 为何值时,该函数有最小值? (4)试说明函数的增减性.解析:(1)由二次函数的定义可得⎩⎪⎨⎪⎧m 2+3m -2=2,m +3≠0,故可求m 的值. (2)图象的开口向下,则m +3<0;(3)函数有最小值,则m +3>0;(4)函数的增减性由函数的开口方向及对称轴来确定.解:(1)根据题意,得⎩⎪⎨⎪⎧m 2+3m -2=2,m +3≠0,解得⎩⎪⎨⎪⎧m 1=-4,m 2=1,m ≠-3.∴当m =-4或m =1时,原函数为二次函数.(2)∵图象开口向下,∴m +3<0,∴m <-3,∴m =-4.∴当m =-4时,该函数图象的开口向下.(3)∵函数有最小值,∴m +3>0,m >-3,∴m =1,∴当m =1时,原函数有最小值.(4)当m =-4时,此函数为y =-x 2,开口向下,对称轴为y 轴,当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.当m =1时,此函数为y =4x 2,开口向上,对称轴为y 轴,当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大.方法总结:二次函数的最值是顶点的纵坐标,当a >0时,开口向上,顶点最低,此时纵坐标为最小值;当a <0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.探究点三:确定二次函数y =ax 2的表达式【类型一】利用图象确定y =ax 2的解析式一个二次函数y =ax 2(a ≠0)的图象经过点A (2,-2)关于坐标轴的对称点B ,求其关系式.解析:坐标轴包含x 轴和y 轴,故点A (2,-2)关于坐标轴的对称点不是一个点,而是两个点.点A (2,-2)关于x 轴的对称点B 1(2,2),点A (2,-2)关于y 轴的对称点B 2(-2,-2).解:∵点B 与点A (2,-2)关于坐标轴对称,∴B 1(2,2),B 2(-2,-2).当y =ax2的图象经过点B 1(2,2)时,2=a ×22,∴a =12,∴y =12x 2;当y =ax 2的图象经过点B 1(-2,-2)时,-2=a ×(-2)2,∴a =-12,∴y =-12x 2.∴二次函数的关系式为y =12x 2或y =-12x 2.方法总结:当题目给出的条件不止一个答案时,应运用分类讨论的方法逐一进行讨论,从而求得多个答案.【类型二】二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求:(1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标.解析:直线与函数y =ax 2的图象交点坐标可利用方程求解.解:(1)∵点A (1,b )是直线与函数y =ax 2图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1. (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0),由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与抛物线的另一个交点B 的坐标为(-3,-9).【类型三】二次函数y =ax2的实际应用如图所示,有一抛物线形状的桥洞.桥洞离水面最大距离OM 为3m ,跨度AB =6m.(1)请你建立适当的直角坐标系,并求出在此坐标系下的抛物线的关系式;(2)一艘小船上平放着一些长3m ,宽2m 且厚度均匀的矩形木板,要使小船能通过此桥洞,则这些木板最高可堆放多少米?解析:可令O 为坐标原点,平行于AB 的直线为x 轴,建立平面直角坐标系,则可设此抛物线函数关系式为y =ax 2.由题意可得B 点的坐标为(3,-3),由此可求出抛物线的函数关系式,然后利用此抛物线的函数关系式去探究其他问题.解:(1)以O 点为坐标原点,平行于线段AB 的直线为x 轴,建立如图所示的平面直角坐标系,设抛物线的函数关系式为y =ax 2.由题意可得B 点坐标为(3,-3),∴-3=a ×32,解得a =-13,∴抛物线的函数关系式为y =-13x 2.(2)当x =1时,y =-13×12=-13.∵OM=3,∴木板最高可堆放3-13=83(米).方法总结:解决实际问题时,要善于把实际问题转化为数学问题,即建立数学模型解决实际问题的思想.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2的图象与性质,体会数学建模的数形结合的思想方法.。
人教版数学九年级上册 22.1.2 二次函数y=ax2的图象和性质 教学教案
课题:二次函数 y=ax 2的图象和性质一、 教学目标1.会利用描点法作出二次函数y=x 2的图象,并能根据图象认识和理解二次函数y=x 2的性质;2.经历画二次函数y=x 2的图象和探索性质的过程,获得利用图象研究函数性质的经验;3.培养学生利用数形结合的思想研究二次函数y=ax 2的图象、性质,提高学生观察、分析、比较、概括等能力. 二、 教学重难点1.教学重点:二次函数2ax y =的图象的作法和性质;2.教学难点:认识二次函数的图象是一条抛物线;由特殊的二次函数的图象特征及性质推广到一般的情形. 三、教学过程设计(一)课前预习,引入新知请你在同一直角坐标系中,用描点法画出函数2y x =,212y x =,22y x =的图象,并观察图象, 找出它们的异同. 设计意图:进一步巩固描点法画函数图象的方法,并初步体会二次函数图象的形状及特征.(二)合作交流,探究新知1.展示预习作业问题1:请大家认真观察这些作品,并思考在列表和画图中还有哪些需要改善的地方?问题2:这三个同学画出的二次函数的图象形状都不一样,哪个同学画的更准确一些?我们如何得到二次函数准确的图象?老师借助几何画板,通过描更多的点,得到二次函数2y x =的准确图象,并引出我们将像这样的图象称为抛物线,这条曲线也叫做抛物线y=x 2. 设计意图: 让学生带着“解决问题”的目的去主动操作,在实践中积极建构对新知识的理解.几何画板的操作更严谨的说明了二次函数图象的形状特征.2.探究二次函数的图象特征及其性质 问题1:由一次函数的学习经验,我们知道根据图象讨论性质是我们数形结合的研究函数的重要的方法。
请你认真观察这3条抛物线,它们有什么共同点?又有什么不同的地方呢?(学生一边说,老师一边板书,并且按照“开口方向、开口大小、对称轴、顶点坐标、增减性”书写)问题2:请你在同一直角坐标系中,用描点法画出函数2y x =-,212y x =-,22y x =-的图象,并结合刚刚归纳的结论思考,你现在描点有没有更快捷的方法? (用手机同频展示一个同学的作品,要学生再次“找茬”,并肯定做的好的地方,进一步规范学生的作图习惯,再要求学生依次讲出这三条抛物线的异同之处)问题3:我们刚刚得出的这两组二次函数的图象特征及性质能推广到一般的情形吗?(利用几何画板的操作,通过改变a 的值生成一系列的抛物线,给学生以直观的认知,并总结归纳二次函数2ax y =图象特征及性质,还要引导学生去发现抛物线2ax y =与抛物线2y ax =-的对称性) 设计意图:手机同频功能直观地展示学生的作品,提高了教学的效率;几何画板的动画操作非常直观地展示了图形的不同类别,帮助学生迅速获取图象特征及其性质.(三) 课堂练习,夯实新知1.判断下列函数图象的开口方向:(1)y =5x 2 (2)y =-3x 2(3) (4)2.上述四个函数图象的开口大小由大到小排列为:3.上述哪些函数的图象,在y 轴的右侧,y 随x 的增大而减小?哪些函数的图象,当x <0时,y 随x 的增大而减小?设计意图:通过这三道题的练习,让学生体会在二次函数2ax y =中,a 的符号和大小共同决定了它的图象特征及其性质,并进一步体会数形结合的思想方法. (四)释疑解惑,内化新知232y x =-2y =设计意图:选拔出学生在自主学习时提出的比较好的质疑,在新课学完后再次来解决,让学生亲身体会学习的进步,提高了成就感,也培养了学生质疑探究的良好习惯.(五)小结拓展,回味新知对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?教师将引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求学生在组内交流后派代表发言.学生发言后,老师接着总结:本节课我们将一次函数的研究方法迁移到了二次函数的画法中,并认识到了二次函数的图象是一条抛物线,然后进一步探究了抛物线2ax y =的开口方向、开口大小、对称轴、顶点坐标及它所对应的二次函数的增减性,今后我们将研究更复杂的二次函数如:2+y ax c =,2y ax bx c =++的图象及其性质,同学们也可以根据本节课的研究方法,自己课后先试一试.设计意图:通过这个环节,提高了学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,积累数学活动经验,感受自己的成长与进步,增强自信.(六)欣赏视频,追溯新知播放趣味视频《抛物线的由来》,讲述了2000多年前,我们的数学家、物理学家是如何发现二次函数的图象——抛物线的,调动他们学习的积极性,开阔他们的视野.视频播放后老师讲述:你现在知道抛物线最开始是在哪里被发现的吗?而圆锥是我们生活中一个非常常见的物体,所以只要你细心观察,做一个爱思考的有心人,说不定下一个被载入数学史册的重量级数学家就是你哦!(七)课后作业,巩固新知1.自能拓展P23—P24; 2.预习22.1.3二次函数y=ax 2+k 的图象和性质.四、教学反思 本节课是二次函数性质探究的第一节课,在教学中我采用了自能探究的教学方式,在教师的激发引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
人教版数学九年级上册《22.1.2二次函数y=ax2的图象和性质》说课稿1
人教版数学九年级上册《22.1.2二次函数y=ax2 的图象和性质》说课稿1一. 教材分析人教版数学九年级上册《22.1.2二次函数y=ax^2 的图象和性质》这一节,是在学生已经掌握了函数的概念、一次函数的图象和性质的基础上,进一步引导学生学习二次函数的图象和性质。
通过这一节的学习,使学生能够掌握二次函数的一般形式,了解二次函数的图象特征,以及掌握二次函数的性质。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数的图象和性质有了初步的了解。
但是,二次函数相对于一次函数来说,图象和性质更加复杂,需要学生有一定的抽象思维能力。
此外,学生可能对二次函数的图象和性质在实际问题中的应用还不够清晰,需要教师在教学中进行引导和启发。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数的一般形式,了解二次函数的图象特征,掌握二次函数的性质。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探究二次函数的图象和性质。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:二次函数的一般形式,二次函数的图象特征,二次函数的性质。
2.教学难点:二次函数的图象和性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,提高学生的参与度和积极性。
2.教学手段:利用多媒体课件,展示二次函数的图象和性质,使抽象的知识更加直观形象。
同时,利用练习题和案例,帮助学生巩固所学知识。
六. 说教学过程1.导入:通过复习一次函数的图象和性质,引出二次函数的一般形式,激发学生的学习兴趣。
2.探究二次函数的图象特征:让学生观察二次函数的图象,引导学生发现二次函数的顶点、开口方向等特征。
3.探究二次函数的性质:通过小组讨论,让学生归纳出二次函数的增减性、对称性等性质。
人教版数学九年级上册22.1.2二次函数y=ax2图像与性质 教案
22.1.2《二次函数的图象和性质》教学设计本节内容属于教科书中的“数与代数”的领域,是在学生已经学习了二次函数定义的基础上,画出二次函数y=ax2的图象,并通过对图象的研究和分析,掌握二次函数的y=ax2图象特征。
学生在此之前已经学习了一次函数,这是对函数及其应用知识学习的深化和提高,这是二次函数中最简单的一条抛物线,学生只有掌握了它的画法和图象特征,才能通过平移图象继续学习二次函数的其他函数图象和性质。
学生对函数的研究方法已经有了一定的了解,观察能力和归纳能力也有所提高,且他们乐于动手操作。
但是他们学习完了一次函数已有一段时间,有些知识应该有了遗忘,因此在教学时应该注意复习已学函数,要通过引导学生画图,观察图象来归纳图象特征。
根据学生已有的知识经验和年龄特点,我拟定教学目标如下:1.知识与技能:会用描点法画形如y=ax2的图象,了解抛物线的有关概念。
会观察图象说出二次函数y=ax2的图象特征和性质。
2.过程与方法:在类比一次函数探究二次函数y=ax2的图象特征的过程中,进一步体会研究函数图象的基本方法和数形结合的思想。
3.情感态度与价值观:通过对二次函数y=ax2图象的探究,让学生真正成为学习的主人并感受发现的乐趣。
根据教学目标确定教学重难点:重点是观察y=ax2图象,数形结合地得出它的图象特征。
难点是画二次函数y=ax2的图象,分段讨论它的增减性。
由于本节课的知识点与前后衔接比较紧密,因此在教学中主要采用的教学方法有:观察比较,类比迁移以及多媒体辅助教学等方法,教学时要注意对一次函数学习方法的复习进行迁移。
教学中注重对学生的学法指导,让学生类比一次函数的学习方法,通过画图、比较、观察,进而归纳图象特征和掌握学习函数方法。
主要使用的教学用具有:多媒体课件,学案。
为了突出重点、突破难点、达成教学目标,确定了以下几个教学环节:一、知识回顾,导入新知设计了两个个问题:1、什么叫做二次函数?2、我们是如何研究一次函数的?设计意图:引起对旧知的思考,为知识点迁移埋下伏笔。
九年级数学上册 22.1.2 二次函数y=ax2的图象和性质教案 (新版)新人教版-(新版)新人教版
教 学 内 容一、探索新知:画二次函数y =x 2的图象. 列表:x … -3 -2 -1 0 1 2 3y =x 2…描点,并连线由图象可得二次函数y =x 2的性质:1.二次函数y =x 2是一条曲线,把这条曲线叫做______________. 2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象开口______. 3.自变量x 的取值X 围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的______. 因此,抛物线与对称轴的交点叫做抛物线的_____________. 6.抛物线y =x 2有____________点(填“最高”或“最低”) . 二、例题分析例1 在同一直角坐标系中,画出函数y =12x 2,y =x 2,y =2x 2的图象.解:列表并填:x…-4 -3 -2 -112341.填表:开口方向顶点 对称轴有最高或最低点最值y =23 x 2当x =____时,y 有最_______值,是_y =-8x 22.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图,① y =ax 2② y =bx 2③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接.___________________________________七、目标检测1.函数y =37x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 X 围为___________.4.写出一个过点(1,2)的函数表达式_________________. 六、教学效果追忆:。
人教版九年级上册数学 22.1.2二次函数y=ax2 的图象和性质 教案
《二次函数y=ax2的图象与性质》教案一、学情分析学生已掌握了二次函数的概念,以及初二年所学的函数图象的作法:描点法。
作出二次函数的图象难度不会很大,但二次函数y=ax2图象的性质探索过程会有较大的难度,本课通过探索活动和课件演示使学生直观的发现函数的性质,大大的降低了学生理解的难度。
二、教材分析《二次函数y=ax2 的图象与性质》是初中数学九年级(上)二次函数的一节内容。
本课是在学生掌握了二次函数的概念下对二次函数y=ax2的图象与性质进一步的研究,通过作出二次函数的图象来研究它的开口方向,对称轴,顶点坐标等性质。
通过这节的学习,学生将掌握函数y=ax2 的图象与性质,它是进一步学习二次函数的基础。
二次函数的图象与性质是初中阶段所学的有关函数知识的重要内容之一。
三、教学目标根据上述学情分析和教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:会用描点法画出二次函数y=ax2的图象,能根据图象观察、分析出二次函数y=ax2的开口方向,对称轴,顶点坐标等有关性质。
(2)能力目标:通过函数图象进一步理解二次函数和抛物线的有关知识,并且能应用到实际问题中;提高学生对比、发现、概括的能力;培养观察能力和分析问题的能力。
(3)情感目标:通过作函数图象,认识数形结合的数学思想方法;培养学生动手能力、勇于探索创新及实事求是的科学精神。
四、教学重点、难点1.重点(1)二次函数y=ax2的图象画法;(2)了解抛物线的相关定义;(3)根据图象观察、分析出二次函数y=ax2 的性质;2.难点二次函数y=ax2的性质的应用,渗透数形结合的数学思想方法,了解从特殊到一般的探索方法,培养观察能力和分析问题的能力。
五、教学过程教学流程教师活动学生活动设计意图复习旧知导入新课1、通过提问,复习函数图象的画法(列表、描点、连线)。
2、范例:画出y=x2的函数图象,结合图象介绍下列名称定义:①顶点;②对称轴;③开口及开口方向.学生回顾、口答学生通过课件学习y=x2的函数图象的画法,并学习新知:二次函数的相关的名称定义回顾原有知识,明确画图的方法与步骤,为本节课的学习奠定基础在复习图象画法的同时,引入二次函数的图像时抛物线,以及二次函数顶点、对称轴、开口及开口方向等定义探究活动1探究活动:指导学生,在同一坐标系中,画出y=x2、y=12x2,y=2x2的函数图象。
2020九年级数学上册 第二十二章 二次函数 22.1.2 二次函数y=ax2的图象和性质教案
二次函数y=ax2的图象和性质课题: 22.1.2 二次函数y=ax2的图象和性质.课时 1 课时教学设计课标要求1.会用描点法画出形如y=ax2的二次函数图象,了解抛物线的有关概念.2.通过观察图象能说出二次函数y=ax2的图象和性质.教材及学情分析1、教材分析:二次函数”这一章是初中阶段所学的有关函数知识的重点内容之一,学生在学习了正比例函数、一次函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是今后学习其它初等函数的基础,因此,这部分对学生学习函数内容有着承上启下的作用,对培养和提高学生用函数模型(函数思想)来解决实际问题,逐步提高分析问题,解决问题的能力有着一定的作用。
2、学情分析九年级的学生,在讲本节课之前,已经学习了一次函数的概念、图像和性质,从知识结构上看他们已经具备了继续探究二次函数的图像和性质的基础。
学生自主探究和合作交流的能力较强,并且他们比较、分析、抽象和概括的能力也有较大提高。
但也有一些问题,求函数的解析式、由函数图象得出有用的信息的能力有待提高。
课时教学目标1.会用描点法画出形如y=ax2的二次函数图象,了解抛物线的有关概念.2.通过观察图象能说出二次函数y=ax2的图象和性质.3.在探究二次函数y=ax2的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想.重点二次函数y=ax2图象的描绘和图象特征的归纳.难点选择适当的自变量的值和相应的函数值来画函数图象,该过程较为复杂.教法学法指导启发法发现法练习法教具准备课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课一、导入复习1.同学们可以回想一下,一次函数的性质是如何研究的?先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质.2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?为研究二次函数的图像和性质做铺垫2020 ax的图象和性质.21x函数的性质,应先研究二次函数的图象.1.二次函数y=x的图象.…-3 -2 -1 0 1 2 3…9 4 1 0 1 4 9教2=2x=-2x方向、对称性、顶点等几个方面分别描述这两个巩固二次函数的概念小结抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点.对于抛物线y=ax2,∣a∣越大,抛物线的开口越小.如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.板书设计二次函数y=ax2的图象和性质.一、 ax2+bx+c=0 (a≠0)二、二次函数y=ax2的图象和性质.1、形状:抛物线2、开口方向:向上3、对称轴:y轴4、顶点:(0,0)作业设计绩优学案1、必做题:1———92、选做题:10题教学反思。
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教学设计
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教学设计一. 教材分析人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》这一节主要介绍了二次函数y=ax2的图象和性质。
内容包括:二次函数的图象是抛物线,讨论了抛物线的开口方向、对称轴、顶点坐标等,并学习了如何通过a的值来判断抛物线的性质。
这部分内容是整个初中数学的重要知识点,对于学生来说,理解和掌握二次函数的图象和性质对于后续学习其他数学知识有着重要的基础作用。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的定义,对于函数有一定的认识和理解。
但在学习这一节内容时,学生可能对于抛物线的性质和开口方向的判断还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,加深对二次函数图象和性质的理解。
三. 教学目标1.理解二次函数y=ax^2的图象和性质,能够判断抛物线的开口方向、对称轴和顶点坐标。
2.培养学生观察、操作、思考、探究的能力,提高学生解决问题的能力。
3.培养学生的合作意识和团队精神,提高学生的沟通表达能力。
四. 教学重难点1.二次函数y=ax^2的图象和性质的理解和掌握。
2.抛物线开口方向、对称轴和顶点坐标的判断。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。
2.采用小组合作学习法,让学生在小组内进行讨论、交流、分享,提高学生的合作意识和团队精神。
3.采用案例分析法,通过具体的例子,让学生理解和掌握二次函数的图象和性质。
六. 教学准备1.PPT课件2.教学工具(黑板、粉笔等)七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数y=ax^2的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT课件,展示二次函数y=ax^2的图象和性质,让学生直观地感受和理解。
3.操练(10分钟)让学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。
人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计
三、课堂练习
1.让学生独立绘制二次函数y=ax^2的图象,并描述其性质。
2.通过小组合作,讨论并总结二次函数图象和性质的特点。
四、巩固拓展
1.让学生思考:如何通过观察二次函数图象,判断其开口方向和对称轴?
2.引导学生运用二次函数的图象和性质,解决实际问题。
4.注重分层教学,关注个体差异:
(1)针对不同层次的学生,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
(2)鼓励学生主动提问,及时解答他们的疑惑,帮助他们建立信心。
5.强化课堂小结,巩固所学知识:
(1)让学生用自己的话总结二次函数y=ax^2的图象和性质,加深对知识的理解和记忆。
(2)通过课堂小结,检查学生的学习效果,及时发现问题并进行针对性的辅导。
3.组织学生进行小组合作交流,培养学生团队协作能力和表达能力,激发他们学习数学的兴趣。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的学习态度,使他们体会数学学习的乐趣,增强学习数学的自信心。
2.通过对二次函数y=ax^2图象和性质的探究,使学生感受数学的对称美、秩序美,提高他们的审美情趣。
3.使学生认识到数学知识在实际生活中的广泛应用,激发他们学习数学的积极性,培养他们运用数学知识解决实际问题的意识。
3.培养学生运用数形结合思想,通过观察、分析、归纳二次函数图象和性质,提高解决问题的能力。
(二)过程与方法
1.通过引导学生在探索二次函数y=ax^2图象和性质的过程中,培养他们提出问题、分析问题、解决问题的能力。
2.引导学生运用数形结合思想,将二次函数的图象与性质相互验证,提高他们的逻辑思维能力和推理能力。
人教版九年级上册22.1.2二次函数y=ax2的图象和性质1优秀教学案例
1.让学生用自己的语言总结二次函数的图象和性质,检查学生对知识的理解和掌握程度。
2.教师对学生的回答进行点评和补充,确保学生对知识的正确理解。
3.总结本节课的重点和难点,提醒学生注意的知识点。
(五)作业小结
1.布置具有针对性的作业,巩固学生对二次函数图象和性质的理解。
2.要求学生在作业中运用所学知识解决实际问题,提高学生的应用能力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养学生自我评价和自我调整的能力。
2.组织学生进行互评和师评,让学生了解自己的优点和不足,提高学生的自我认知。
3.设计合理的评价指标,对学生的知识与技能、过程与方法、情感态度与价值观进行全面的评价。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示生活中常见的二次函数图象,如篮球投篮、抛物线运动等,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣的情境,如抛物线运动、最优化问题等,激发学生的学习兴趣。
2.利用多媒体课件,展示二次函数的图象和性质,使学生更直观地理解和掌握知识。
3.设计具有挑战性和探究性的问题,引导学生主动参与课堂,激发学生的思考。
(二)问题导向
1.提出具有启发性的问题,引导学生自主探索二次函数的图象和性质。
2.培养学生面对困难时勇于挑战、坚持不懈的精神,锻炼学生的意志力。
3.引导学生认识数学在生活中的重要性,提高学生对数学价值的认识。
4.培养学生关爱环境、珍惜资源的意识,将数学知识与可持续发展理念相结合。
本章节的教学目标旨在全面提高学生的知识与技能、过程与方法、情感态度与价值观,使学生在掌握二次函数知识的同时,能够运用所学知识解决实际问题,培养学生的综合素质,为我国基础教育的发展贡献力量。
22.1.2二次函数y=ax2的图像和性质(教案)
三、教学难点与重点
1.教学重点
-二次函数y=ax^2的图像特点:包括开口方向、顶点、对称轴等基本性质的理解;
-二次函数y=ax^2的增减性及其与a的正负关系;
-二次函数y=ax^2的最值问题,特别是当a>0和a<0时的最大值和最小值;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《22.1.2二次函数y=ax^2的图像和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否见过抛物线形状的事物?”(如拱桥、抛射运动的物体等)这个问题与我们将要学习的二次函数图像和性质密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
22.1.2二次函数y=ax2的图像和性质(教案)
一、教学内容
本节课选自九年级数学上册第22章“二次函数”中的22.1.2节,主要教学内容包括:
1.二次函数y=ax^2的图像绘制及特点分析;
2.讨论a>0和a<0时,二次函数图像的开口方向、顶点、对称轴等性质;
3.通过图像观察,总结二次函数y=ax^2的增减性及最值问题;
在总结回顾环节,我觉得可以让学生们自己来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能培养他们的表达能力和逻辑思维。同时,我会鼓励学生们在日常生活中发现二次函数的影子,将数学知识与实践相结合。
-实际情境中二次函数y=ax^2的应用,如物体抛射运动等。
举例:讲解开口方向时,通过绘制y=x^2和y=-x^2的图像,强调a值对开口方向的决定作用;讨论增减性时,通过观察图像变化,让学生理解a>0时函数先减后增,a<0时函数先增后减的特点。
人教版九年级数学上册22.1.2 :二次函数y=ax2图像和性质教案
课题: 22.1.2 二次函数y=ax2图像和性质教学目标:1.使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念.2.使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y = ax2的图象.教学难点:用描点法画出二次函数y = ax2的图象,同时探索二次函数性质.教学方法:讲解法,练习法,指导法学习方式:合作学习导入新课:一、提出问题1.同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例我们先来画最简单的二次函数y = x2的图象例1、画二次函数y = x2的图象.解:(1)列表:在x的取值范围内列出函数对应值表:(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示.提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一个交点.它的形状类似投篮球或掷铅球时球在空中所经过的路线,只是这条曲线开口向上.抛物线概念:像这样的曲线通常叫做抛物线.实际上二次函数的图象都是抛物线,它们的开口或者向上或者向下.顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y =x2与y = 2x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?它们与y = x2的图象相比,有什么共同点与不同点?2.在同一直角坐标系中,画出函数y = −x2,y = −x2,y = −2x2的图象,观察并比较这些抛物线,你能发现什么?3.将所画的几个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点.两个函数图象的共同点以及它们的区别,可分组讨论.交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),开口都向上;区别在于函数y = 2x2的图象开口小,函数y =x2的图象开口大.对于2,教师要继续巡视,指导学生画函数图象,几个函数的图象的特点,教师可引导学生类比1得出.对于3,教师可引导学生从1的共同点和2的发现中得到结论:这几个函数的图象都是抛物线,都关于y 轴对称,它的顶点坐标都是(0,0). 四、归纳、概括x 2、y = 2x 2、y= −x 2、y=−12 x 2 和y = −2x 2函数y = x 2、y= 都是函数y=ax 2的特例,由这些函数的图象的共同特点,可猜想:函数y = ax 2的图象是一条________,它关于______对称,它的顶点坐标是______.[抛物线,y 轴,(0,0)]如果要更细致地研究函数y = ax 2图象的特点和性质,应如何分类?为什么?让学生观察y = x 2、y =x 2、y = 2x 2的图象,填空:当a>0时,抛物线y = ax 2开口______,______是抛物线上位置最低的点,a 越大,抛物线的开口越______. [向上,顶点,小] 类似地,由y= −x 2、y= −x 2和y = −2x 2的图象,也可以总结出类似的特点.作业: 练习册(17~ 18)板书设计:22.2 二次函数2g ax 图像和性质图像画法 性质课后反思:。