人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年七年级数学下册一元一次不等式应用题培优练习
1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车
只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?
2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.
(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)
(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?
3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需
要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.
(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?
(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?
4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分
别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?
6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品
比B产品多80件.
(1)求打包成件的A产品和B产品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?
7.某市居民用电的电价实行阶梯收费,收费标准如下表:
(1198.56元,请你根据以上数据,求出表格中a,b的值.
(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?
8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为
30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.
(1)该物流公司月运输两种货物各多少吨?
(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?
10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64
元;购买甲奖品4个和乙奖品5个,需花82元.
(1)求甲、乙两种奖品的单价各是多少元?
(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;
(3)在(2)的条件下,问买哪一种产品更省钱?
11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A.B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应
的采购方案;若不能,请说明理由.
13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每
台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B
(1)求a,b的值;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售
价138元;乙种商品每件进价100元,售价120元.
(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?
15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客
车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.
(1)若学校单独租用这两种车辆各需多少钱?
(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.
参考答案
1.解:设有x辆汽车,则有(4x+20)吨货物.
由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,
所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.
答:共有6辆汽车运货.
2.
3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,
根据题意,得:,解得:,
答:甲种玩具每个5元,乙种玩具每个10元.
(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),
根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,
答:这个玩具店需要最多购进乙种玩具66个.
4.解:(1)设单价为8.0元的课外书为x本,
得:8x+12=1500﹣418,解得:x=44.5(不符合题意).
∵在此题中x不能是小数,∴王老师说他肯定搞错了;
(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:
0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,
即:44.5<y<47,∴y应为45本或46本.
当y=45本时,b=1500﹣[8×45+12+418]=2,
当y=46本时,b=1500﹣[8×46+12+418]=6,
即:笔记本的单价可能2元或6元.
5.
6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,
答:打包成件的A产品有200件,B产品有120件;
(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,
3种,分别为:
方案甲车乙车运费
① 2 6 2×4000+6×3600=29600
② 3 5 3×4000+5×3600=30000
③ 4 4 4×4000+4×3600=30400
所以方案①运费最少,最少运费是29600元.
7.解:(1)根据题意得:,解得:.
(2)设李叔家六月份最多可用电x度,
根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.
答:李叔家六月份最多可用电450度.
8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,
根据题意得,,
解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,
∵x是正整数,100﹣84+1=17,∴共有17种方案;
(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),
①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,
即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;
②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;
③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,
即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.
9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,
依题意得:,解之得:.
答:物流公司月运输A种货物100吨,B种货物150吨.
(2)设A种货物为a吨,则B种货物为(330﹣a)吨,
依题意得:a≤(330﹣a)×2,解得:a≤220,
设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,
根据一次函数的性质,可知W随着a的增大而增大
当W取最大值时a=220,即W=19800元.
所以该物流公司7月份最多将收到19800元运输费.
10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,
根据题意得:,解得:.
答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.
(2)根据题意得:y1=8×0.9x=7.2x;
当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,
∴y2=.
(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;
当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;
令y1=y2,则7.2x=6x+24,解得:x=20;
令y1>y2,则7.2x>6x+24,解得:x>20.
综上所述:当x<20时,选择甲种产品更省钱;
当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱. 11.
12.(1)设A型电风扇单价为x元,B型单价y元,则
,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,
则最多能采购37台;
(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,
则35<a≤,∵a是正整数,∴a=36或37,
方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.
13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,
A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;
(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,
故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;
(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,
由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.
14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:
,解得:.
答:该商场购进甲种商品200件,乙种商品120件.
(2)设乙种商品每件售价z元,根据题意,得
120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.
15.。