2018年高考理科数学全国卷3(含答案与解析)
2018年高考理科数学全国三卷试题和答案解析
2018年高考理科数学全国三卷试题和答案解析2018年高考理科全国三卷1.已知集合 $A=\{1,2,3,4\}。
B=\{2,3,4\}。
C=\{3,4\}。
D=\{4\}$,则 $(A\cup B)\cap (C\cup D)$ 的元素为 $\{3,4\}$。
2.设 $f(x)=\dfrac{1-x}{1+x}$,则 $f(f(x))=\dfrac{x-1}{x+1}$。
3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是选项 B。
4.若 $\log_2 a=3$,$\log_3 b=4$,$\log_5 c=5$,则$a^2bc=\dfrac{2^6\cdot 3^8\cdot 5^{10}}{15}$。
5.$x^6+(x+1)^6$ 的展开方式中 $x^2$ 的系数为 $40$。
6.直线 $y=x+1$,$y=-x+3$ 分别与 $x$ 轴,$y$ 轴交于两点,点在圆 $x^2+y^2=1$ 上,则面积 $S$ 的取值范围是$0<S<2\pi$。
7.函数 $f(x)=\sqrt{1-x^2}$,$g(x)=\dfrac{1}{2}$,则$h(x)=f(x)g(x)+\dfrac{1}{2}$ 的图像大致为一个半径为$\dfrac{1}{2}$,圆心在 $y$ 轴上方 $\dfrac{1}{2}$ 的圆。
8.某群体中的每位成员使用移动支付的概率为 $0.8$,各成员的支付方式相互独立。
设使用移动支付的人数为 $n$,则$P(n\leq 3)$ 的概率为 $0.008+0.096+0.345+0.409=0.858$。
9.已知 $\triangle ABC$ 中,$\angle A=120^\circ$,$AB=AC$,$BC=2$,则 $S_{\triangle ABC}=\sqrt{3}$,$\sinA=\dfrac{\sqrt{3}}{2}$,$\cos A=-\dfrac{1}{2}$。
2018年高考理科数学(3卷)答案详解(附试卷)
2018年普通高等学校招生全国统一考试理科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合,,则A .B .C .D . 【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-【解析】227cos212sin 199αα=-=-=. 【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r rr T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线分别与轴,轴交于,两点,点在圆上,则△ABP 面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min =⨯⨯=S ,6232221max =⨯⨯=S . 20x y ++=x y A B P ()2222x y -+=[]26,[]48,⎡⎣22(2)2x y -+=图A6【答案】A7.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.422y x x =-++【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p= A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p . ∴6.0=p .【答案】B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. △3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , 2π3π4π6π∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A10【答案】B11.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若,则的离心率为 AB.2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=. ∴ 点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴ a b c ||PF ||OF |OP|=-=-=222222,∴ a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF O PF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴ bca cbc b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,1PF =C∴3222==ac e ,3=e .图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C . 0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2018 年全国 III 卷数学(理)答案及解析
a1 = 1 ,
an = 2n −1 或 an =
( −2 )
n −1
S = 63 , (2) mn −1 ∴ 当通项公式为 an = 2 时, 1 − 2
(1 − 2 ) = 63
m
,得 m =6
当通项公式为
an =
( −2 )
n −1
1 − ( −2 )m = 63 m −1) 2m = 188 ( + 1 2 时, ,得 ,
− x + x + 2 的图像大致为( 7.函数 y =
4 2
)
A.
B.
C.
D.
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
,函数在(-∞,
)单调递增, (
,0)
单调递减, (0, )单调递增, ( ,+∞)单调递减,故选 D。
8.某群体中的每位成员使用移动支付的概率都为 体的 10 位成员中使用移动支付的人数, A. 0.7 【答案】B 【考点】二项分布概率与方差 【难易程度】基础题 【解析】使用移动支付符合二项分布, B.0.6
是带卯眼的木构件的俯视图可以是(
)
A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
D.
【解析】卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示, 故答案选 A
4、若
,则
(
)
A. 【答案】B
2018年普通高等学校招生全国统一考试理科数学(全国卷3)
绝密 ★ 启用前 试卷类型:A2018年普通高等学校招生全国统一考试数学(全国卷3,理)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x|x-1≥0},B={0,1,2},则A ∩B= A .{0} B .{1}C .{1,2}D .{0,1,2}2.(1+i)(2-i)= A .-3-i B .-3+iC .3-iD .3+i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若sin α=13,则cos 2α= A .89B .79C .-79D .-895.(x 2+2x )5的展开式中x 4的系数为( )A .10B .20C .40D .80 6.直线x+y+2=0分别与x 轴、y 轴交于A ,B 两点,点P 在圆(x-2)2+y 2=2上,则△ABP 面积的取值范围是A .[2,6]B .[4,8]C .[√2,3√2]D .[2√2,3√2]7.函数y=-x 4+x 2+2的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P (X=4)<P (X=6),则p= A .0.7 B .0.6C .0.4D .0.39.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为a 2+b 2-c 24,则C=A .π2 B .π3C .π4D .π610.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为 A .12√3 B .18√3C .24√3D .54√311.设F 1,F 2是双曲线C :x 2a2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为 A .√5 B .2C .√3D .√2 12.设a=log 0.20.3,b=log 20.3,则A .a+b<ab<0B .ab<a+b<0C .a+b<0<abD .ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 14.直线y=(ax+1)e x 在点(0,1)处的切线的斜率为-2,则a= .15.函数f (x )=cos (3x +π6)在[0,π]的零点个数为 .16.已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若∠AMB=90°,则k= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ),19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 20.(12分)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m>0).(1)证明:k<-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗⃗ =0.证明:|FA ⃗⃗⃗⃗⃗ |,|FP ⃗⃗⃗⃗⃗ |,|FB ⃗⃗⃗⃗⃗ |成等差数列,并求该数列的公差. 21.(12分)已知函数f (x )=(2+x+ax 2)ln(1+x )-2x.(1)若a=0,证明:当-1<x<0时,f (x )<0;当x>0时,f (x )>0; (2)若x=0是f (x )的极大值点,求a.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,☉O 的参数方程为{x =cosθ,y =sinθ(θ为参数),过点(0,-√2)且倾斜角为α的直线l 与☉O交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.[选修4-5:不等式选讲](10分)设函数f (x )=|2x+1|+|x-1|. (1)画出y=f (x )的图像;(2)当x ∈[0,+∞)时,f (x )≤ax+b ,求a+b 的最小值.数学(全国卷3,理)1.C 由题意得A={x|x ≥1},B={0,1,2},∴A ∩B={1,2}.2.D (1+i)(2-i)=2+i -i 2=3+i .3.A 根据三视图原则,从上往下看,看不见的线画虚线,则A 正确.4.B cos 2α=1-2sin 2α=1-2×(13)2=79.5.C 由展开式知T r+1=C 5r (x 2)5-r (2x -1)r =C 5r 2r x 10-3r .当r=2时,x 4的系数为C 5222=40.6.A设圆心到直线AB 的距离d=|2+0+2|√2=2√2. 点P 到直线AB 的距离为d'.易知d-r ≤d'≤d+r ,即√2≤d'≤3√2. 又AB=2√2,∴S △ABP =12·|AB|·d'=√2d',∴2≤S △ABP ≤6.7.D 当x=0时,y=2>0,排除A,B;当x=12时,y=-(12)4+(12)2+2>2.排除C .故选D .8.B 由题意,得DX=np (1-p )=10p (1-p )=2.4,∴p (1-p )=0.24,由p (X=4)<p (X=6)知C 104p 4·(1-p )6<C 106p 6(1-p )4,即p 2>(1-p )2,∴p>0.5,∴p=0.6(其中p=0.4舍去).9.C由S=a 2+b 2-c 24=12ab sin C ,得c 2=a 2+b 2-2ab sin C.又由余弦定理c 2=a 2+b 2-2ab cos C ,∴sin C=cos C ,即C=π4.10.B 由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a ,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.设球的半径为R ,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =13S △ABC ·(R+|OO 1|)=13×9√3×6=18√3,最大.故选B . 11.C由题意画图,如图所示,|PF 2|=b ,|OP|=a ,由题意,得|PF 1|=√6a. 设双曲线渐近线的倾斜角为θ.∴在△OPF 1中,由余弦定理知cos(180°-θ)=a 2+c 2-(√6a )2=c 2-5a 2=-cos θ. 又cos θ=ac ,∴c 2-5a 22ac =-ac ,解得c 2=3a 2.∴e=√3.12.B ∵a=log 0.20.3>0,b=log 20.3<0,∴ab<0. 又a+b=lg0.3lg0.2+lg0.3lg2=lg3-1lg2-1+lg3-1lg2=(lg3-1)(2lg2-1)(lg2-1)·lg2而lg 2-1<0,2lg 2-1<0,lg 3-1<0,lg 2>0,∴a+b<0.a+b ab=1b +1a=log 0.32+log 0.30.2=log 0.30.4<log 0.30.3=1.∴ab<a+b.故选B .13.12 2a +b =2(1,2)+(2,-2)=(4,2),c =(1,λ), 由c ∥(2a +b ),得4λ-2=0,得λ=12. 14.-3 设f (x )=(ax+1)e x ,∵f'(x )=a ·e x +(ax+1)e x =(ax+a+1)e x ,∴f (x )=(ax+1)e x 在(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.15.3 令f (x )=cos (3x +π6)=0,得3x+π6=π2+k π,k ∈Z ,∴x=π9+kπ3=(3k+1)π9,k ∈Z .则在[0,π]的零点有π9,4π9,7π9.故有3个. 16.2 设直线AB :x=my+1, 联立{x =my +1,y 2=4x ⇒y 2-4my-4=0,y 1+y 2=4m ,y 1y 2=-4.而MA ⃗⃗⃗⃗⃗⃗ =(x 1+1,y 1-1)=(my 1+2,y 1-1),MB ⃗⃗⃗⃗⃗⃗ =(x 2+1,y 2-1)=(my 2+2,y 2-1).∵∠AMB=90°,∴MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(my 1+2)(my 2+2)+(y 1-1)(y 2-1) =(m 2+1)y 1y 2+(2m-1)(y 1+y 2)+5 =-4(m 2+1)+(2m-1)4m+5 =4m 2-4m+1=0.∴m=12.∴k=1m =2.17.解 (1)设{a n }的公比为q ,由题设得a n =q n-1. 由已知得q 4=4q 2,解得q=0(舍去),q=-2或q=2. 故a n =(-2)n-1或a n =2n-1. (2)若a n=(-2)n-1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n-1,则S n =2n -1.由S m =63得2m =64,解得m=6. 综上,m=6.18.解 (1)第二种生产方式的效率更高. 理由如下:①由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.②由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.③由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.④由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知m=79+812=80. 列联表如下:(3)由于K2=40(15×15-5×5)220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.19.解 (1)由题设知,平面CMD ⊥平面ABCD ,交线为CD.因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM.因为M 为CD⏜上异于C ,D 的点,且DC 为直径,所以DM ⊥CM. 又BC ∩CM=C ,所以DM ⊥平面BMC. 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC.(2)以O 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz. 当三棱锥M-ABC 体积最大时,M 为CD⏜的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0).设n =(x 1,y ,z )是平面MAB 的法向量,则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0.即{-2x +y +z =0,2y =0.可取n =(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n ,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗|n ||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n ,DA ⃗⃗⃗⃗⃗ >=2√55.所共面MAB 与面MCD 所成二面角的正弦值是2√55.20.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 124+y 123=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x24+y 1+y 23·k=0. 由题设知x 1+x22=1,y 1+y22=m ,于是k=-34m .① 由题设得0<m<32,故k<-12.(2)由题意得F(1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m<0.又点P 在C 上,所以m=34, 从而P (1,-32),|FP ⃗⃗⃗⃗⃗ |=32. 于是|FA ⃗⃗⃗⃗⃗ |=√(x 1-1)2+y 12=√(x 1-1)2+3(1-x 124)=2-x12.同理|FB ⃗⃗⃗⃗⃗ |=2-x22. 所以|FA⃗⃗⃗⃗⃗ |+|FB ⃗⃗⃗⃗⃗ |=4-12(x 1+x 2)=3. 故2|FP⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ |+|FB ⃗⃗⃗⃗⃗ |,则|FA ⃗⃗⃗⃗⃗ |,|FP ⃗⃗⃗⃗⃗ |,|FB ⃗⃗⃗⃗⃗ |成等差数列, 设该数列的公差为d ,则2|d|=||FB⃗⃗⃗⃗⃗ |-|FA ⃗⃗⃗⃗⃗ ||=12|x 1-x 2|=12√(x 1+x 2)2-4x 1x 2.② 将m=34代入①得k=-1.所以l 的方程为y=-x+74,代入C 的方程,并整理得7x 2-14x+14=0. 故x 1+x 2=2,x 1x 2=128,代入②解得|d|=3√2128. 所以该数列的公差为3√2128或-3√2128.21.解 (1)当a=0时,f (x )=(2+x )ln(1+x )-2x ,f'(x )=ln(1+x )-x1+x , 设函数g (x )=f'(x )=ln(1+x )-x1+x ,则g'(x )=x (1+x )2,当-1<x<0时,g'(x )<0;当x>0时,g'(x )>0.故当x>-1时,g (x )≥g (0)=0,且仅当x=0时,g (x )=0,从而f'(x )≥0,且仅当x=0时,f'(x )=0.所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x<0时,f (x )<0;当x>0时,f (x )>0.(2)①若a ≥0,由(1)知,当x>0时,f (x )≥(2+x )ln(1+x )-2x>0=f (0),这与x=0是f (x )的极大值点矛盾.②若a<0,设函数h (x )=f (x )2+x+ax 2=ln(1+x )-2x2+x+ax 2.由于当|x|<min {1,√1|a |}时,2+x+ax 2>0,故h (x )与f (x )符号相同.又h (0)=f (0)=0,故x=0是f (x )的极大值点当且仅当x=0是h (x )的极大值点.h'(x )=11+x −2(2+x+ax 2)-2x (1+2ax )(2+x+ax 2)2=x 2(a 2x 2+4ax+6a+1)(x+1)(ax 2+x+2)2.如果6a+1>0,则当0<x<-6a+14a ,且|x|<min {1,√1|a |}时,h'(x )>0,故x=0不是h (x )的极大值点.如果6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0,故当x ∈(x 1,0),且|x|<min {1,√1|a |}时,h'(x )<0,所以x=0不是h (x )的极大值点.如果6a+1=0,则h'(x )=x 3(x -24)(x+1)(x 2-6x -12)2.则当x ∈(-1,0)时,h'(x )>0;当x ∈(0,1)时,h'(x )<0.所以x=0是h (x )的极大值点,从而x=0是f (x )的极大值点. 综上,a=-16.22.解 (1)☉O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与☉O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y=kx-√2,l 与☉O 交于两点当且仅当|√2√1+k |<1,解得k<-1或k>1,即α∈(π4,π2)或α∈(π2,3π4).综上,α的取值范围是(π4,3π4). (2)l 的参数方程为{x =tcosα,y =-√2+tsinαt 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-2√2t sin α+1=0. 于是t A +t B =2√2sin α,t P =√2sin α.又点P 的坐标(x ,y )满足{x =t P cosα,y =-√2+t P sinα.所以点P 的轨迹的参数方程是{x =√22sin2α,y =-√22-√22cos2αα为参数,π4<α<3π4.23.解 (1)f (x )={ -3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y=f (x )的图像如图所示.(2)由(1)知,y=f(x)的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.。
2018年高考全国卷3理科数学试题及参考答案
2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0}B{1}C{1,2}D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD.D4.若,则A B C D5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值范围是A[2,6]B[4,8]C D7.函数y=-+x²+2的图像大致为A.BC.DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=<span="">A.0.7B.0.6C.0.4D.0.3,9.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12B18C24D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2C D分值:5分查看题目解析>A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a=。
2018年高考全国卷3理科数学试题及参考答案
2018年高考全国卷3理科数学试题及参考答案2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B CD5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值范围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A. BC. DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12B18C24D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析>A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a= 。
2018年全国统一高考数学真题试卷及答案解析【全国卷三】
2018年高考真题理科数学 (全国III卷)一、填空题:(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.若,则( )A. B. C. D.5.的展开式中的系数为( )A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y ²=2上,则∆ABP面积的取值范围是( )A.[2,6]B.[4,8]C.D.7.函数y=-+x²+2的图像大致为A . B.C. D.8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">( )A .0.7 B.0.6 C.0.4 D.0.39.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=( )A. B. C. D.10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为( )A. B.2 C. D.二、填空题(本题共4小题,每小题5分,共20分。
2018年高考全国卷3理科数学试题和参考答案
2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B CD5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A.BC.DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12B18C24D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析>A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a=。
2018全国卷3高考试题及答案-理科数学.doc
绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年全国卷3(理科数学)含答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则【C 】A .B .C .D . 2.【D 】 A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【A 】{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+4.若,则【B 】 A .B .C .D . 5.的展开式中的系数为【C 】A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是【A 】 A .B .C .D .7.函数的图像大致为【D 】1sin 3α=cos2α=897979-89-522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则【B 】 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则【C 】 A . B . C . D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为【B 】A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为【C 】 AB.2CD12.设,,则【B 】A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2018全国卷3高考试题及答案理科数学.doc
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合S= ,则S T=
(A) [2,3] (B)(- ,2] [3,+ )
(C)[3,+ )(D)(0,2] [3,+ )
(2)若z=1+2i,则
(A)1 (B) -1 (C) i (D)-i
, , , ,
, , .
设 为平面 的法向量,则 ,即 ,可取 ,
于是 .
(20)解:由题设 .设 ,则 ,且
.
记过 两点的直线为 ,则 的方程为 . .....3分
(Ⅰ)由于 在线段 上,故 .
记 的斜率为 , 的斜率为 ,则
.
所以 . ......5分
(Ⅱ)设 与 轴的交点为 ,
则 .
由题设可得 ,所以 (舍去), .
解:(Ⅰ) 的普通方程为 , 的直角坐标方程为 . ……5分
(Ⅱ)由题意,可设点 的直角坐标为 ,因为 是直线,所以 的最小值,
即为 到 的距离 的最小值, .
………………8分
当且仅当 时, 取得最小值,最小值为 ,此时 的直角坐标为 . ………………10分
24.(本小题满分10分)选修4-5:不等式选讲
(II)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
(II)设点P在 上,点Q在 上,求|PQ|的最小值及此时P的直角坐标.
(完整word版)2018年高考理科数学试题及答案-全国卷3,推荐文档
2018年普通高等学校招生全国统一考试 (全国卷3 )理科数学2018年普通高等学校招生全国统一考试(全国卷3)理科数学C • 1, 23 .中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 可以是1 门f 4.若 sin 口 ,贝U cos 23上,贝y △ABP 面积的取彳范、选惚本题共12小题,每小题 5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1 .已知集合 A x | x 1> 0., B 0,1,2.,贝U A B1)边的小长则咬合时带卯眼的木构件的俯 10的展开式中4x 的系数为20C . 40D . 806 .直线 y 20分别与 x 轴,y 轴交于,B 两点, 点P 在圆2018年普通高等学校招生全国统一考试(全国卷3 )理科数学2018年普通高等学校招生全国统一考试(全国卷3 )理科数学p ,各成员的支付方式相互独立,设 X 为该群体的 10位成员A . 12 3B . 18 3C . 24 3 2 27 .函数422y x x 的图像大致为中使用移动支付的人数, DX 2.4, P X 4 P X 6,贝U p A . 0.7B . 0.6C . 0.4D . 0.39 . △ ABC 的内角 A , B , C 的对边分别为a ,b ,c ,若△ ABC2 2 2占 —的面积为 a b c ,贝y CAn… n亠n4… n A .B .C .D .234610 .设 A , B , C ,D 是同一个半径为 4 的球的球面上四点,△ ABC 为等边三角形且其面积为8 .某群体中的每位成员使用移动支付的概率都为D . 54 311 .设F 1 , F 2是双曲线 x yC : 2 2 1 ( a 0, b 0 )的左,右焦点, 的垂线,垂足为 a =b< P .若 PF 1 6 OP,贝U C 的离心率为A .5 B . 2C . 3、填空题:本题共 4小题,每小题 5分,共20分。
2018年高考理科数学全国卷3-答案
2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B I ,故选C . 2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A .4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2rr r r r r r T C x x C x ---+==g g ,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =g .易知AB =max d =+=min d =所以26S ≤≤,故选A . 7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得2x -<或2x 0<<,此时,()f x递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B . 9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab CS =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =o g g △,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r =o,得23r =,球心到平面ABC 的距离为()224232-=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥D ABC -体积的最大值为19361833⨯⨯=,故选B . 11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离22(0)1()bc aPF b b b a-==+>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得22OP c b a =-=,所以166PF OP a ==.在2Rt OPF △中,222cos PF b PF O OF c ∠==,在12F F P △中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c +-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-,解得3ca=(负值舍去),即3e =.故选C .12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D . ∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B .解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b+=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题 13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-.15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个. 16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k+=,124y y =-g .∵1()1,M -,90AMB ∠=o,∴0MA MB =u u u r u u u r g ,即1212(2)(2)(1)(1)0y yy y k k+++--=g ,即2440k k -+=,解得2k =. 解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=o ,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==.故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-。
2018年全国3卷理科数学真题(解析版)
18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。
详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。
详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。
,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。
2018年全国卷3高考理科数学试题解析版
C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得
令
,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:
则
所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设
则
所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则
即
故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体
2018年高考全国3卷理科数学试题及答案解析
6 5 6 5∴S66a12d 1 622 24,故选A.
22
10.已知椭圆C:x2y21(a b 0)的左、右顶点分别为A1,A2,且以线段A1A2为直ab
径的圆与直线bx ay 2ab 0相切,则C的离心率为()
A.πB.3πC.πD.π
424【答案】B
【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r12 1 3,
22
23π则圆柱体体积Vπr2hπ,故选B.
4
9.等差数列an的首项为1,公差不为0.若a2,a3,a6成等比数列,则an前6项的和为()
A.24B.3C.3D.8
【答案】A
【解析】∵an为等差数列,且a2,a3,a6成等比数列,设公差为d.
A.
【答案】
【解析】
B.
)
C.40
D.80
C
由二项式定理可得,原式展开中含
2 2 3 3 3 2
x C522xyy C532x y
33
x y的项为
3 33 3
40x3y3,则x3y3的系数为40,故选C.
22
5.已知双曲线C:x2y21
a2b2
a 0,b 0)
的一条渐近线方程为
y5x,
y x,
2
且与椭圆
3
D.
x8π对称
3
7.执行右图的程序框图,为使输出
的最小值为()
A.
B.
C.
D.2
答案】D
解析】程序运行过程如下表所示:
S
M
t
初始状态
0
100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前-在------------------- 2018 年普通高等学校招生全国统一考试 ( 课标全国卷Ⅲ )----------- 理科数学本试卷满分 150 分 , 考试时间 120分钟 .6. 直线 x y 2=0 分别与△ABP 面积的取值范围是 22x 轴, y 交于 A , B 两点,点 P 在圆 (x 2)2 y 2=2 上,则( ) C. [ 2,3 2 ] D [ 2 2,3 2]号生考第Ⅰ卷(选择题 共 60分) 、选择题 :本题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中 ,只有 项是符合题目要求的 .- 1--.-已---知--集合 A {x ∣x 1≥0}, B {0,1,2} ,则()卷A. {0}B.{1}C. {1,2}D.{0,1,2}2. (1 i)(2 i)()A. 3 iB. 3 iC. 3 iD. 3 i------ 3--.-中---国-- 古建筑借助榫卯将木构件连接起来 . 构件的凸出部分叫榫头 , 凹进部分叫卯眼 , 图 中木构件右边的小长方体是榫头 . 若如图摆放的木构件与某一带卯眼的木构件咬合成 长方体 , 则咬合时带卯眼的木构件的俯视图可以是名姓 A. [2,6 ]B. [4,8]校学业ABC1 4. 若 sin 则 cos2------ 877 无 --- ---.-- B.C.999题D.8. 某群体中的每位成员使用移动支付的概率都为为该群体的 10 位成员中使用移动支付的人数p ,各成员的支付方式相互独立 .设 X , DX 2.4, P (X 4)<P (X6) , 则 pxA. 10B. 20C. 4025. (x 2 )5 的展开式中 x 4的系数为 D.80A. 0.79. △ ABC 的内角B A , B ,0.6C 的对边分别为C. 0.4D. 0.3a ,b ,c .若△ABC 的面积为222 a 2 b 2c 2, 则4C( )π π π π A. B C. D.234 6( )10. 设A, B, C , D是同一个半径为4的球的球面上四点 , △ ABC为等边三角形且其面积为9 3, 则三棱锥D ABC 体积的最大值为()A.12 3B. 18 3C. 24 3D. 54 3xy11. 设F1, F2是双曲线C : 2 2 1(a>0,b>0) 的左、右焦, O 是坐标原点.过F2作C 的一条渐近线的垂线 , 垂足为P.若|PF1| 6 | OP |,则C的离心率为 ( )A. 5B. 2C. 3D. 212. 设 a log 0.20.3, blog2 0.3, 则()A. a b< ab<0B. a b< a b< 0C. a b<0< abD. a b<0< a b第Ⅱ卷( 非选择共 90二、填空题:本题共 4小题,每小题 5分,共 20分.13.已知向量a (1,2) , b (2, 2), c (1, ).若c∥(2a b),则= .14.曲线y (ax 1)e x在点(0,1) 处的切线的斜率为2,则a .15 函数f (x) cos(3x 6π) 在[0,π] 的零点个数为 .16.已知点M( 1,1)和抛物线C:y2 4x ,过C的焦点且斜率为k的直线与C交于A, B 两点.若AMB 90 ,则k .三、解答题:共 70分. 解答应写出文字说明、证明过程或演算步骤.第 17~ 21题为必考题,每个试题考生都必须作答 .第22、23题为选考题 ,考生根据要求作答 .) ( 一 ) 必考题:共 60 分 .17.( 12 分 )等比数列{a n} 中, a1 1, a5 4a3 .(1)求{a n} 的通项公式;(2)记S n为{a n}的前n项和.若S m 63,求m.18.( 12 分) 某工厂为提高生产效率 , 开展技术创新活动 , 提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率 ,选取40名工人 ,将他们随机分成两组 ,每组20 人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式 .根据工人完成生产任务的工作时间 ( 单位: min) 绘制了如下茎叶图:( 1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表 ,能否有99%的把握认为两种生产方式的效率有差异?2附:K 2n(ad bc)2,(a b)(c d)(a c)(b d)P(K 2≥k) 0.050 0.010 0.001k 3.841 6.635 10.82819.( 12 分)-在---------------------- 如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直 , M是CD上(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答 .如果多做 ,则按所做的第号生考名异于C , D的点 .(1)证明:平面AMD 平面BMC ;(2)当三棱锥M ABC 体积最大时 , 求面MAB 与面MCD -所--成二面角的正弦值 .20.( 12 分)22 已知斜率为k 的直线l 与椭圆C :x y 1交于A, B两点, 线段AB的中点为43 ----------- M--(1,m)(m>0 ).1(1)证明:k< - ;2(2)设F 为C 的右焦点 , P 为C 上一点 , 且FP FAFB 0. 证明:成等差数列 , 并求该数列的公差 .校学业题21.( 12分)已知函数f (x) (2 x ax2 )ln(1 x) 2x.(1) 若a 0 ,证明:当1<x<0时, f(x)<0 ;当x>0时,f(x)>0 ; (2)若x=0是f(x)的极大值点 ,求a.无一题计分 .22. [选修 4—4:坐标系与参数方程](10分)在平面直角坐标系xOy中, O的参数方程为x cos ,(为参数), 过点(0,2)且y sin倾斜角为的直线l 与O交于A, B两点 .(1)求的取值范围;(2)求AB中点P 的轨迹的参数方程 .23. [选修 4—5:不等式选讲](10 分)设函数f(x) 2x 1 x 1 .(1) 画出y f (x) 的图象;(2)当x [ 0, ), f ( x)≤ ax b,求a b的最小值 .2018 年普通高等学校招生全国统一考试( 课标全国卷Ⅲ )理科数学答案解析第Ⅰ卷一、选择题1. 【答案】 C【解析】∵ A={ x|x≥1} , B {0,1,2} , ∴ AB={1,2},故选C.2. 【答案】 D【解析】(1 i)(2 i) 2 i 2i i2 3 i,故选 D.3. 【答案】 A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为 A. 故选 A.4. 【答案】 B1 12 7【解析】由sin , 得cos2 1 2sin2 1 2 ( )2=1 = . 故选 B.3 3 9 95. 【答案】 C2【解析】( x2)5的展开式的通项T r 1 C5r(x2)5 r (2x1)r 2r C5r x10 3r,令10 3r 4, x得r 2,所以x4的系数为22 C52 40.故选 C.6. 【答案】 A【解析】由圆(x 2)2 y2 =2可得圆心坐标(2,0) ,半径r 2 , △ABP的面积记为S,点1P到直线AB的距离记为d,则有S AB d.易知2AB 2 2, d max 22022 2 3 2, d min 22022 2 2 ,所以max12 12 min12 122≤S≤6 , 故选A.7. 【答案】D解析】∵ f (x) x4 x2 2 , ∴ f (x) 4x3 2x , 令f (x)>0 , 解得x< 2或22 2 20<x< 2, 此时, f(x) 递增;令f (x)<0, 解得2 <x<0或x> 2,此时, f(x)递减.由此可得f (x)的大致图象 .故选 D.8. 【答案】 B【解析】由题知X ~ B(10, p) ,则DX 10 p (1 p) 2.4, 解得p 0.4或0.6.又∵P(X 4)<P(X 6),即C140 P4 (1 p)6<C160P6(1 p)4 (1 p)2<p2 p>0.5 , ∴p 0.6, 故选B.9. 【答案】解析】S△ ABC222 根据余弦定理得a2 b2 c2 2abcosC , 因为S△ABC a b c, 所以42abc osC41,又S△ABC1 absinC ,所以tanC 1,因为C (0, π) ,所以C ABC2故选C.10. 【答案】解析】设△ABC 的边长为a , 则S△ABC去). △ ABC的外接圆半径r满足2r sin6011a a sin60 =9 3 , 解得a 6 ( 负值舍26,得r 2 3 ,球心到平面ABC 的距离为42 2 3 2 . 所以点D 到平面ABC 的最大距离为2 4 6, 所以三棱锥1D ABC 体积的最大值为31 9 3 6 18 3, 故选 B.311. 【答案】Cb(b>0) ,而OF2 c,所以解析】点F2(c,0) 到渐近线y b x的距离a在Rt△OPF2中,由勾股定理可得OP c2 b2 a,PF2Rt△OPF2 中cos PF2Ocos PF2OPF2 2 F1F2 2 PF12 PF2 F1F2OF2所以PF1 6 OP 6a.b c△F1F2Pb24c26a22b 2cb 4c 6a 2 2 2 2 2 23b24c 62a , 则有32(c2a2) 4c24bc值舍去), 即e 3.故选 C.6a2, 解得c 3( 负率k f (0) a 1 2, 解得a 3.【解析】解法一:∵ a log0.2 0.3>log0.2 1=0, b log 2 0.3<log2 1=0, ∴ ab<0 ,排除 C.∵ 0< log 0.2 0.3< log0.2 0.2=1 , log 2 0.3< log 2 0.5= 1,即0<a<1 , b<-1,∴a b<0,排除 D.b log2 0.3 lg0.2 b 3∵ 2log2 0.2 , ∴ b log 2 0.3 log2 0.2 log2 <1 , ∴a log0.2 0.3 lg2 2 a 2 2 2 2 b<1b ab<a b, 排除 A.故选 B.a解法二:易知0< a<1 , b< 1, ∴ab<0, a b<0 ,11∵log0.3 0.2 log0.3 2 log 0.3 0.4<1 ,abab即<1, ∴ a b>ab,ab∴ ab< a b<0 . 故选 B.第Ⅱ卷二、填空题113. 【答案】21 【解析】由已知得2a b (4,2).又c (1, ),c∥(2a b),所以4 2=0 ,解得 .2 14. 【答案】3【解析】设f(x) (ax 1)e x, 则f (x) (ax a 1)e x,所以曲线在点(0,1)处的切线的斜15.【答案】3【解析】令f(x) 0 ,得cos(3x π),解得xkπ+ π(k Z).当k 0时, x π;当k 1 6 3 9 9时, x 4π;当k 2时, x 7π,又x[ 0,π] ,所以满足要求的零点有 3个. 9916.【答案】2【解析】解法一:由题意可知 C 的焦点坐标为(1,0), 所以过焦点(1,0) ,斜率为k 的直线方程为x y 1,设 A y1 1,y1kkxy1,程联立得x k 1,整理得y2 4 y 4 0 , 从而得y1 y24, y1 y2 4 .∵2 k k y 4x,M ( 1,1) , AMB 90 , ∴ MA MB即k2 4k 4 0, 解得k 2. y24x ,①解法二:设A(x1,y1),B(x2,y2),则y124x1,②-①得y22 y12 4(x2 x1),从而y2 4x2, ②k y2 y1 4. 设AB的中点为M ,连接MM . ∵直线AB过抛物线x2 x1 y1 y2y2 4x 的焦点,∴ 以线段AB 为直径的⊙M 与准线l : x 1 相切. ∵M( 1,1) , AMB 90 , ∴点M 在准线l:x 1上,同时在⊙M 上, ∴准线l是⊙M 的切线 , 切点M , 且MM ⊥l , 即MM 与x轴平行, ∴点M 的纵坐标为1, 即y1 y2 4 4, B y2 1,y2 , 将直线方程与抛物线方k0,即(y k1 2) (y k2 2) (y1 1)(y2 1) 0,12. 【答案】 B1 2 1 y1 y2 2 , 故k 2 .2 1 2y1 y2 2故答案为:2.三、解答题17.【答案】 ( 1)解:设{a n}的公比为q ,由题设得a n q n1. 由已知得q4 4q2, 解得q 0 (舍去 )或q 2或q 2 . 故a n ( 2)n 1或a n 2n 1.(2)若a n ( 2)n 1,则S n 1 ( 2).n n3由S m 63得( 2)m 188. 此方程没有正整数解 .若a n 2n1,则S n 2n 1.由S m 63得2m 64,解得m 6.综上 , m 6.【解析】 (1)解:设{a n}的公比为q ,由题设得a n q n 1.由已知得q 4q , 解得q 0( 舍去 ) 或q 2 或q 2.故a n ( 2)n 1或a n 2n 1.(2)若a n ( 2)n1,则S n 1 ( 2).3由S m 63得( 2)m 188。