初中数学教学案例---中心对称图形
中心对称图形教案
中心对称图形教案第一章:中心对称图形的概念与性质1.1 引入中心对称图形的概念利用实物或图片引导学生观察和感知中心对称现象。
向学生介绍中心对称图形的定义:在同一平面内,如果一个图形能够绕某一点旋转180度后与原来的图形完全重合,这个图形就叫做中心对称图形。
1.2 探索中心对称图形的性质引导学生通过实际操作,探究中心对称图形的性质。
学生总结出中心对称图形的性质:(1)对称中心是图形的旋转中心;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
1.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第二章:中心对称图形的绘制与识别2.1 学习中心对称图形的绘制方法引导学生学习如何绘制中心对称图形。
学生通过实际操作,学会利用直尺和圆规绘制中心对称图形。
2.2 提高中心对称图形的识别能力提供一些图形,让学生判断它们是否为中心对称图形。
引导学生学会如何找出中心对称图形的重心。
2.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形,并找出它们的重心。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第三章:中心对称图形与坐标系3.1 引入坐标系的概念向学生介绍坐标系的定义和作用。
利用实际例子,让学生理解坐标系中点的表示方法。
3.2 学习中心对称图形在坐标系中的性质引导学生学习中心对称图形在坐标系中的性质。
学生总结出中心对称图形在坐标系中的性质:(1)对称中心的坐标为(h, k),其中h为对称中心在x轴上的坐标,k为对称中心在y轴上的坐标;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
3.3 练习与巩固提供一些图形,让学生在坐标系中判断它们是否为中心对称图形。
让学生自己在坐标系中找出一些中心对称图形,并画出它们的对称中心。
人教版九年级数学上册23.2.2:中心对称图形(教案)
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。
中心对称图形 优秀教案
中心对称图形【教学目标】1.知识与技能:1)通过具体实例认识旋转和中心对称图形;2)探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3)了解线段、平行四边形、矩形、菱形、正方形、圆等是中心对称图形;2.过程与方法:渗透旋转变换的思考方法3.情感态度与价值观:1)通过数学活动了解数学与生活的广泛联系;2)通过观察分析国内外构图艺术,提高审美情趣。
【教学重难点】重点:探索中心对称图形概念的形成、识别和画法;难点:通过中心对称图形的教学渗透旋转变换的概念。
【教学过程】教学环节教师活动学生活动设计意图一、创设情境,引入新课展示生活情境,提出问题:1.仔细观察这些实例有何共同之处?1)风车2)太极图2在静止状态下,这些图形有怎仔细观察,都在旋转3)扑克牌1010样的特点呢?3做一做:以风车的风轮为例,绕点O旋转的风轮,使得A1移动到A2的位置。
思考下面的问题:(1)旋转后的风轮与原来位置上的风轮是否重合?(2)指出旋转中心在哪里?旋转角的角度是多少?(3)对于其他四个图形,请你也像上面一样进行研究,回答同样的问题。
具有这种共同特征的图形就是我们今天要探知的中心对称图形。
(板书课题)4)飞机的螺旋桨1)重合2)O点,180度3)观察实践后说明重合;总有一个点,绕之旋转180度后与原图形互相重合。
二、新课探究,对称性质1.归纳共同点:2.尝试概括中心对称图形的定义:一般地,在同一平面内,一个图形绕某一个点旋转180°,如果旋转前、后的图形相互重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
1.绕一个固定点旋转;旋转180度;旋转前、后的图形相互重合。
2.学生独立思考后,小组讨论,尝试组织语言抽象归纳出定义。
A1B1C1A2B2C2O1013.你在什么地方见到过中心对称图形?3.学生举例三、结合已学,探究性质1.想一想:1)我们已经学习了哪些几何图形?2)如线段、圆、等边三角形、平行四边形等。
九年级数学人教版上册23.2.1中心对称优秀教学案例
1.学生能够对数学产生兴趣和热情,培养积极的情感态度。
2.学生能够树立正确的数学观念,认识数学的重要性和价值。
3.学生能够培养坚持不懈、勇于探索的学习精神,提高他们的自主学习能力。
在教学过程中,我会注重激发学生的学习兴趣,引导他们认识数学的价值,培养他们的情感态度和价值观。同时,我会给予学生积极的评价和鼓励,帮助他们建立自信心,培养他们的自主学习能力。
九年级数学人教版上册23.2.1中心对称优秀教学案例
一、案例背景
本节内容为九年级数学人教版上册23.2.1中心对称,是在学生已经掌握了平面直角坐标系、图形的平移和旋转等知识的基础上进行学习的。中心对称是数学中的一个重要概念,它不仅可以帮助学生更好地理解图形的变换,还可以培养学生的空间想象能力和逻辑思维能力。
三、教学策略
(一)情景创设
1.利用多媒体展示中心对称的实例,如对称的花朵、建筑等,引导学生感受中心对称的美感。
2.通过实际操作,让学生体验中心对称的变换过程,如折纸、绘画等,激发学生的学习兴趣。
3.创设问题情境,如寻找生活中的中心对称图形,让学生在实践中发现和理解中心对称的概念。
在情景创设中,我会注重引导学生参与其中,让他们在实践中感受和理解中心对称的知识,从而激发他们的学习兴趣和动机。
导入新课的过程中,我会注重激发学生的学习兴趣和好奇心,引发他们的思考和探究欲望,为后续的新知识学习做好铺垫。
(二)讲授新知
1.给出中心对称的定义和性质,通过具体的例子和图示,让学生理解中心对称的概念。
2.讲解中心对称图形的变换规律,如对称中心的选取、图形的平移等,让学生掌握中心对称的变换方法。
3.结合实际问题,展示中心对称在实际中的应用,如设计图案、解决几何问题等,让学生体验中心对称的价值。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会如何判断一个图形是否为中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学重点:1. 中心对称图形的定义和性质。
2. 判断一个图形是否为中心对称图形的方法。
教学难点:1. 理解中心对称图形的性质并运用解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 中心对称图形的示例图形。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。
2. 向学生展示一些中心对称图形的示例。
二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。
2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。
3. 引导学生通过推理和交流,总结中心对称图形的性质。
三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。
2. 让学生谈谈自己在练习中遇到的问题和解决方法。
五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。
在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。
要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
人教版数学九年级上册优秀教学案例:23.2.1中心对称
3.操作情境:教师设计一系列操作活动,如剪贴、拼图等,让学生亲自动手实践,感受中心对称的过程,增强学生的直观感知能力。
(二)问题导向
1.教师提出问题,引导学生思考:中心对称是什么?它与轴对称有什么区别和联系?如何判断一个图形是否为中心对称图形?
2.学生能够认识到数学与生活的密切联系,培养运用数学知识解决实际问题的意识,增强数学应用能力。
3.学生在团队合作、交流分享的过程中,培养良好的团队合作精神和积极向上的学习态度。
4.学生能够通过解决感和价值观。
三、教学策略
(一)情景创设
1.生活情境:通过展示生活中的中心对称图形,如时钟、人民币等,引导学生关注中心对称在实际生活中的应用,激发学生的学习兴趣。
3.小组合作的学习方式:教师组织学生进行小组讨论,分享学习心得,培养团队协作能力和沟通表达能力。教师引导学生运用中心对称的知识,共同解决实际问题,提高问题解决能力和实践操作能力。
4.多元化的教学评价:教师运用评价工具,对学生在学习过程中的表现进行评价,关注学生的知识掌握和能力发展,充分发挥评价的诊断、反馈和激励作用,帮助学生在评价中不断成长。
1.教师通过讲解和示例,详细介绍中心对称的定义、性质和判定方法。
2.教师运用多媒体课件和实物模型,直观地展示中心对称图形的变换过程,帮助学生理解和掌握中心对称的概念。
3.教师通过讲解实例,阐述中心对称在实际问题中的应用,引导学生学会运用中心对称解决实际问题。
(三)学生小组讨论
1.教师设计具有挑战性的问题,引导学生进行小组讨论,如“你们能找出教室里的中心对称图形吗?它们是如何产生的?”
九年级上册数学教案《中心对称图形》
九年级上册数学教案《中心对称图形》教材分析《中心对称图形》是九年级几何的重要内容之一,与图形的运动(平移、翻折、旋转)有着不可分割的联系。
通过学习《中心对称图形》,学生可以认识图形的“旋转”在几何知识中的重要体现,同时也完善了对初中部分“对称图形”)轴对称图形、中心对称图形”的认识,为学习“圆”等内容做了充分准备。
学情分析学生之前已经学习了旋转,《中心对称图形》延续了旋转知识,是旋转知识的特殊情况。
学生之前积累的变换思想为学习图案设计和图形设计打好了基础。
九年级的学生具备一定的观察、抽象、分析、概括能力,这是开展图形探究活动的有利因素。
学生乐于亲身经历,在体验和探究中学习,但是学生的探究能力、归纳概括能力仍相对薄弱,学习过程中,需要教师适时点拨指导。
教学目标1、理解中心对称及中心对称图形的概念,知道两者的区别与联系;掌握中心对称的性质,运用性质画简单的中心对称图形。
2、能运用概念,判断两个图形是否成中心对称图形,一个图形是否是中心对称图形。
3、能设计简单的对称图形,培养学生的创新能力,体验中心对称图形的美感。
教学重难点理解中心对称及中心对称图形的概念、中心对称的性质,运用概念和性质画简单的中心对称图形。
教学方法讲授法、演示法、谈话法、讨论法、练习法教学过程一、情境导入,初步认识1、关于中心对称的两个图形有哪些特征?成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分。
2、观察如图所示的三个图形,你能发现什么?旋转前的图形绕中心点旋转180°,与旋转后的图形重合。
二、思考探究,获取新知1、如图,将线段AB绕它的中点旋转180°,你发现什么?线段AB绕中点O旋转180°后,A、B两个端点互换位置,旋转后的线段与原来的图形重合。
2、如图,将▱ABCD绕它的两条对角线的交点O旋转180°,你有什么发现?在▱ABCD中,∵OA = OC,OB=OD,∴图形绕点O旋转180°后,点A与点C,点B与点D互换位置,旋转后的图形与原来的图形重合。
初中数学教学案例---中心对称图形
《中心对称图形》教学案例一、教学目标:1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:理解中心对称图形的概念及其基本性质。
三、教学过程:(一)创设问题情境1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
师重复以上活动2次后提问:(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。
在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。
人教版九年级数学上册23.2.2《中心对称图形》教学设计
3.教师布置作业:结合生活实际,寻找身边的中心对称现象,并思考如何运用中心对称性质解决问题。
4.教师总结本节课的学习成果,鼓励学生在今后的学习中,继续探索几何图形的奥秘。
五、作业布置
1.必做题:
(1)课后习题第1、2、3题,巩固中心对称图形的性质及运用。
3.创新实践:
(1)利用中心对称性质,设计一个简单的游戏规则,要求具有趣味性和挑战性。
(2)与同学合作,制作一个中心对称的实物模型,如剪纸、折纸等,展示中心对称的美。
4.作业要求:
(1)作业需独立完成,确保解题过程的正确性和书写的规范性。
(2)创新实践作业可以与家长、同学共同完成,培养合作精神和创新能力。
2.培养学生的合作精神:在小组合作中,学会倾听、表达、沟通,培养团队协作能力。
3.培养学生的创新意识:鼓励学生大胆尝试,勇于探索,激发创新思维。
在此基础上,本节课的教学设计将围绕以上三个目标展开,注重理论与实践相结合,让学生在轻松愉快的氛围中掌握中心对称图形的知识。
二、学情分析
九年级学生已具备了一定的几何基础和空间想象力,对轴对称图形有了深入的理解。在此基础上,引入中心对称图形的概念,学生能够更容易地接受并掌握相关知识。然而,由于中心对称与轴对称在性质和表现上有一定的相似性,学生在区分和运用时可能会产生混淆。因此,在教学过程中,应注重引导学生发现两者的联系与区别,帮助他们建立清晰的知识体系。此外,九年级学生正处于青春期,思维活跃,求知欲强,对新鲜事物充满好奇心。教师应充分调动学生的积极性,设计富有启发性和趣味性的教学活动,激发学生的学习兴趣和探究欲望。
三、教学重难点和教学设想
(一)教学重难点
《23.2.1中心对称》学历案-初中数学人教版12九年级上册
《中心对称》学历案(第一课时)一、学习主题本节课的学习主题是“初中数学课程《中心对称》”。
中心对称是初中数学中关于图形变换的重要概念,是理解几何图形性质和规律的基础。
本节课将通过学习中心对称的定义、性质和实例,培养学生的空间想象能力和几何思维。
二、学习目标1. 理解中心对称的定义,掌握中心对称图形的特点。
2. 能够判断给定的图形是否为中心对称图形,并找出其对称中心。
3. 通过实例分析,培养学生的空间想象能力和几何思维。
4. 提高学生的数学学习兴趣和自主学习能力。
三、评价任务1. 口头回答问题:学生能够准确阐述中心对称的定义和特点,以及如何判断一个图形是否为中心对称。
2. 书面作业:学生能够独立完成一系列关于中心对称的判断题和简答题,并能够准确找出给定图形的对称中心。
3. 小组讨论:学生能够与小组成员合作,通过讨论和交流,加深对中心对称概念的理解和应用。
四、学习过程1. 导入新课:通过展示一些中心对称的实例,引导学生感受中心对称的概念,并激发学生的学习兴趣。
2. 讲解定义:教师讲解中心对称的定义,让学生明确概念,理解其含义。
3. 探究性质:通过具体的图形,让学生探究中心对称图形的性质,如对称点的性质、对称轴的性质等。
4. 实例分析:教师给出一些中心对称的图形,让学生判断是否为中心对称,并找出其对称中心。
5. 小组合作:学生分组进行讨论,加深对中心对称概念的理解和应用,教师巡视指导,及时解答学生的疑问。
6. 总结归纳:教师总结本节课的学习内容,强调中心对称的概念和性质,让学生形成完整的知识体系。
五、检测与作业1. 课堂检测:通过一系列关于中心对称的判断题和简答题,检测学生对中心对称概念的理解和应用能力。
2. 课后作业:布置一些关于中心对称的练习题,让学生巩固所学知识,并提高解题能力。
六、学后反思1. 学生反思:学生应反思自己在本次学习中的收获和不足,如何改进自己的学习方法,提高学习效率。
2. 教师反思:教师应对本次教学进行反思,总结教学经验,找出教学中存在的问题和不足,为今后的教学提供参考。
全国初中数学优秀课一等奖教师教学设计:中心对称图形--教学设计
全国初中数学优秀课一等奖教师教学设计:中心对称图形–教学设计一. 教材分析全国初中数学优秀课一等奖教师教学设计:中心对称图形,主要选取了人教版初中数学八年级下册第17章《中心对称图形》的内容。
本节内容是学生在学习了平面几何的基础上,进一步探究中心对称图形的性质和判定。
教材通过丰富的图片和实例,引导学生发现中心对称图形的特征,培养学生的观察能力和抽象思维能力。
二. 学情分析学生在学习本节内容时,已有了一定的几何知识基础,对平面几何图形有一定的了解。
但中心对称图形作为一个新的概念,对学生来说还比较陌生。
因此,在教学过程中,教师需要充分考虑学生的认知水平,通过生动形象的实例和富有启发性的问题,激发学生的学习兴趣,引导学生主动探究中心对称图形的性质。
三. 教学目标1.理解中心对称图形的概念,能识别生活中的中心对称图形。
2.掌握中心对称图形的性质,能运用性质解决问题。
3.培养学生的观察能力、抽象思维能力和动手操作能力。
4.渗透数学与生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:中心对称图形的概念和性质。
2.难点:中心对称图形的性质在实际问题中的应用。
五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生观察、思考、探究,培养学生的几何直观能力和抽象思维能力。
六. 教学准备1.准备相关的图片和实例,用于导入和呈现中心对称图形。
2.准备课件,展示中心对称图形的性质和判定。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示生活中的中心对称图形,如蝴蝶、天安门等,引导学生关注中心对称现象,激发学生的学习兴趣。
同时,提出问题:“你们认为什么样的图形可以称为中心对称图形?”让学生思考。
2.呈现(10分钟)通过课件展示中心对称图形的定义和性质,引导学生直观地理解中心对称图形的特征。
同时,给出中心对称图形的判定方法,让学生明确如何判断一个图形是否为中心对称图形。
3.操练(10分钟)让学生分组讨论,每组选取一个中心对称图形,用彩笔在纸上画出该图形的对称中心,并验证其性质。
初中数学教学课例《中心对称》教学设计及总结反思
可以达到事半功倍的效果。本节课采用自主探索的方
法,能激发学生的学习兴趣,学生更容易掌握重难点。
本节课采用“传递--接受—实践”的教学模式来进
行教学。教师首先教会学生理解并掌握中心对称及中心
教学策略选 对称图形的概念及性质,学生理解概念后,小组合作来
方法总结:利用中心对称的特征,找正确对应点.当 两个图形成中心对称时,通过直接观察的方法找对应 点;如果直观体现不明显,可采用测量方法找对应点; 识别中心对称图形的方法是根据概念,将这个图形绕某 一点旋转 180°,如果旋转后的图形能够与自身重合, 课例研究综 那么这个图形就是中心对称图形. 述
1.创造力来源于思考和实践,所以在数学学习中永 远不要忽略学生的猜想和实验以及与同学们之间的交 流。
初中数学教学课例《中心对称》教学设计及总结反思
学科
初中数学
教学课例名
《中心对称》
称
这是北师大版数学八年级下册第三章,学习图形变
换--平移和旋转中和使用图形变换解决
问题的能力。教学重点:1.理解中心对称、对称中心、
教材分析 中心对称图形等概念,能识别中心对称图形.2.探索成
择与设计 探究同学们课余时间准备的三角形,正方形,平行四边
形,圆,经过动手操作来将这几个图形分类。从而加深
对概念的理解。
一、情境导入
剪纸,又叫刻纸,是中国汉族最古老的民间艺术之
一,它的历史可追溯到公元 6 世纪.如图剪纸中两个金 教学过程
鱼之间有什么关系呢?
二、合作探究
探究点一:中心对称和中心对称图形的概念
中心对称的两个图形的性质.3.能运用中心对称的性质
作出一-个图形关于某点对称的图形,并确定对称中心
全国初中数学优秀课一等奖教师教案:中心对称图形--教案
全国初中数学优秀课一等奖教师教案:中心对称图形–教案一. 教材分析《中心对称图形》是初中数学的重要内容,它让学生初步接触对称性这一重要的数学性质,为后续学习更复杂的图形对称性打下基础。
本节课的内容包括中心对称图形的定义、性质及其在实际问题中的应用。
通过学习,学生能理解中心对称图形的概念,掌握其性质,并能够运用中心对称图形解决一些简单的问题。
二. 学情分析学生在之前的学习中已经接触过轴对称图形,他们对对称性有一定的理解。
但中心对称图形与轴对称图形不同,它需要学生从一个新的角度去理解和把握。
因此,在教学过程中,教师需要引导学生从直观到抽象,从具体到一般,逐步理解和掌握中心对称图形的性质。
三. 教学目标1.让学生理解中心对称图形的定义和性质。
2.培养学生运用中心对称图形解决实际问题的能力。
3.提高学生对对称性的认识,培养学生的审美情趣。
四. 教学重难点1.中心对称图形的定义和性质。
2.中心对称图形在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生主动探究中心对称图形的性质;通过案例分析,让学生了解中心对称图形在实际问题中的应用;通过小组合作学习,培养学生团队合作的精神和能力。
六. 教学准备1.准备相关的图片和案例,用于引导学生理解和应用中心对称图形。
2.准备一些实际问题,用于巩固学生对中心对称图形的理解和应用。
七. 教学过程1.导入(5分钟)通过展示一些生活中的对称图形,如蝴蝶、树叶等,引导学生关注对称性。
然后提出问题:“你们认为什么样的图形可以称为中心对称图形?”让学生发表自己的看法。
2.呈现(10分钟)呈现中心对称图形的定义和性质,通过具体的案例和图片,让学生直观地理解和掌握中心对称图形的性质。
3.操练(10分钟)让学生通过实际的例子,运用中心对称图形的性质解决问题。
教师可以提供一些问题,也可以让学生自己提出问题。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固对中心对称图形的理解和掌握。
23.2.2中心对称图形教案
23.2.2中心对称图形教案篇一:23.2.2中心对称图形教案九年级数学23.2.2中心对称图形教案设计篇二:23.2.2中心对称图形教案23.2.2中心对称图形篇三:23.2中心对称图形公开课教案23.2中心对称图形教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段ao关于o点的对称图形,如图所示.o(2)作出三角形aoB关于o点的对称图形,如图所示.aoB(2)延长ao使oc=ao,延长Bo使od=Bo,连结cd则△cod为所求的,如图所示.adc.cn二、探索新知从另一个角度看,上面的(1)题就是将线段aB绕它的中点旋转180°,因为oa=?oB,所以,就是线段aB绕它的中点旋转180°后与它重合.上面的(2)题,连结ad、Bc,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ao=oc,Bo=od,∠aoB=∠cod∴△aoB≌△cod∴aB=cdadoB也就是,aBcd绕它的两条对角线交点o旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.aodB分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,o是四边形aBcd的对称中心,根据中心对称性质,线段ac、?Bd必过点o,且ao=co,Bo=do,即四边形aBcd的对角线互相平分,因此,?四边形aBcd是平行四边形.三、巩固练习教材P72练习.四、应用拓展例4.如图,矩形aBcd中,aB=3,Bc=4,若将矩形折叠,使c点和a点重合,?求折痕EF的长.分析:将矩形折叠,使c点和a点重合,折痕为EF,就是a、c两点关于o点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接aF,∵点c与点a重合,折痕为EF,即EF垂直平分ac.∴aF=cF,ao=co,∠Foc=90°,又四边形aBcd为矩形,∠B=90°,aB=cd=3,ad=?Bc=4设cF=x,则aF=x,BF=4-x,由勾股定理,得ac=Bc+aB=5222215∴ac=5,oc=ac=22∵aB+BF=aF∴3+(4-x)=2=x∴x=22222aoBFEd258222∵∠Foc=90°∴oF=Fc-oc=(.cn2525215215)-()=()oF=28881515同理oE=,即EF=oE+oF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74综合运用5P75拓广探索8、9篇四:23.2.2中心对称图形教案23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习, 丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
人教版九年级数学上册 教案 旋转《中心对称图形》
人教版九年级数学上册教案旋转《中心对称图形》一. 教材分析旋转是初中数学中的重要内容,是几何变换的基本形式之一。
《中心对称图形》是人教版九年级数学上册第二章几何变换的一部分,主要让学生了解中心对称图形的概念,理解中心对称与旋转的关系,学会用旋转来解决实际问题。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续的旋转变换和其他几何变换的学习打下基础。
二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但是,学生对中心对称图形的理解可能还停留在表象阶段,对中心对称与旋转的关系认识不足。
因此,在教学过程中,需要引导学生从实际问题中发现旋转的规律,培养学生的观察能力、操作能力和解决问题的能力。
三. 教学目标1.理解中心对称图形的概念,掌握中心对称与旋转的关系。
2.学会用旋转来解决实际问题,提高学生的应用能力。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.中心对称图形的概念及判断。
2.中心对称与旋转的关系。
3.用旋转解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生发现旋转的规律,用案例展示中心对称图形的应用,让学生在小组合作中探讨中心对称与旋转的关系,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的实际问题和案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和作业。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个生活中的实际问题:“如何将一个图形绕某一点旋转?”让学生观察并思考,引出本节课的主题——旋转。
2. 呈现(10分钟)讲解中心对称图形的概念,呈现一些典型的中心对称图形,如圆、正方形等,让学生判断并解释为什么它们是中心对称图形。
同时,引导学生发现中心对称与旋转的关系,如圆的旋转可以看作是中心对称的运用。
3. 操练(10分钟)让学生进行一些实际的操作,如绘制中心对称图形,判断给定的图形是否为中心对称图形等。
中心对称初中教案
中心对称初中教案教学目标:1. 让学生理解中心对称图形的概念,掌握中心对称图形的性质。
2. 培养学生观察、分析、解决问题的能力。
3. 培养学生的空间想象能力和动手操作能力。
教学重点:1. 中心对称图形的概念及性质。
2. 中心对称图形在实际中的应用。
教学难点:1. 中心对称图形的性质的理解和应用。
2. 中心对称图形与轴对称图形的区别。
教学准备:1. 教师准备一些中心对称图形的实物或图片。
2. 学生准备课本、练习本、铅笔、直尺等学习用品。
教学过程:一、导入(5分钟)1. 教师展示一些中心对称图形的实物或图片,让学生观察并猜测它们的特点。
2. 学生分享观察到的特点,教师引导学生总结中心对称图形的定义。
二、新课(15分钟)1. 教师讲解中心对称图形的性质,引导学生通过观察和思考来理解性质。
2. 学生跟随教师的讲解,积极参与讨论,提出问题和解答问题。
3. 教师通过示例来展示中心对称图形的性质在实际中的应用,让学生体会学习中心对称图形的意义。
三、练习(10分钟)1. 教师给出一些中心对称图形的问题,学生独立解答。
2. 学生分享解答过程和结果,教师给予评价和指导。
四、小结(5分钟)1. 教师引导学生回顾本节课所学的内容,总结中心对称图形的概念和性质。
2. 学生分享自己的学习收获和感受。
五、作业(课后)1. 学生完成课后练习题,巩固所学知识。
2. 学生收集生活中的中心对称图形,下节课分享。
教学反思:本节课通过实物和图片的展示,引导学生观察和分析中心对称图形的性质,让学生通过思考和讨论来理解知识,培养了学生的观察能力、思维能力和解决问题的能力。
同时,通过练习和实际应用,让学生感受中心对称图形在生活中的重要性,提高了学生的学习兴趣和积极性。
但在教学过程中,要注意引导学生区分中心对称图形和轴对称图形,避免混淆。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
通过一系列的讲解、示例和练习,学生将能够掌握中心对称图形的性质和判定方法。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会判定一个图形是否为中心对称图形。
3. 能够运用中心对称图形解决实际问题。
教学内容:一、中心对称图形的定义1. 引入中心对称图形的概念。
2. 通过示例解释中心对称图形的定义。
二、中心对称图形的性质1. 介绍中心对称图形的基本性质。
2. 通过示例展示中心对称图形的性质。
三、中心对称图形的判定1. 引导学生思考如何判定一个图形是否为中心对称图形。
2. 给出判定方法并示例讲解。
四、中心对称图形在实际问题中的应用1. 提供一些实际问题,让学生运用中心对称图形解决。
2. 引导学生思考中心对称图形在实际生活中的应用。
五、巩固练习1. 提供一些练习题,让学生巩固中心对称图形的知识和判定方法。
2. 解答学生的问题,给予指导和帮助。
教学资源:1. 中心对称图形的示例图形。
2. 判定中心对称图形的练习题。
教学步骤:1. 引入中心对称图形的概念,让学生初步了解。
2. 通过示例解释中心对称图形的定义,让学生直观感受。
3. 介绍中心对称图形的基本性质,让学生理解并记住。
4. 给出判定中心对称图形的方法,让学生学会判断。
5. 提供实际问题,让学生运用中心对称图形解决,加深理解。
6. 通过巩固练习,让学生巩固中心对称图形的知识和判定方法。
教学评价:通过课堂讲解、示例和练习,观察学生对中心对称图形的理解和掌握程度。
在练习题的解答过程中,观察学生是否能正确运用中心对称图形的性质和判定方法。
在实际问题中,观察学生是否能运用中心对称图形解决问题。
根据学生的表现,给予相应的评价和指导。
本教案可根据学生的实际情况进行调整和修改,以满足具体教学需求。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
初中数学《中心对称图形》教案
初中数学《中心对称图形》教案第四章四边形性质探索7.中心对称一、学生起点分析:学生的知识技能基础:学生已经认识了生活中的轴对称现象,掌握了轴对称图形的概念及其性质,因此在学习中心对称图形时可以进行比较。
另外,学生还掌握了一些常见中心对称图形的性质,例如平行四边形、矩形、圆形、正方形等,所以在研究这些图形的中心对称性时是有帮助的。
学生的活动经验基础:生活中存在大量的实例,可以作为这一节课的活动基础。
二、学习任务分析:基于已有了研究轴对称图形的基础以及旋转知识,本节课教学的重点在于理解中心对称图形的定义及其性质,难点在于理解中心对称图形的定义,会判断哪些图形是中心对称图形,并且还要发展学生的应用意识,会寻找生活中的中心对称图形,会分析各种图案,标志是中心对称图形,还是轴对称图形。
因此本节课的教学目标是:(1)经历观察发现中心对称图形的有关概念以及性质的过程,理解中心对称图形的概念和性质。
(2)会判断一些常见图形是否是中心对称图形。
(3)会判断生活中的一些图案,图标是否具有中心对称性。
(4)学会运用数学眼光分析身边事物的能力。
(5)培养审美能力。
教学重点:理解中心对称图形的定义及其性质教学难点:理解中心对称图形的定义,会判断哪些图形是中心对称图形三、教学过程设计:本节课分为6个环节:第一环节:课前准备收集图案、图标第二环节:引入第三环节:探究析知第四环节:练习提高第五环节:课堂小结第六环节:布置作业第一环节:学生课前收集一些图案,图标等。
以4人合作小组为单位,开展收集图案活动:(1)美丽图案(2)各车的标志(3)商标活动方式:提前准备活动目的:通过以上活动,培养学生运用数学眼光分析周围世界。
第二环节:情境引入在学生收集到的图案中,首先请学生先选择出是轴对称图形的图案,与学生共同回顾轴对称图形的知识。
然后,教师挑出具有另一种对称性的图案(中心对称的),引入课题。
第三环节:学习新知1.探究活动:平行四边形ABCD运用电脑演示下列过程:连结对角线AC,BD交点为O,确定原来平行四边形的位置,然后使它绕着点O旋转180。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《中心对称图形》教学案例
一、教学目标:
1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:
理解中心对称图形的概念及其基本性质。
三、教学过程:
(一)创设问题情境
1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
师重复以上活动2次后提问:
(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?
(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)
反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。
在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也
是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。
3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:
(1)只有一张扑克牌图案颠倒后和原来牌面一样。
(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O 后,就可以马上在一堆扑克牌中找出它。
反思:本环节是在扑游戏揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。
从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。
(二)学生分组讨论、思考探究:
1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?
生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。
2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“Z+Z”演示其旋转过程。
)
3.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?
对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。
(三)教师明晰,建立模型
1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2.对比轴对称图形与中心对称图形:(列出表格,加深印象)
轴对称图形
中心对称图形
有一条对称轴——直线
有一个对称中心——点
沿对称轴对折
绕对称中心旋转180O
对折后与原图形重合
旋转后与原图形重合
3.以下五家银行行标中,既是中心对称图形又是轴对称图形的有()
(四)解释、应用与拓广
1.教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。
利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。
2.探究中心对称图形的性质
板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.师问:怎样找出一个中心对称图形的对称中心?
(两组对应点连结所成线段的交点)
4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?
学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?
5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?
学生讨论回答。
6.你还能找出哪些多边形是中心对称图形?
反思:自主、探究、合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习量化表,见(附录))。
(五)拓展与延伸
1.中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?
2.正六边形的对称中心怎样确定?
(六)魔术表演:
1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180º后,得到右图,你知道哪一张扑克被旋转过吗?
2.学生小组活动:
以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。
新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。
通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。
只有这样,学生的创新意识和动手意识才会充分地发挥出来。
四、案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。
”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。
”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。
对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。
这样,数学来源于生活,又必须回归于生活,学生就能学得轻松愉快,整个课堂显得生动活泼。