初中数学教学设计优秀案例(一)

合集下载

初中数学教学设计优秀案例(一)

初中数学教学设计优秀案例(一)

《二元一次方程》教学设计一、教材的地位与作用《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。

在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。

本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标(一)知识与技能:1.了解二元一次方程概念;2.了解二元一次方程的解的概念和解的不唯一性;3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。

获得求二元一次方程解的思路方法。

(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程1.创设情境,引入新课从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?设姚明投进了x个两分球,罚进了y个球,可列出方程______。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。

全国初中数学优秀课一等奖作品教学设计、课例点评精品模板(一)

全国初中数学优秀课一等奖作品教学设计、课例点评精品模板(一)

全国初中数学优秀课一等奖作品教学设计、课例点评精品模板(一)一. 教材分析本课是人教版七年级数学上册第二章《有理数》的第三节,主要内容是学习有理数的乘法。

有理数的乘法是学生在学习了有理数的加减法、乘方之后,进一步深入学习有理数运算的重要内容。

通过学习有理数的乘法,为学生以后学习函数、方程等数学知识打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和加减法、乘方等运算有了初步的了解。

但学生在进行有理数乘法运算时,容易出错,对有理数乘法的规律和技巧还需要进一步学习和掌握。

三. 教学目标1.知识与技能目标:使学生掌握有理数的乘法运算方法,能够熟练进行有理数的乘法运算。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生发现有理数乘法的规律,提高学生的数学思维能力。

3.情感态度与价值观目标:培养学生积极参与数学学习的兴趣,使学生感受到数学学习的乐趣,增强学生的自信心。

四. 教学重难点1.教学重点:有理数的乘法运算方法。

2.教学难点:有理数乘法的规律和技巧。

五. 教学方法1.采用问题驱动法,引导学生主动探究有理数乘法的运算方法。

2.运用案例分析法,分析学生在有理数乘法运算中常犯的错误,让学生加深对有理数乘法的理解。

3.运用归纳总结法,引导学生发现有理数乘法的规律,提高学生的数学思维能力。

六. 教学准备1.准备相关课件和教学素材,以便进行生动形象的教学。

2.准备练习题,用于巩固学生对有理数乘法的掌握。

七. 教学过程1.导入(5分钟)利用生活中的实际例子,如“小明买了2本书,每本书3元,一共花了多少钱?”引发学生对有理数乘法的思考,激发学生的学习兴趣。

2.呈现(10分钟)呈现有理数乘法的定义和运算方法,引导学生观察、分析,发现有理数乘法的规律。

3.操练(10分钟)让学生进行有理数乘法的练习,教师及时给予指导和反馈,帮助学生掌握有理数乘法的运算方法。

4.巩固(10分钟)通过一组练习题,让学生进一步巩固有理数乘法的运算方法,提高学生的运算速度和准确性。

初中数学教学设计优秀案例(一)

初中数学教学设计优秀案例(一)

《二元一次方程组》教学设计一、教学目标1.知识与技能目标:(1)理解二元一次方程组的概念和二元一次方程组解的含义;(2)会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解;(3)通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力。

2.过程与方法目标从一个学生熟悉的生活实例引入二元一次方程组的概念,并通过“辩一辩"“填一填"“试一试”“做一做”,加深学生对“二元一次方程组”和“二元一次方程组的解”的概念的理解;并使学生初步了解用列表尝试的方法求二元一次方程组的解,并使学生在解决问题的过程中经历知识的产生过程。

3.情感与态度目标从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关心他人,培养一种社会的责任感。

二、教学重点、难点重点是二元一次方程组的意义和二元一次方程组解的概念。

难点是利用列表尝试的方法求简单二元一次方程组的解.三、教学准备多媒体、实物投影仪。

四、教学方法和手段基于本节课内容的特点和七年级学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.与学生建立平等融洽的互动关系,营造合作交流的学习氛围。

在引导学生进行观察分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。

五、教学过程环节一创设情境,探索新知问题1:假设你们每人手上有一根长20cm的铁丝,将这根铁丝首尾相连围成一个正方形,围出来的正方形都完全一样吗?问题2:同样用这根20厘米长的铁丝,首尾相连围成的长方形都完全一样吗?你能用二元一次方程来表示吗?【设计意图】①通过问题情境复习旧知,真正理解二元一次方程的意义;②为探索新知做好铺垫。

问题3:前面两个问题中都存在二元一次方程10=+yx,为何围成的长方形有无数种情况,而围成的正方形只有一种情况?【设计意图】通过两个问题的对比,让学生感受到10=+yx与yx=同时满足时,存在解的唯一性的过程,为二元一次方程组的形成做铺垫。

初中数学教学设计(优秀4篇)

初中数学教学设计(优秀4篇)

初中数学教学设计(优秀4篇)初中数学教学设计篇一一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

(三)德育渗透点培养学生独立思考、勇于创新的精神。

二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。

因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。

”这是否是真命题呢?引出课题。

(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。

引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。

在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

《一元一次方程》教学设计一、内容与内容解析继第四章《代数式》之后,第五章《一元一次方程》内容仍属于《义务教育课程标准(2022年版)》中的“数与代数”领域.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数的发展.从代数关于方程的分类看,一元一次方程是最基本的代数方程,对它的理解和掌握对于后续内容(其他的方程以及不等式、函数等)的学习具有重要的基础,这是因为这些后续内容的学习和一元一次方程的学习有很强的关联性和可类比性.本章内容是对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题更复杂些,更强调模型化思想的渗透,对方程的解法更注重算理.一元一次方程的概念和解法贯穿全章,是本章的教学重点.本节课学习内容主要包括:(1)一元一次方程的概念;(2)一元一次方程的解(根)的概念;(3)判断一个数是否是一元一次方程的解;(4)尝试检验法求一元一次方程的解.由此可见,一元一次方程作为章节起始课,承载着单元知识引领作用.基于教学内容特殊的地位和作用,本节课的教学重点确定为:1. 一元一次方程的概念;2. 尝试、检验法解一元一次方程的思想和方法.二、目标与目标解析1. 进一步认识方程,感悟从算式到方程是数学的进步.2. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.3. 通过观察、分类、归纳,经历一元一次方程概念的形成过程,理解一元一次方程的概念.4. 根据解的概念能判断一个数是否为一元一次方程的解.5.体验用尝试、检验解一元一次方程的思想和方法,并能解决简单的实际问题.三、教学问题诊断分析:从课程标准看,学生已经对方程有初步的认识,会用方程表示简单情景中的数量关系,会解简单的方程,具备了一定的基础,为进一步学习方程奠定了基础.列方程建立在分析问题的数量关系上,关键是找出合适的等量关系,并将其用数学的符号语言正确表达,即建立问题的方程模型,因为有些问题中数量关系比较隐蔽,对七年级学生来说分析有点困难,对每一个问题都要作具体分析,而不是简单的套用某一方法就可以完成,所以列方程要求较高.尝试、检验法作为解方程的一种方法,在教学可能会受到原有解方程知识干扰;在尝试、检验时如何确定未知数的较小取值范围,如何逼近方程的解,对于七年级学生来说是比较难处理的.本班学生基础、能力中等.因此本节课的难点为:1. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.2. 体验用尝试、检验解一元一次方程的思想和方法.四、教学支持条件分析:为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取以下教学支持条件:策略1:在列方程环节中,通过5个问题串,本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?来分散列方程教学难点.策略2:在归纳一元一次方程概念环节中,由学生自己制定标准把得到6个方程进行分类,通过对比二元方程、二次方程,归纳得到一元一次方程概念,凸显了一元一次方程的的特征,也为后续的方程学习指明了方法.策略3:在“尝试、检验解一元一次方程”环节中,通过估计几年后教师年龄是女儿的2倍,来确定未知数的取值范围,让学生经历尝试、检验过程,体验尝试作为问题解决的一种有效策略.五、教学过程与目标检测设计:(一)师生对话引入新课1. 请两位同学做自我介绍,追问生1年龄,追问生2出生年份,求其年龄.2. 先猜测老师年龄,然后根据师生一段对话求出老师年龄.小明:我今年14岁,老师您几岁?老师:我年龄与你年龄的平均数再加11就是我的年龄.【设计意图】1.轻松的自我我介绍,可以缓和紧张的课堂气氛,通过自我介绍引出学生年龄问题,进而转到猜测老师的年龄. 2.在猜测老师年龄时通过太大、太小、接近了,来确定年龄的范围,为后续尝试、检验法做铺垫. 3.在计算老师年龄时一般会出现三种情况:凑的方法(尝试、检验法)、算术的方法、方程的方法.通过比较让学生感悟在数量关系相对复杂的情况下,相比列算式,列方程显得更直接、更自然,体现了方程的价值,从而引出课题“方程”.(二)合作讨论探究新知1. 根据下列问题中的条件,分别列出方程.(1)如图,天平左边放着3个乒乓球,右边放5.4克的砝码和1个乒乓球,天平恰好平衡,求1个乒乓球的质量.设1个乒乓球的质量为x克,那么可以列方程: .通过5个问题串来降低列方程难度.本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?(2)一株小树苗,开始时高为40厘米,栽种后每周长高约5厘米,大约几周后树苗长高到1米?设y周后树苗长高到1m,那么可以列方程: .(3)小杰买了单价分别为2元和1.2元的贺卡若干张,花了10.8元,问这两种贺卡各买了多少张?设单价2元的贺卡m 张,单价1.2元的贺卡n 张那么可以列方程: .用不同的字母来表示未知量,让学生明白未知量可用任何字母表示,但同一题中的字母表示相同的含义.(4)把一个面积为1125平方米的一块操场分割成如图所示的正方形和长方形两个部分,求正方形边长.设正方形边长为x 米,那么可以列方程: .(5)小明用温差法测量某山峰的高度,在同一时刻测得山脚温度为7.8℃,山顶温度为-2.1℃.已知该地区山峰的高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?设这个山峰的高度大约是y 米,那么可以列方程: .【设计意图】1.经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型. 2.一元一次方程是最基本的代数方程,其“特征”只有在方程背景下比较才能凸显出来,故相比教科书增添了二元方程和二次方程.2. 自己制定一个分类依据,把这六个方程分分类.(1)x x +=4.53 (2)100540=+y (3)8.102.12=+n m(4)1125202=+x x (5)1.2006.08.7-=-x (6)x x =++11214 生:按未知数的个数分,一元、二元;按未知数的次数分,一次、二次. 方程(1)、(2)、(5)、(6)同时具有一元、一次两个特征,我们把形如这样的方程叫做一元一次方程,引出今天的课题.再观察这四个方程两边的代数式,得到一元一次方程的第三个特征(两边都是整式).【设计意图】由学生自己制定标准把得到6个方程进行分类,通过观察、合作讨论、归纳得到一元一次方程概念,凸显了一元一次方程的的特征(一元、一次),也为后续的方程学习指明了方法.3. 下列各式中,哪些是方程? 哪些是一元一次方程?(1)05=x (2) x 31+ (3) y y +=42(4)m m -=+123 (5) x x-=43 (6) 321x y -= 【设计意图】通过追问(2)、(3)、(5)、(6)不是一元一次方程的缘由,加深对一元一次方程特征的理解,借此巩固一元一次方程概念.4.写出一个一元一次方程.(三)温故知新 再探新知1. 在小学方程学习中,我们还学习了什么?解方程就是求出能使方程左右两边相等的未知数的值,我们把这个值叫做方程的解.2. 判断下列x 的值是不是方程9234-=-x x 的解.(1)2=x (2) 3-=x【设计意图】方程“验根”是对“方程的解”的概念直接应用,由教学经验可知,学生会把未知数的同时代入到方程两边,得到错误的式子“922324-⨯=-⨯”.第(1)小题讲解中,要让学生充分理解“左边=右边”这一判断标准,并归纳总结判断一个未知数的值是不是方程的解步骤及表述格式.第(2)小题由学生参照格式完成,强化验根的程序.3. 写出一个一元一次方程,使它们的解是x= - 2.【设计意图】让学生从正反两个方面深入理解一元一次方程解的概念.(四)尝试检验 体验方法对于一些较简单的方程,先确定未知数的一个较小的取值范围,再逐一将这些可取的值代入方程进行尝试检验,能使方程两边相等的未知数的值就是方程的解.这种解方程的方法叫尝试检验法.它是解决问题的一种有效的方法.1. 今年乐老师36岁、女儿9岁,几年后乐老师的年龄是女儿的2倍?今年老师的年龄是女儿的4倍,你们估估看几年后老师的年龄是女儿的2倍?10年?20年?跨度太大,15年?从而可以确定应在什么之间?如果设x年后乐老师的年龄是女儿的2倍.可列方程?方程的解因该是那几个整数中的一个?【设计意图】让学生经历尝试、检验过程,如何确定未知数的较小取值范围,如何逼近方程的解.由老师的年龄问题自然的引到丢番图的年龄问题,借此介绍代数、方程的发展历程.2. 求出丢番图的年龄.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过了四年,他也走完了人生的旅途.因为年龄为整数,且必为6、12、7、2的公倍数,最小公倍数为84,根据实际情况,年龄不可能达到168及以上,把84代入方程尝试、检验.【设计意图】这是一道悠久历史的名题,也是数学与文学结合的佳作,诗中并没有明确说出丢番图的寿命数字,但已隐含于诗中,利用方程可以求出其年龄,这当中蕴含着浓浓的数学文化.根据生平历程和年龄得到的方程相对较繁,利用整数解,感悟“尝试、检验”作为问题解决的一种有效策略.(五)回顾总结提升认识1. 一元一次方程是方程大家庭中最简单的一类,你觉得他简单在哪里?2. 比一元一次方程稍稍复杂的方程可能是什么方程?它复杂在哪?如果它的“次”“元”继续增加,又可能产生什么方程?3. 如果“元”“次”同时增加,还可能产生什么新的方程?你能写一个吗?【设计意图】从方程到一元一次方程得到概念,从一元一次方程到方程加以提升.4. 我们发现,从左到右,方程越来越复杂.同学们,我们不妨换个方向,如果从右往左看,感觉又会怎样呢?这是我们以后解方程思考的方向,当然解方程不可能象今天一样都去尝试,究竟如何解方程?这是我们下节课要学习的内容.【设计意图】渗透解方程的基本思想方法,为后续的方程学习起到引领作用.(六)分层联系巩固必做:完成作业本《5.1一元一次方程》.选做:用自己的年龄编一道问题,并列出方程.查阅方程史实,了解方程发展历程.【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.《一元一次方程》的点评方程是数学的核心内容,是刻画世界数量关系的有效数学模型。

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知(活动一)探究角平分仪的原理。

具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。

以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。

使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。

初中数学教案一等奖

初中数学教案一等奖

初中数学教案一等奖1、初中数学教案一等奖初中数学教学案例设计——直线与圆的位置关系萍乡六中马祥志一、概述九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。

本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。

在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。

教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

三、教学目标(1)激发学生亲自探索直线和圆的位置关系。

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

(4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些收获?在现实生活中有哪些体现?四、教学重点直线与圆的三种位置关系——相交、相切、相离从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

六、教学过程2、初中数学教案一等奖作为一名默默奉献的教育工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

教案应该怎么写呢?以下是我整理的青岛版初中数学教案范文,仅供参考,希望能够帮助到大家。

初中数学教学教研案例(3篇)

初中数学教学教研案例(3篇)

第1篇一、案例背景随着我国素质教育的深入推进,初中数学教学面临着前所未有的挑战。

如何提高数学教学质量,培养学生的数学素养,成为广大数学教师关注的热点。

本案例以“初中数学课堂有效教学策略研究”为主题,通过分析教学实践中的问题,探讨有效的教学策略,以期为初中数学教学提供有益的启示。

二、案例描述1. 教学情境某初中八年级数学教师在教授“一次函数”这一课时,发现部分学生对函数概念理解困难,课堂参与度不高,教学效果不佳。

2. 教学问题(1)学生对函数概念理解困难,难以将抽象的数学概念与实际生活联系起来。

(2)课堂气氛沉闷,学生参与度不高,教学效果不佳。

(3)教师对课堂管理不够重视,教学过程中存在纪律问题。

3. 教学策略(1)创设情境,激发学生学习兴趣教师通过多媒体展示生活中常见的函数现象,如气温变化、人口增长等,引导学生思考这些现象背后的数学规律。

同时,结合实际问题,让学生尝试用函数知识解释现象,提高学生的兴趣。

(2)采用小组合作学习,培养学生的合作能力教师将学生分成若干小组,每组负责研究一个函数问题。

在小组讨论过程中,学生互相启发,共同解决问题。

教师巡回指导,关注每个学生的学习情况,及时解答学生疑问。

(3)注重教学评价,激发学生学习动力教师采用多元化的评价方式,关注学生的个体差异,给予学生及时的反馈。

在评价过程中,注重学生的进步和努力,激发学生的学习动力。

(4)加强课堂管理,营造良好的学习氛围教师重视课堂纪律,对学生的行为进行规范。

同时,通过表扬优秀学生,树立榜样,营造良好的学习氛围。

三、教学反思1. 创设情境,激发学生学习兴趣是提高教学质量的关键。

教师应关注学生的生活实际,将数学知识与生活相结合,提高学生的学习兴趣。

2. 小组合作学习能够培养学生的合作能力,提高学生的综合素质。

教师应合理安排小组合作学习,关注每个学生的学习情况,确保教学效果。

3. 注重教学评价,关注学生的个体差异,激发学生的学习动力。

初中数学优秀的教学设计(精选5篇)

初中数学优秀的教学设计(精选5篇)

初中数学优秀的教学设计(精选5篇)初中数学优秀的教学设计1一、教学目标1.知识与技能目标掌握有理数乘法法则, 能利用乘法法则正确进行有理数乘法运算。

2.能力与过程目标经历探索、归纳有理数乘法法则的过程, 发展学生观察、归纳、猜测、验证等能力。

3.情感与态度目标通过学生自己探索出法则, 让学生获得成功的喜悦。

二、教学重点、难点重点: 运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程, 符号法则及对法则的理解。

三、教学过程1.创设问题情景, 激发学生的求知欲望, 导入新课。

教师:由于长期干旱, 水库放水抗旱。

每天放水2米, 已经放了3天, 现在水深20米, 问放水抗旱前水库水深多少米?学生: 26米。

教师: 能写出算式吗?学生: ……教师:这涉及有理数乘法运算法则, 正是我们今天需要讨论的问题2.小组探索、归纳法则(1)教师出示以下问题, 学生以组为单位探索。

以原点为起点, 规定向东的方向为正方向, 向西的方向为负方向。

①2×32看作向东运动2米, ×3看作向原方向运动3次。

结果: 向运动米2×3=②-2×3-2看作向西运动2米, ×3看作向原方向运动3次。

结果: 向运动米-2×3=③2×(-3)2看作向东运动2米, ×(-3)看作向反方向运动3次。

结果: 向运动米2×(-3)=④(-2)×(-3)-2看作向西运动2米, ×(-3)看作向反方向运动3次。

结果: 向运动米(-2)×(-3)=(2)学生归纳法则①符号: 在上述4个式子中, 我们只看符号, 有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。

③任何数与零相乘, 积仍为。

(3)师生共同用文字叙述有理数乘法法则。

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。

初中数学教学优秀案例展示(含示范课课程设计、学科学习情况总结)

初中数学教学优秀案例展示(含示范课课程设计、学科学习情况总结)

初中数学教学优秀案例展示第一篇范文:初中数学教学优秀案例展示本文以初中数学教学为背景,通过实际教学案例的展示,探讨了教学策略、学生学习成果和教师专业发展等方面的关键问题。

案例展示中,教师以学生为中心,运用多样化的教学手段,激发学生的学习兴趣,培养学生的数学素养和创新能力。

本文旨在为初中数学教师提供有益的教学参考,促进教学质量的提升。

关键词:教学策略;学生学习成果;教师专业发展;数学素养;创新能力在当前教育改革的大背景下,初中数学教学面临着前所未有的挑战。

作为数学教师,我们需要不断更新教学观念,改进教学方法,关注学生的个体差异,提高教学质量。

本文通过一个实际的教学案例,展示了一种以学生为中心、注重培养学生数学素养和创新能力的教学模式。

教学案例本案例选取了人教版《数学》八年级上册“一次函数”这一章节进行展示。

在教学过程中,教师充分运用多样化的教学手段,激发学生的学习兴趣,提高学生的数学素养。

1. 教学目标根据新课程标准和学生实际情况,确定了以下教学目标:1.理解一次函数的概念、性质和图像;2.学会用一次函数解决实际问题;3.培养学生的数学素养和创新能力;4.提高学生的团队合作和交流能力。

2. 教学内容1.一次函数的概念和性质;2.一次函数的图像;3.一次函数在实际问题中的应用。

3. 教学过程导入环节教师通过生活实例引入一次函数的概念,激发学生的学习兴趣。

例如,讲解公交车行驶的路程与时间的关系,引导学生思考如何用数学模型来表示这个问题。

新课导入教师引导学生通过观察、分析、归纳,总结一次函数的性质和图像。

在讲解过程中,教师注意运用多媒体课件,生动形象地展示一次函数的图像,帮助学生更好地理解。

课堂练习教师设计具有代表性的练习题,让学生在实践中掌握一次函数的应用。

例如,让学生设计一个购物预算方案,运用一次函数解决实际问题。

小组讨论教师组织学生进行小组讨论,分享各自的设计方案,互相评价,共同提高。

在此过程中,教师注重培养学生的团队合作和交流能力。

初中数学优秀教案 初中数学优秀教案(优秀8篇)

初中数学优秀教案 初中数学优秀教案(优秀8篇)

初中数学优秀教案初中数学优秀教案(优秀8篇)作为一名教师,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。

教案应该怎么写呢?这里是小编阿青给大家收集整理的8篇初中数学优秀教案的相关范文。

初中数学优秀教案篇一一、背景知识《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。

课本安排了做一做等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用定值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号∵∵写出表示推理过程中简单的因果关系。

三、教学重点与难点重点:运用法则借助数轴比较两个有理数的大小。

难点:利用定值概念比较两个负分数的大小。

四、教学准备多媒体课件五、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我们5个城市的较低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的较低气温10∵比上海的较低气温0∵高,有些学生会说哈尔滨的较低气温零下20∵比北京的较低气温零下10∵低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间较低气温的高低(填高于或低于)广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市较低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。

初中数学教研优秀案例(3篇)

初中数学教研优秀案例(3篇)

第1篇一、案例背景随着我国教育改革的不断深入,初中数学教育也面临着新的挑战和机遇。

为了提高初中数学教学质量,促进教师专业成长,我校开展了初中数学教研活动。

以下是一篇关于初中数学教研的优秀案例,旨在分享教研成果,推动数学教育的发展。

二、案例概述本案例以我校初中数学教研组为研究对象,通过开展一系列教研活动,旨在提高教师教学水平,优化教学策略,提升教学质量。

以下是具体案例内容。

三、案例实施1. 明确教研目标本次教研活动以“提高初中数学教学质量,促进学生全面发展”为目标,围绕以下几个方面展开:(1)提升教师教学水平,优化教学策略;(2)关注学生个体差异,实施分层教学;(3)加强数学学科核心素养的培养;(4)提高课堂效率,激发学生学习兴趣。

2. 开展教研活动(1)集体备课为了提高备课质量,教研组定期组织集体备课活动。

活动中,教师们共同研究教材、分析学情,制定切实可行的教学计划。

通过集体备课,教师们对教材有了更深入的理解,教学设计更加合理。

(2)教学观摩教研组定期开展教学观摩活动,邀请优秀教师进行示范课展示。

观摩课后,教师们围绕教学目标、教学过程、教学方法等方面进行研讨,取长补短,共同提高。

(3)课题研究为了提升教师科研能力,教研组鼓励教师申报课题,开展课题研究。

教师们通过查阅文献、分析数据、实践探索等方式,不断丰富自己的教学理论,提高教学实践水平。

(4)教学反思教研组要求教师每周撰写教学反思,总结教学过程中的成功经验,分析存在的问题,为今后的教学提供借鉴。

3. 教学成果展示通过一系列教研活动,我校初中数学教学质量得到了显著提高。

以下为部分教学成果:(1)学生在各级各类数学竞赛中取得优异成绩;(2)教师教学水平不断提高,多篇论文在省级以上刊物发表;(3)学校数学教学质量稳步提升,受到上级领导和社会各界的广泛好评。

四、案例总结1. 强化教师培训,提升教师教学水平通过开展教研活动,教师们不断更新教育理念,掌握先进的教学方法,提高自身教学水平。

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)初中数学教学设计优秀案例(分享九篇)。

初中数学教学设计优秀案例篇1一学期的工作结束了,可以说紧张忙碌却收获多多。

回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:一、在备课方面在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面在课堂教学中我一直注重学生的参与。

让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。

波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。

”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。

但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。

后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。

对学生的自主学习,合作学习,缺乏理论指导4)、差生末抓在手。

由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。

上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。

导致了教学中的盲目性。

四、今后努力的方向1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。

2023年最新的初中数学优秀教学案例范文三篇

2023年最新的初中数学优秀教学案例范文三篇

2023年最新的初中数学优秀教学案例范文三篇第一篇: 初中数学优秀教学案例一、背景新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。

在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段在刚过去的这个学期,我上了一节一元一次不等式组的应用。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。

这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。

猜猜看,小宝的体重约多少千克?我问学生:你们玩过跷跷板吗?先看看题,一会请同学复述一下。

学生复述后,基本已经熟悉了题目。

我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:爸爸体重>小宝体重+妈妈体重爸爸体重<小宝体重+妈妈体重+一副哑铃重量我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。

一学生举手了:可以列不等式组。

我给出提示:小宝的体重应该同时满足上述的两个条件。

怎么把这个意思表达成数学式子呢?这时学生们七嘴八舌地讨论起来,都抢着回答,我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:可以设小宝的体重为x千克,能列出两个不等式。

可是接下来我就不知道了。

我听了心中一动,意识到这应是思想渗透的好机会,便解释说:我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组不等我说完,学生都齐声答:列不等式组。

全班12小组积极投入到解题活动中了。

5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。

初中数学优秀教学设计

初中数学优秀教学设计

初中数学优秀教学设计在平平淡淡的学习中,大家或多或少都参加过一些主题班会吧?主题班会必须有明确的教育目的,自始至终贯穿,渗透着极强的教育性。

你知道什么样的主题班会才是好的主题班会吗?下面是由作者给大家带来的初中数学优秀教学设计5篇,让我们一起来看看!初中数学优秀教学设计篇1一、教学目标:1、知识目标:①能准确知道绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深入地知道相反数的概念。

2、能力目标:①初步培养学生视察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知愿望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感遭到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的知道及求一个负数的绝对值。

三、教学方法启示引导式、讨论式和谈话法四、教学进程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特点?(二)新授1、引入结合教材P63图2-11和复习问题,讲授6与-6的绝对值的意义。

2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a 的绝对值记作|a|.举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲授。

)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)初中数学教学设计(精选5篇)在平平淡淡的学习中,大家或多或少都参加过一些主题班会吧?主题班会必须有明确的教育目的,自始至终贯穿,渗透着极强的教育性。

你知道什么样的主题班会才是好的主题班会吗?下面是由给大家带来的初中数学优秀教学设计5篇,让我们一起来看看!初中数学教学设计篇1教学目标1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。

运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。

对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。

对代数式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.等都不是代数式.3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。

用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程》教学设计一、教材的地位与作用《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。

在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。

本节容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标(一)知识与技能:1.了解二元一次方程概念;2.了解二元一次方程的解的概念和解的不唯一性;3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。

获得求二元一次方程解的思路方法。

(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程1.创设情境,引入新课从学生熟悉的明受伤事件引入。

师:火箭队最近取得了20连胜,明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,明得了12分,其中罚球得了2分,你知道明投中了几个两分球?(本场比赛明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?(2)连胜的第1场,火箭对勇士,在这场比赛中,明得了36分,你知道明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛明没投中三分球) 师:这个问题能用一元一次方程解决吗?,你能列出方程吗?设明投进了x个两分球,罚进了y个球,可列出方程______。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。

你知道他分别投进几个两分球、几个三分球吗?设易建联投进了x个两分球,y个三分球,可列出方程______。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。

另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。

)2.探索交流,汲取新知概念思辨,归纳二元一次方程的特征师:那到底什么叫二元一次方程?(学生思考后回答)师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)师:根据概念,你觉得二元一次方程应具备哪几个特征?活动:你自己构造一个二元一次方程。

快速判断:下列式子中哪些是二元一次方程?①x2+y=0 ②y=2x+4③2x+1=2-x ④ab+b=4(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。

)二元一次方程解的概念师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。

(学生看书本上的记法)使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。

引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。

)二元一次方程解的不唯一性对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。

)如何去求二元一次方程的解例:已知方程3x+2y=10,(1)当x=2时,求所对应的y的值;(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;(3)用含x的代数式表示y;(4)用含y的代数式表示x;(5)当x=-2,0时,所对应的y的值是多少?(6)写出方程3x+2y=10的三个解.(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。

以此突破本节课的难点。

)大显身手:课练习第2题梳理知识,课堂升华本节课你有收获吗?能和大家说说你的感想吗?3.作业布置必做题:书本作业题1、2、3、4。

选做题:书本作业题5、6。

设计说明本节授课容属于概念课教学。

数学学科的容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。

只有真正理解数学概念,才能理解数学。

二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的涵。

在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊——一般——特殊”的教学流程,以期突破难点。

首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。

另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

《二元一次方程组》教学设计一、教学目标1.知识与技能目标:(1)理解二元一次方程组的概念和二元一次方程组解的含义;(2)会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解;(3)通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力。

2.过程与方法目标从一个学生熟悉的生活实例引入二元一次方程组的概念,并通过“辩一辩”“填一填”“试一试”“做一做”,加深学生对“二元一次方程组”和“二元一次方程组的解”的概念的理解;并使学生初步了解用列表尝试的方法求二元一次方程组的解,并使学生在解决问题的过程中经历知识的产生过程。

3.情感与态度目标从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关心他人,培养一种社会的责任感。

二、教学重点、难点重点是二元一次方程组的意义和二元一次方程组解的概念。

难点是利用列表尝试的方法求简单二元一次方程组的解。

三、教学准备多媒体、实物投影仪。

四、教学方法和手段基于本节课容的特点和七年级学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合。

与学生建立平等融洽的互动关系,营造合作交流的学习氛围。

在引导学生进行观察分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。

五、教学过程环节一创设情境,探索新知问题1:假设你们每人手上有一根长20cm的铁丝,将这根铁丝首尾相连围成一个正方形,围出来的正方形都完全一样吗?问题2:同样用这根20厘米长的铁丝,首尾相连围成的长方形都完全一样吗?你能用二元一次方程来表示吗?【设计意图】①通过问题情境复习旧知,真正理解二元一次方程的意义;②为探索新知做好铺垫。

问题3:前面两个问题中都存在二元一次方程10=+y x ,为何围成的长方形有无数种情况,而围成的正方形只有一种情况?【设计意图】通过两个问题的对比,让学生感受到10=+y x 与y x =同时满足时,存在解的唯一性的过程,为二元一次方程组的形成做铺垫。

问题4:你能否通过增加一个条件,使同学们围成的长方形都完全一样吗?希望大家能增加更多不同类型的条件。

【设计意图】①开放性问题的设置不仅激发学生的求知欲,而且通过该开放性问题让学生真正感受二元一次方程组的形成;②培养学生的合作意识以及团队精神;③通过此问题引出二元一次方程组的概念。

【操作形式】①学生先思考,再分组合作,小组汇报;②根据学生的汇报,教师引导,从而引出二元一次方程组的概念;③教师备用:10101010,,,6223x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨==-==⎩⎩⎩⎩。

巩固概念请在下列方程中选出两个方程,组成二元一次方程组。

223,4,2,3,10x y x y x y x y z -====++=。

问题5:你怎么能肯定,你所增加的一个条件就一定使长方形确定下来了呢?【操作形式】①通过问题的解决,导出二元一次方程组解的定义;②让学生真正理解什么叫二元一次方程组的解。

环节二 变题训练,巩固新知比一比,赛一赛1.方程组⎩⎨⎧-=-=+236y x y x 的解是( ) A .⎩⎨⎧==15y x B .⎩⎨⎧==24y x C .⎩⎨⎧-=-=15y x D .⎩⎨⎧-=-=24y x 2.下列哪一个二元一次方程组的解为⎩⎨⎧==21y x ( ) A .⎩⎨⎧=+-=8233y x x y B .⎩⎨⎧=+-=5231y x x y C .⎩⎨⎧==+223x y y x D .⎩⎨⎧=+=32y x x y 3.你能通过下列表格的填写找到二元一次方程组⎩⎨⎧=-=+53210y x y x 的解吗?环节三 感受生活,运用新知小聪全家外出旅游,估计需要胶卷底片120,商店里有两种型号的胶卷:A 型每卷36底片,B 型每卷12底片。

相关文档
最新文档