中山市七年级下册数学期末试卷
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出 三种不同形式的配方;
(2)已知 ,求 的值;
(3)已知 ,求 的值.
28.南通某校为了了解家长和学生参与南通安全教育平台“ 防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下 类情形:
A.仅学生自己参与;
B.家长和学生一起参与;
C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断
D.根据同底数幂除法运算法则对D进行判断
【详解】
A.2a3•3a=6a4,故A正确,不符合题意
B.(﹣2y3)2=4y6,故B正确,不符合题意
C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意
D.a5÷a3=a2(a≠0),故D正确,不符合题意
中山市七年级下册数学期末试卷
一、选择题
1.若一个多边形的每个内角都为108°,则它的边数为( )
A.5B.8C.6D.10
2.下列计算错误的是()
A.2a3•3a=a=3a3D.a5÷a3=a2(a≠0)
3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
故选:C
【点睛】
本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.
3.B
解析:B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
12.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.
13.已知a+b=5,ab=3,求:
(1)a2b+ab2;(2)a2+b2.
14.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x的值为_____.
20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)
三、解答题
21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.
(经验发展)面积比和线段比的联系:
(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).
C.仅家长参与;
D.家长和学生都未参与
请根据上图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了多少名学生?
(2)补全条形统计图,并在扇形统计图中计算 类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校 名学生中“家长和学生都未参与”的人数.
【参考答案】***试卷处理标记,请不要删除
25.先化简,再求值: ,其中x=﹣2.
26.如图, 中, ,点 分别在边 的延长线上,连结 平分 .求证: .
27.阅读材料:把形如 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即 .例如: 是 的一种形式的配方;所以, , , 是 的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).
10.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为( )
A. B.
C. D.
二、填空题
11. 是方程3x+ay=1的一个解,则a的值是__________.
A. B. C. D.
7.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是( )
A.4.5B.5C.5.5D.6
8.下列计算不正确的是()
A. B. C. D.(a2)4=a8
9.如图,有以下四个条件:其中不能判定 的是()
① ;② ;③ ;④ ;
A.①B.②C.③D.④
A.12B.15C.12或15D.18
4.端午节前夕,某超市用1440元购进A、B两种商品共50件,其中A种商品每件24元,B品件36元,若设购进A种商品x件、B种商品y件,依题意可列方程组()
A. B.
C. D.
5.如图,已知直线 ∥ , , ,则 ()
A. B. C. D.
6.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为( )
23.先化简后求值: ,其中 , .
24.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.
(1)如图,若AC∥BD,求证:AD∥BC;
(2)若BD⊥BC,试解决下面两个问题:
①如图2,∠DAE=20°,求∠C的度数;
②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.
一、选择题
1.A
解析:A
【解析】
已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.
2.C
解析:C
【分析】
A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断
B.根据幂的乘方运算法则对B进行判断
(结论应用)(2)如图2,已知△CDE的面积为1, , ,求△ABC的面积.
(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点( ),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.
22.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)
15.已知2x+3y-5=0,则9x•27y的值为______.
16.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
17.已知 是方程2x﹣y+k=0的解,则k的值是_____.
18.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.
19.已知: ,则x=______________.
(1)比照上面的例子,写出 三种不同形式的配方;
(2)已知 ,求 的值;
(3)已知 ,求 的值.
28.南通某校为了了解家长和学生参与南通安全教育平台“ 防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下 类情形:
A.仅学生自己参与;
B.家长和学生一起参与;
C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断
D.根据同底数幂除法运算法则对D进行判断
【详解】
A.2a3•3a=6a4,故A正确,不符合题意
B.(﹣2y3)2=4y6,故B正确,不符合题意
C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意
D.a5÷a3=a2(a≠0),故D正确,不符合题意
中山市七年级下册数学期末试卷
一、选择题
1.若一个多边形的每个内角都为108°,则它的边数为( )
A.5B.8C.6D.10
2.下列计算错误的是()
A.2a3•3a=a=3a3D.a5÷a3=a2(a≠0)
3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
故选:C
【点睛】
本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.
3.B
解析:B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
12.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.
13.已知a+b=5,ab=3,求:
(1)a2b+ab2;(2)a2+b2.
14.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x的值为_____.
20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)
三、解答题
21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.
(经验发展)面积比和线段比的联系:
(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).
C.仅家长参与;
D.家长和学生都未参与
请根据上图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了多少名学生?
(2)补全条形统计图,并在扇形统计图中计算 类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校 名学生中“家长和学生都未参与”的人数.
【参考答案】***试卷处理标记,请不要删除
25.先化简,再求值: ,其中x=﹣2.
26.如图, 中, ,点 分别在边 的延长线上,连结 平分 .求证: .
27.阅读材料:把形如 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即 .例如: 是 的一种形式的配方;所以, , , 是 的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).
10.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为( )
A. B.
C. D.
二、填空题
11. 是方程3x+ay=1的一个解,则a的值是__________.
A. B. C. D.
7.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是( )
A.4.5B.5C.5.5D.6
8.下列计算不正确的是()
A. B. C. D.(a2)4=a8
9.如图,有以下四个条件:其中不能判定 的是()
① ;② ;③ ;④ ;
A.①B.②C.③D.④
A.12B.15C.12或15D.18
4.端午节前夕,某超市用1440元购进A、B两种商品共50件,其中A种商品每件24元,B品件36元,若设购进A种商品x件、B种商品y件,依题意可列方程组()
A. B.
C. D.
5.如图,已知直线 ∥ , , ,则 ()
A. B. C. D.
6.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为( )
23.先化简后求值: ,其中 , .
24.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.
(1)如图,若AC∥BD,求证:AD∥BC;
(2)若BD⊥BC,试解决下面两个问题:
①如图2,∠DAE=20°,求∠C的度数;
②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.
一、选择题
1.A
解析:A
【解析】
已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.
2.C
解析:C
【分析】
A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断
B.根据幂的乘方运算法则对B进行判断
(结论应用)(2)如图2,已知△CDE的面积为1, , ,求△ABC的面积.
(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点( ),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.
22.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)
15.已知2x+3y-5=0,则9x•27y的值为______.
16.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
17.已知 是方程2x﹣y+k=0的解,则k的值是_____.
18.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.
19.已知: ,则x=______________.