李子奈计量经济学课件(14)
计量经济学李子奈绪论ppt课件
14
理论计量经济学和应用计量经济学
理论计量经济学是以介绍、研究计量经济学的理论 与方法为主要内容,侧重于理论与方法的数学证明 与推导,与数理统计联系极为密切。除了介绍计量 经济模型的数学理论基础、普遍应用的计量经济模 型的参数估计方法与检验方法外,还研究特殊模型 的估计方法与检验方法,应用了广泛的数学知识。
课件部分内容来源于网络,如有异 议侵权的话可以联系删除,可编辑 版!
13
初、中、高级计量经济学
初级以计量经济学的数理统计学基础知识和经典的 线性单方程模型理论与方法为主要内容;
中级以用矩阵描述的经典的线性单方程模型理论与 方法、经典的线性联立方程模型理论与方法,以及 传统的应用模型为主要内容; 高级以非经典的、现代的计量经济学模型理论、方 法与应用为主要内容。 本课程定位于中级水平上,适当引入高级的内容。
第一章 绪论
§1.1 计量经济学 §1.2 经典计量经济学模型的建模步骤 §1.3 计量经济学模型的应用
§1.4 本书内容安排说明
课件部分内容来源于网络,如有异 议侵权的话可以联系删除,可编辑 版!
1
关于绪论
○绪论是课程的纲。 ○学好绪论,可以说学好了课程的一半。参观一个 城市,先站在最高处俯瞰,然后走街串巷;了解 一座建筑,先看模型,后走进每一个房间。各起 一半作用。 ○绪论课的目的:了解课程的性质和在课程体系中 的地位;了解课程完整的内容体系和将要讲授的 内容;了解课程的重点和难点;了解课程的学习 方法;介绍课程中不讲的但是必须了解的课程内 容。 ○不必全懂,只需似懂非懂。
计量经济学全部课件
0. 模型设定的定义
依据一定的经济理论,先验地用一个或 一组数学方程式表示被研究系统内经济 变量之间的关系。这阶段的工作称为模 型设定。 这是计量经济学研究中最重要也是最困 难的阶段,为此,需要作以下工作: 1.研究有关经济理论 2.确定变量和函数形式
32
1.研究有关经济理论
建立模型需要理论抽象。模型是对客观 事物的基本特征和发展规律的概括,是 对现实抓住本质的简化。 这种概括和简化就是理论分析的成果。 因此,在模型设定阶段,首先要注意基 于经济理论的定性分析。
3
通过本课程的教学,要求学生掌握计量经 济学的基本理论和主要模型设定方法,熟悉计 量经济分析工作的基本内容和工作程序,能用 计量经济学软件包进行实际操作。本课程教学 采用课堂讲授与计算机实验相结合,适当运用 计算机多媒体课件和投影仪。教学目的不是要 求学生成为计量经济方法研究的专家,而是使 学生掌握计量经济学技术,并在经济分析、经 济管理和决策中正确使用这些技术,成为适应 现代化经济管理要求的人才。
三、方法论
应用计量经济方法解决实际经济问题,是在一 定的经济理论指导下,建立相应的数学模型, 利用各种计量方法和资料估计参数,运用模型 解决问题。一般来说,这个研究过程要采取四 个步骤。为了说明计量经济学的方法论,让我 们考察凯恩斯的消费理论。凯恩斯说:……基 本的心理法则是……作为平均数规律,男人 (妇女)当他们的收入增加时,倾向于增加消 费,但消费并不如他们的收入增加那样多。总 之,凯恩斯假设边际消费倾向(MPC),即消费 变化对单位(如一元)收入变化的比率,大于 0而小于1。为了检验这个理论,计量经济学家 可以按如下步骤进行。
33
菲利普斯曲线
例如,根据劳动力市场均衡学说,工资 增长率y、失业率x1和物价上涨率x2,有 关系y=f(x1,x2)。 失业率越高,表明劳动力的供给大于需 求,从而工资上升率越低,这就是著名 的菲利普斯曲线。 这一曲线在西方国家建模中被广泛使 用。
李子奈《计量经济学》第三版例题及习题的stata解答
第二章例.1(p24)(1)表中E(Y|X=800)即条件均值的求法,将数据直接复制到stata 中。
程序:sum y if x==800程序:程序:(2)图的做法: 程序:twoway(scatter y x )(lfit y x ),title("不同可支配收入水平组家庭消费支出的条件分布图")xtitle("每月可支配收入(元)")ytitle("每月消费支出(元)")xtick(500(500)4000)ytick(0(500)3500)、例.1(p37)将数据直接复制到stata中程序:(1)total xiyixiyi 4974750 1507821 1563822 8385678Total Std. Err. [95% Conf. Interval]return listscalars:-r(skip) = 0r(first) = 1r(k_term) = 0r(k_operator) = 0r(k) = 0r(k_level) = 0r(output) = 1r(b) = 4974750r(se) =g a=r(b) in 1#Scatter表示散点图选项,lfit表示回归线,title表示题目,xtick表示刻度,(500(500)4000)分别表示起始刻度,中间数表示以单位刻度,4000表示最后的刻度。
要注意的是命令中的符号都要用英文字符,否则命令无效。
这个图可以直接复制的,但是由于我的软件出问题,只能直接剪切,所以影响清晰度。
Total表示求和,return list命令可以引用其中的数据,接下来在第一列生成一个新的变量代表xiyi的和,同样生成一个b代表xi平方的,a除以b即可得到batatotal xi2return listg b=r(b) in 1di a/b.67(2)mean Yigen m=r(b) in 1mean Xi(g n=r(b) in 1di m-n*由此得到回归方程:Y=+例.2(p53)程序:(1)回归reg y x(2) >(3) 求X 的样本均值和样本方差:mean xx 11363.69 591.7041 10155.27 12572.11 Mean Std. Err. [95% Conf. Interval] Mean estimation Number of obs = 31sum x ,d (d 表示detail 的省略,这个命令会产生更多的信息)99% 20667.91 20667.91 Kurtosis 4.73926795% 19977.52 19977.52 Skewness 1.69197390% 16015.58 18265.1 Variance 1.09e+0775% 12192.24 16015.58Largest Std. Dev. 3294.46950% 9898.75 Mean 11363.6925% 9267.7 9000.35 Sum of Wgt. 3110% 9000.35 8941.08 Obs 31 5% 8920.59 8920.591% 8871.27 8871.27 Percentiles Smallest xdi r(Var)(特别注意Var 的大小写)例(P56) (1)reg Y X>Source SS df MS Number of obs = 29 F( 1, 27) = 2214.60 Model 2.4819e+09 1 2.4819e+09 Prob > F = 0.0000 Residual 30259023.9 27 1120704.59 R-squared = 0.9880 Adj R-squared = 0.9875 Total 2.5122e+09 28 89720219.8 Root MSE = 1058.6 Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X .4375268 .0092973 47.06 0.000 .4184503 .4566033 _cons 2091.295 334.987 6.24 0.000 1403.959 2778.632(2)图的绘制:twoway (line Y X year),title("中国居民可支配总收入X与消费总支出Y 的变动图")~第三章例(p72)reg Y X1 X2&Source SS df MS Number of obs = 31F( 2, 28) = 560.57Model 166971988 2 83485994.2 Prob > F = 0.0000Residual 4170092.27 28 148931.867 R-squared = 0.9756Adj R-squared = 0.9739Total 171142081 30 5704736.02 Root MSE = 385.92Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X1 .5556438 .0753076 7.38 0.000 .4013831 .7099046X2 .2500854 .1136343 2.20 0.036 .0173161 .4828547_cons 143.3266 260.4032 0.55 0.586 -390.0851 676.7383例.1(p85)g lnP1=ln(P1)g lnP0=ln(P0)g lnQ=ln(Q)g lnX=ln(X)Source SS df MS Number of obs = 22 F( 3, 18) = 258.84 Model .765670868 3 .255223623 Prob > F = 0.0000 Residual .017748183 18 .00098601 R-squared = 0.9773 Adj R-squared = 0.9736 Total .783419051 21 .037305669 Root MSE = .0314 lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX .5399167 .0365299 14.78 0.000 .4631703 .6166631 lnP1 -.2580119 .1781856 -1.45 0.165 -.632366 .1163422 lnP0 -.2885609 .2051844 -1.41 0.177 -.7196373 .1425155 _cons 5.53195 .0931071 59.41 0.000 5.336339 5.727561 drop lnX lnP1 lnP0g lnXP0=ln(X/P0)g lnP1P0=ln(P1/P0)?reg lnQ lnXP0 lnP1P0Source SS df MS Number of obs = 22F( 2, 19) = 408.93Model .765632331 2 .382816165 Prob > F = 0.0000Residual .01778672 19 .000936143 R-squared = 0.9773Adj R-squared = 0.9749Total .783419051 21 .037305669 Root MSE = .0306lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnXP0 .5344394 .0231984 23.04 0.000 .4858846 .5829942lnP1P0 -.2753473 .1511432 -1.82 0.084 -.5916936 .040999_cons 5.524569 .0831077 66.47 0.000 5.350622 5.698515练习题13(p105)g lnY=ln(Y)g lnK=ln(K)g lnL=ln(L)reg lnY lnK lnLSource SS df MS Number of obs = 31 F( 2, 28) = 59.66 Model 21.6049266 2 10.8024633 Prob > F = 0.0000 Residual 5.07030244 28 .18108223 R-squared = 0.8099 Adj R-squared = 0.7963 Total 26.6752291 30 .889174303 Root MSE = .42554 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnK .6092356 .1763779 3.45 0.002 .2479419 .9705293 lnL .3607965 .2015915 1.79 0.084 -.0521449 .7737378 _cons 1.153994 .7276114 1.59 0.124 -.33645 2.644439第二问:test b_[lnk]+b_[lnl]==1*第四章¥例.4 (P116)(1)回归g lnY=ln(Y)g lnX1=ln(X1)g lnX2=ln(X2)reg lnY lnX1 lnX2Source SS df MS Number of obs = 31 F( 2, 28) = 49.60 Model 2.9609923 2 1.48049615 Prob > F = 0.0000 Residual .835744123 28 .029848004 R-squared = 0.7799 Adj R-squared = 0.7642 Total 3.79673642 30 .126557881 Root MSE = .17277 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX1 .1502137 .1085379 1.38 0.177 -.072116 .3725435 lnX2 .4774534 .0515951 9.25 0.000 .3717657 .5831412 _cons 3.266068 1.041591 3.14 0.004 1.132465 5.39967于是得到方程:lnY=++(2)绘制参差图:"predict e, residg ei2=e^2scatter ei2 lnX2,title("图异方差性检验图")xtick(6ytick(0predict在回归结束后,需要对拟合值以及残差进行分析,需要使用此命令。
李子奈计量经济学(2024)
假设截距项和解释变量系数都是随机 的,与误差项相关。随机效应模型可 以分为随机截距模型和随机系数模型 。
21
面板数据的参数估计与假设检验
参数估计方法
面板数据的参数估计方法主要有最小二乘法(OLS)、广义最小二乘法(GLS)、极大似然法(ML)等。其中, 固定效应模型通常采用组内估计法(Within Estimation)或一阶差分法(First Difference Estimation)进行参 数估计;随机效应模型则采用可行广义最小二乘法(FGLS)或极大似然法进行参数估计。
感谢您的观看
2024/1/29
27
风险对冲与分散
通过计量经济学模型,构建风险对冲策略,降低单一资产或投资组合的风险敞口;同时, 实现风险的分散化,提高整体投资组合的风险调整后收益。
压力测试与情景分析
利用计量经济学方法,模拟极端市场环境下的金融风险暴露情况,进行压力测试和情景分 析,为金融机构制定应急预案和风险管理策略提供依据。
26
THANKS FOR WATCHING
2024/1/29
24
计量经济学在金融市场的应用实例
2024/1/29
股票价格预测
利用计量经济学模型,如ARIMA、GARCH等,对股票价 格进行预测,帮助投资者把握市场趋势,制定合理的投资 策略。
投资组合优化
通过计量经济学方法,评估不同资产的风险和收益特性, 构建最优投资组合,实现资产配置的多样化和风险分散化 。
最小二乘法
通过最小化残差平方和来估计模型参数,适用于误差服从正态分 布的情况。
2024/1/29
13
非线性回归模型的假设检验
模型的显著性检验
检验模型的整体显著性,即所有自变量对因 变量的影响是否显著。
(2024年)完整版李子奈计量经济学版第四版课件
• 三阶段最小二乘法(3SLS):三阶段最小二乘法是对二阶段最小二乘法的改进。 该方法在第二阶段估计时,不仅考虑了残差作为解释变量,还考虑了其他所有 内生变量的估计值作为解释变量。这样可以进一步提高参数估计量的效率。
在社会科学领域,这些方法可用于分析人口 统计数据、经济指标等,揭示社会经济现象 背后的复杂关系。
2024/3/26
30
THANKS
感谢观看
2024/3/26
31
多重共线性的检验
相关系数矩阵法、方差膨胀因子 法、条件指数法等。
14
04
时间序列计量经济学模型
Chapter
2024/3/26
15
时间序列基本概念与性质
01
02
03
时间序列定义
按时间顺序排列的一组数 据,反映现象随时间变化 的发展过程。
2024/3/26
时间序列构成要素
现象所属的时间(年、季、 月、日等)和反映现象在 各个时间上的统计指标数 值。
28
半参数回归分析方法
部分线性模型
模型中既包含参数部分也包含非参数部分,参数部分用于描述主要 影响因素,非参数部分用于捕捉其他未知影响因素。
单指标模型
通过投影寻踪方法将高维数据降维到一维,然后利用非参数方法进 行回归分析。
变系数模型
模型系数随着某个或多个变量的变化而变化,可以灵活捕捉变量间的 动态关系。
不可识别的情况 当联立方程模型中的某个方程不能被任何其他方程所替代 时,该方程就是不可识别的。此时,无法对该方程的参数 进行一致估计。
计量经济学课件-李子奈-PPT精选文档
课堂资料下载: 网上邻居→整个网络→Mis_lab→Nt_server→Lizn
⑷ 课程内容提纲及学时安排 (总课时:48学时,课内外周学时:3/6) 第一章 绪论 第二章 单方程计量经济学模型理论与方法 第三章 单方程计量经济学应用模型 第四章 联立方程计量经济学理论与方法 第五章 时间序列分析模型 第六章 计量经济学模型理论方法的新发展简介 ⑸ 课程成绩 综合练习一:10分 综合练习二:10分 课堂表现: 10分 期末考核: 70分
3学时 12学时 济学的一个分支学科
○1926年挪威经济学家R.Frish提出Econometrics ○ 1930年成立世界计量经济学会 ○ 1933年创刊《Econometrica》 ○“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不 能和计量经济学混为一谈。计量经济学与经济统计学绝非一码事;它也 不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量 特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明, 统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系 来说,都是必要的,但本身并非是充分条件。三者结合起来,就是力量 ,这种结合便构成了计量经济学。” ○20世纪40、50年代的大发展和60年代的扩张 ○20世纪70年代以来非经典计量经济学的发展
一、《计量经济学》教学大纲
⒈ 课程 计量经济学 课号:10114513 学分:3 课程性质:教育部规定核心课程 ⒉ 教师 主讲教师:李子奈,办公地点:经管楼南512,电话:62789793, E-mail: 艾春荣,特聘教授(英语授课) 助教:周建,电话:62775085, E-mail:
1985 Franco Modigliani1984 Richard Stone 1983 Gerard Debreu 1982 George J. Stigler 1981 James Tobin 1980 Lawrence R. Klein 1979 Theodore W. Schultz, Sir Arthur Lewis 1978 Herbert A. Simon 1977 Bertil Ohlin, James E. Meade 1976 Milton Friedman 1975 Leonid Vitaliyevich Kantorovich, Tjalling C. Koopmans 1974 Gunnar Myrdal, Friedrich August von Hayek 1973 Wassily Leontief 1972 John R. Hicks, Kenneth J. Arrow 1971 Simon Kuznets 1970 Paul A. Samuelson 1969 Ragnar Frisch, Jan Tinbergen
李子奈计量经济学课件完整版
回归诊断与异常值处理
回归诊断
回归诊断是对回归模型进行检验和评估的过程,包括残差分析、模型假设检验等,以判断模 型是否满足假设条件、是否存在异常值等。
异常值处理
在回归分析中,异常值可能对模型估计和预测产生较大影响。常用的异常值处理方法包括删 除异常值、使用稳健回归方法等。
实际应用
回归诊断和异常值处理是回归分析中不可或缺的步骤,有助于提高模型的准确性和可靠性。 例如,在经济学研究中,通过对回归模型进行诊断和异常值处理,可以得到更准确的经济预 测和政策建议。
模型检验
拟合优度检验、显著性检验、 异方差性检验等。
预测与决策
利用回归模型进行预测和决策 分析。
假设检验与置信区间
假设检验基本原理
原假设、备择假设、检验统计量、显著性水 平等。
假设检验与置信区间的关系
联系与区别。
置信区间构建
点估计、区间估计、置信水平等。
常用的假设检验方法
t检验、F检验、卡方检验等。
季节性调整方法
包括基于移动平均的季节性调整、基于回归的季节性调整以及基于 时间序列分解的季节性调整等。
ARIMA模型构建及预测应用
01
ARIMA模型基本概念
ARIMA是自回归移动平均模型的简称,是一种用于时间序列预测的统
计模型。
02
ARIMA模型构建步骤
包括模型识别、参数估计、模型检验和预测等步骤。
04
非线性回归模型及转换技巧
常见非线性回归模型介绍
指数回归模型
用于描述因变量与自变量之间的 指数关系,如人口增长、放射性
衰变等现象。
对数回归模型
适用于因变量变化范围较大,且 自变量与因变量的对数之间存在 线性关系的情况。
计量经济学教案李子奈版ppt课件
• 非经典计量经济学的内容体系:模型类型非经 典的计量经济学问题、模型导向非经典的计量 经济学问题、模型结构非经典的计量经济学问 题、数据类型非经典的计量经济学问题和估计 方法非经典的计量经济学问题。
经济理论分析行为分析数理分析数量分析经济理论分析行为分析数理分析数量分析三计量经济学的内容体系广义计量经济学和狭义计量经济学初中高级计量经济学理论计量经济学和应用计量经济学经典计量经济学和非经典计量经济学微观计量经济学和宏观计量经济学广义计量经济学和狭义计量经济学初中高级计量经济学理论计量经济学和应用计量经济学经典计量经济学和非经典计量经济学微观计量经济学和宏观计量经济学广义计量经济学和狭义计量经济学?广义计量经济学是利用经济理论数学以及统计学定量研究经济现象的经济计量方法的统称包括回归分析方法投入产出分析方法时间序列分析方法等
上课
§1.2 建立计量经济学模型的步骤和要点
一、理论模型的设计 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、计量经济学模型成功的三要素
一、理论模型的设计
⑴ 确定模型包含的变量
需要正确理解和把握所研究的经济现象中暗含 的经济学理论和经济行为规律。
例如:同样是生产方程,在供给不足的情况下, 投入要素主要是技术、资本、劳动;而在需求不足 的情况下就是,影响产出量的因素就应该在需求方 面,而不是投入量。消费品生产则主要受居民可支 配收入的影响。
如 X ~ 果 N (2 )则 ,X ~ N 01
总体与样本
1、我们把研究对象的全体称为总体,而把组成总 体的每一个单元体称为个体。
2、抽取样本的方法: 必须做到每一个个体被抽到的机会是相等的; 任何一次抽样对其它各次抽样的结果没有影响。 这种抽样方法称为简单随机抽样。所得样本称 为简单随机样本。 (X1,X2,…,Xn)
《李子奈计量经济学》PPT课件
精选课件ppt
5
2. 课程说明
⑴ 教学目的
经济学是一门科学,实证的方法,尤其是数 量分析方法是经济学研究的基本方法论。通过该 门课程教学,使学生掌握计量经济学的基本理论 与方法,并能够建立实用的计量经济学应用模型。
⑵ 先修课程
中级微观经济学、中级宏观经济学、经济统 计学、微积分、线性代数、概率论与数理统计、 应用数理统计。
• 本课程是二者的结合。
精选课件ppt
25
△ 经典计量经济学和非经典计量经济学
• 经典计量经济学(Classical Econometrics) 一般指20世纪70年代以前发展并广泛应用 的计量经济学。 R.Frish创立 T.Haavelmo建立了它的概率论基础 L.R.Klein成为其理论与应用的集大成者
精选课件ppt
26
• 经典计量经济学在理论方法方面特征是:
⑴ 模型类型——随机模型;
⑵ 模型导向——理论导向;
⑶ 模型结构——线性或者可以化为线性, 因果分析,解释变量具有同等地位,模型 具有明确的形式和参数;
精选课件ppt
27
⑷ 数据类型——以时间序列数据或者截面数 据为样本,被解释变量为服从正态分布的连 续随机变量;
32
△ 微观计量经济学和宏观计量经济学
• 微观计量经济学 于2000年诺贝尔经济学奖公报 中正式提出;
• 微观计量经济学的内容集中于“对个人和家庭 的经济行为进行经验分析”;
• “微观计量经济学的原材料是微观数据”,微 观数据表现为截面数据和平行(penal)数据;
• 赫克曼(J.Heckman)和麦克法登 (D.McFaddan) 对微观计量经济学作出原创 性贡献。
精选课件ppt
李子奈计量经济学课件
从20世纪初的初创期,到20世纪中期 的快速发展期,再到20世纪后期的成 熟期和21世纪的创新期,计量经济学 经历了不断发展和完善的过程。
计量经济学研究对象与方法
研究对象
主要研究经济现象中的数量关系 ,包括经济变量之间的关系、经 济系统的运行规律等。
研究方法
主要包括理论建模、数据收集与 处理、模型估计与检验、预测与 政策分析等步骤。
面板数据模型检验与诊断
模型检验
在估计出模型参数后,需要进行模型的统计检验,包括拟 合优度检验、方程的显著性检验、变量的显著性检验等。
诊断方法
如果模型检验不通过,需要采用一些诊断方法来识别问题 所在,如异方差性检验、自相关性检验、多重共线性检验 等。
模型修正
根据诊断结果,可以对模型进行修正,如添加或删除解释 变量、改变模型形式等,以提高模型的拟合效果和预测精 度。
计量经济学前沿领域探讨
空间计量经济学发展动态
空间权重矩阵的构建 与应用
空间权重矩阵是空间计量经济学中的 核心工具,用于描述不同地理单元之 间的空间关系。近年来,空间权重矩 阵的构建方法和应用领域不断拓展, 如基于地理距离、经济距离、社会网 络等多种方式构建空间权重矩阵,应 用于区域经济、环境经济、城市规划 等领域。
面板数据模型设定与估计
面板数据模型类型
根据对截距项和解释变量系数的不同限制,面板数据模型可以分 为混合回归模型、固定效应模型和随机效应模型。
模型设定检验
通过F检验、LM检验和Hausman检验等方法来确定应该使用哪种 类型的面板数据模型。
参数估计方法
对于不同类型的面板数据模型,可以采用普通最小二乘法、广义最 小二乘法、极大似然估计等方法进行参数估计。
李子奈计量经济学课件
01计量经济学概述Chapter计量经济学定义与发展计量经济学定义计量经济学发展计量经济学研究对象与方法研究对象研究方法与经济学的关系计量经济学是经济学的一个分支,它运用数学和统计学工具对经济学理论进行实证分析和验证。
与统计学的关系计量经济学与统计学密切相关,统计学为计量经济学提供了数据处理和分析的方法。
与数学的关系计量经济学运用大量的数学工具,如微积分、线性代数、概率论与数理统计等,对经济现象进行定量分析和建模。
计量经济学与其他学科关系02经典线性回归模型Chapter模型设定与参数估计模型的统计性质模型的检验与诊断模型设定与参数估计模型的统计性质多重共线性问题回归模型检验与诊断模型的拟合优度01模型的显著性检验02模型的异方差性检验0303广义线性模型与非线性模型Chapter广义线性模型介绍定义链接函数应用定义非线性模型是指响应变量与预测变量之间呈现非线性关系的统计模型。
在这类模型中,响应变量不能通过预测变量的线性组合来准确预测。
建立非线性模型的方法有很多种,包括多项式回归、支持向量机、神经网络等。
这些方法在处理复杂的非线性关系时具有较高的灵活性。
非线性模型在处理实际问题时具有广泛的应用,如金融时间序列分析、图像处理、自然语言处理等。
例如,在金融领域,可以利用非线性模型对股票价格进行预测和分析。
建模方法应用非线性模型介绍模型选择与比较模型选择模型比较注意事项04时间序列分析及应用Chapter时间序列基本概念及性质时间序列定义01时间序列构成要素02时间序列性质03时间序列平稳性检验与处理平稳性定义非平稳时间序列处理平稳性检验方法01020304预测方法预测模型评估时间序列预测模型应用领域时间序列预测方法及应用05面板数据分析及应用Chapter面板数据基本概念及类型面板数据定义指包含若干个截面个体成员在一段时间内的样本数据集合,其每一个成员都有多个观测值。
面板数据类型根据对截面和时间序列的不同限制,面板数据可分为平衡面板数据和非平衡面板数据。
2024版计量经济学教案李子奈版ppt课件
计量经济学发展历史与现状
发展历史
计量经济学的发展大致可分为三个阶段,即初创时期、 经典时期和现代时期。初创时期主要代表人物有弗里希、 丁伯根等,他们为计量经济学的产生和发展做出了重要 贡献。经典时期主要代表人物有克莱因、戈德菲尔德等, 他们进一步完善了计量经济学的理论和方法体系。现代 时期则是在计算机技术广泛应用的基础上,计量经济学 的研究领域和方法得到了极大的拓展和深化。
THANKS
感谢观看
计量经济学教案李子 奈版ppt课件
目录
• 计量经济学导论 • 经典线性回归模型 • 广义线性回归模型 • 时间序列分析 • 面板数据分析 • 非参数和半参数估计方法 • 计量经济学应用实例分析
01
计量经济学导论
计量经济学定义与性质
计量经济学定义
计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为 主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。
归系数的估计值。
无偏性
样本回归系数的期望值等于总体 回归系数。
一致性
随着样本量的增加,样本回归系 数趋近于总体回归系数。
有效性
在所有无偏估计量中,最小二乘 估计量的方差最小。
经典线性回归模型假设条件及检验
线性关系假设
因变量与自变量之间存在线性关系。
误差项独立同分布假设
误差项之间相互独立且服从同一正态 分布。
计量经济学性质
计量经济学是一门经济学科,是经济学的一个分支,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
计量经济学研究对象与方法
研究对象
计量经济学以一定的经济理论和统计资料为基础,以建立经济计量模型为主要手段,对经济活动中的各种 因素进行数量分析。
计量经济学试验完整版--李子奈
计量经济学试验完整版--李子奈计量经济学试验??李子奈目录实验一一元线性回归5一实验目的 5二实验要求 5三实验原理 5四预备知识 5五实验内容 5六实验步骤 51.建立工作文件并录入数据 52.数据的描述性统计和图形统计: 73.设定模型,用最小二乘法估计参数: 84.模型检验: 85.应用:回归预测: 9实验二可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验12一实验目的: 12二实验要求12三实验原理12四预备知识12五实验内容12六实验步骤13实验三多元线性回归14一实验目的14三实验原理15四预备知识15五实验内容15六实验步骤156.1 建立工作文件并录入全部数据 15 6.2 建立二元线性回归模型156.3 结果的分析与检验166.4 参数的置信区间166.5 回归预测176.6 置信区间的预测18实验四异方差性20一实验目的20二实验要求20三实验原理20四预备知识20五实验内容20六实验步骤206.1 建立对象: 206.2 用普通最小二乘法建立线性模型216.3 检验模型的异方差性216.4 异方差性的修正24实验五自相关性28一实验目地28二实验要求28三实验原理28四预备知识28五实验内容28六实验步骤286.1 建立Workfile和对象 296.2 参数估计、检验模型的自相关性296.3 使用广义最小二乘法估计模型 336.4 采用差分形式作为新数据,估计模型并检验相关性35 实验六多元线性回归和多重共线性37一实验目的37二实验要求37三实验原理37四预备知识37五实验内容37六实验步骤376.1 建立工作文件并录入数据386.2 用OLS估计模型386.3 多重共线性模型的识别386.4 多重共线性模型的修正39实验七分布滞后模型与自回归模型及格兰杰因果关系检验 41 一实验目的41二实验要求41三实验原理41四预备知识41五实验内容41六实验步骤426.1 建立工作文件并录入数据426.2 使用4期滞后2次多项式估计模型426.3 格兰杰因果关系检验45实验八联立方程计量经济学模型49一实验目的49二实验要求49三实验原理49四预备知识49五实验内容49六实验步骤506.1 分析联立方程模型。