菏泽市七年级上册数学期末试题及答案解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菏泽市七年级上册数学期末试题及答案解答
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()
A.0.65×108B.6.5×107C.6.5×108D.65×106
2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()
A.垂线段最短B.经过一点有无数条直线
C.两点之间,线段最短D.经过两点,有且仅有一条直线
3.当x取2时,代数式
(1)
2
x x-
的值是()
A.0 B.1 C.2 D.3
4.下列每对数中,相等的一对是()
A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)3
5.在实数:3.14159,35-,π,25,﹣1
7
,0.1313313331…(每2个1之间依次多一
个3)中,无理数的个数是()
A.1个B.2个C.3个D.4个
6.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )
A.﹣4 B.﹣5 C.﹣6 D.﹣7
7.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角
∠ACF,以下结论:
①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()
A.1个B.2个C.3个D.4个
8.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()
A .48°
B .42°
C .36°
D .33° 9.下列四个数中最小的数是( )
A .﹣1
B .0
C .2
D .﹣(﹣1)
10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )
A .2(x+10)=10×4+6×2
B .2(x+10)=10×3+6×2
C .2x+10=10×4+6×2
D .2(x+10)=10×2+6×2
11.将方程
212
134
x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+
C .(21)63(2)x x -=-+
D .4(21)123(2)x x -=-+
12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN
的长度为( )cm .
A .2
B .3
C .4
D .6
二、填空题
13.一个角的余角等于这个角的
1
3
,这个角的度数为________. 14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.
15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为
2k n (其中k 是使2
k
n
为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:
若n =26,则第2019次“C 运算”的结果是_____. 16.36.35︒=__________.(用度、分、秒表示)
17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
19.小马在解关于x 的一元一次方程
3232
a x
x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.
20.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .
21.已知二元一次方程2x-3y=5的一组解为x a
y b =⎧⎨=⎩
,则2a-3b+3=______.
22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.
23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.
24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.
三、压轴题
25.如图1,线段AB 的长为a .
(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)
(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.
(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开
始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.
26.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:
(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);
(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).
①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.
27.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
28.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.
(1)求B 、C 两点的坐标;
(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的1
3
?直接写出此时点P 的坐标.
29.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
30.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.
31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是
0,3,10,且2CD AB =.
(1)点D 表示的数是 ;(直接写出结果)
(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;
②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.
32.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在
∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.
(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;
(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:65 000 000=6.5×107.
故选B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
解析:C
【解析】
【详解】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
3.B
解析:B 【解析】 【分析】
把x 等于2代入代数式即可得出答案. 【详解】 解:
根据题意可得: 把2x =代入
(1)
2
x x -中得: (1)21
==122x x -⨯, 故答案为:B. 【点睛】
本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.
4.A
解析:A 【解析】 【分析】
根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】
A.(﹣1)3=﹣1=﹣13,相等;
B.﹣(﹣1)2=﹣1≠12=1,不相等;
C.(﹣1)4=1≠﹣14=﹣1,不相等;
D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.
5.C
解析:C 【解析】 【分析】
无理数就是无限不循环小数,依据定义即可判断. 【详解】
解:在3.14159π1
7
,0.1313313331…(每2个1之间依次多一个3)
π、0.1313313331…(每2个1之间依次多一个3)这3个,
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6.A
解析:A
【解析】
【分析】
由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.
【详解】
3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.
故选:A
【点睛】
利用乘法分配律,将代数式变形.
7.C
解析:C
【解析】
①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确.
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正确.
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°−∠ABD , 故③正确;
④∵∠BAC+∠ABC=∠ACF , ∴
12∠BAC+12∠ABC=1
2
∠ACF , ∵∠BDC+∠DBC=1
2
∠ACF , ∴
12∠BAC+1
2
∠ABC=∠BDC+∠DBC , ∵∠DBC=1
2
∠ABC , ∴
12∠BAC=∠BDC ,即∠BDC=1
2∠BAC. 故④错误. 故选C.
点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.
8.A
解析:A 【解析】 【分析】
首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】
解:
OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,
843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.
故选:A . 【点睛】
本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.
9.A
解析:A 【解析】 【分析】
首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可. 【详解】
解:﹣(﹣1)=1, ∴﹣1<0<﹣(﹣1)<2,
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
10.A
解析:A
【解析】
【分析】
首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.
【详解】
解:长方形的一边为10厘米,故设另一边为x厘米.
根据题意得:2×(10+x)=10×4+6×2.
故选:A.
【点睛】
本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.
11.D
解析:D
【解析】
【分析】
方程两边同乘12即可得答案.
【详解】
方程212
1
34
x x
-+
=-两边同时乘12得:4(21)123(2)
x x
-=-+
故选:D.
【点睛】
本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.C
解析:C
【解析】
【分析】
根据MN=CM+CN=1
2
AC+
1
2
CB=
1
2
(AC+BC)=
1
2
AB即可求解.
【详解】
解:∵M、N分别是AC、BC的中点,
∴CM=1
2
AC,CN=
1
2
BC,
∴MN=CM+CN=1
2
AC+
1
2
BC=
1
2
(AC+BC)=
1
2
AB=4.
故选:C.
【点睛】
本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题
13.【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x度,依题意得90-x=
解得x=67.5
故填
【点睛】
此题主要考查角度的求解,解题的关键是
解析:67.5
【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x度,依题意得90-x=1 3 x
解得x=67.5
故填67.5
【点睛】
此题主要考查角度的求解,解题的关键是熟知补角的性质. 14.5
【解析】
【分析】
把x=2代入方程求出a的值即可.
【详解】
解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解
解析:5
【解析】
【分析】
把x=2代入方程求出a的值即可.
【详解】
解:∵关于x的方程5x+a=3(x+3)的解是x=2,
∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解,掌握方程的解的意义解答本题的关键.
15.【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13
解析:【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13,
第二次输出的结果为:40,
第三次输出的结果为:5,
第四次输出的结果为:16,
第五次输出的结果为:1,
第六次输出的结果为:4,
第七次输出的结果为:1
第八次输出的结果为:4
…,
∵(2019﹣4)÷2=2015÷2=1007…1,
∴第2019次“C运算”的结果是1,
故答案为:1.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
16.【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.
【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点
解析:3621'o
【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.
【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点睛】
本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.
17.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.2+
【解析】
【分析】
先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.
【详解】
∵数轴上点A ,B 表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C 表示的数为1+1+
解析:2+2
【解析】
【分析】
先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.
【详解】
∵数轴上点A ,B 表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C 表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
19.3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.【详解】
∵方程32
3
2
a x
x
+
=的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.20.5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+
解析:5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.
【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+BC=8+3=11cm;
当C点在B点左侧时,如图所示:
AC=AB﹣BC=8﹣3=5cm;
所以线段AC等于11cm或5cm.
21.8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】
把代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8
解析:8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.
【详解】
把
x a
y b
=
⎧
⎨
=
⎩
代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8.
【点睛】
本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.
22.5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么9 8.5对应的数记为﹣1.5.
故答案为:﹣1.
解析:5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.5.
【点睛】
本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得
∴
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出m的值.
【详解】
x=代入方程,得
把1
141
m⨯-=
m=
∴5
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
24.404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.
【详解】
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有
解析:404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有5×3-1=14个黑棋子;
图4有5×4-1=19个黑棋子;
…
图n有5n-1个黑棋子,
当5n-1=2019,
解得:n=404,
故答案:404.
【点睛】
本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.
三、压轴题
25.(1)详见解析;(2)35;(3)﹣5、15、112
3
、﹣7
6
7
.
【解析】
【分析】
(1)根据尺规作图的方法按要求做出即可;
(2)根据中点的定义及线段长度的计算求出;
(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.
【详解】
解:(1)如图所示;
(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有
点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35
(3)设乙从M点第一次回到点N时所用时间为t,则
t=2235
22
MN⨯
==35(秒)
那么甲在总的时间t内所运动的长度为
s=5t=5×35=175
可见,在乙运动的时间内,甲在C,D之间运动的情况为
175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有
5t1=2t1+15,t1=5(秒)
而﹣30+5×5=﹣5,﹣15+2×5=﹣5
这时甲和乙所对应的有理数为﹣5.
②设甲乙第二次相遇时的时间经过的时间t2,有
5t2+2t2=25+30+5+10,t2=10(秒)
此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.
③设甲乙第三次相遇时的时间经过的时间t3,有
5t3﹣2t3=20,t3=20
3
(秒)
此时甲的位置:30﹣(5×20
3
﹣15)=11
2
3
,乙的位置:20﹣(2×
20
3
﹣5)=11
2
3
这时甲和乙所对应的有理数为112 3
④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有
5t4﹣112
3
﹣30﹣15+2t4=11
2
3
,t4=9
16
21
(秒)
此时甲的位置:5×916
21
﹣45﹣11
2
3
=﹣7
6
7
,乙的位置:11
2
3
﹣2×9
16
21
=﹣7
6
7
这时甲和乙所对应的有理数为﹣76
7
.
四次相遇所用时间为:5+10+20
3
+9
16
21
=31
3
7
(秒),剩余运行时间为:35﹣31
3
7
=3
4
7
(秒)
当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×34
7
=
525
7
=
176
7
.
位置在﹣76
7
+17
6
7
=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、
112
3
、﹣7
6
7
.
【点睛】
本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.
26.(1)1+a或1-a;(2)1
2
或
5
2
;(3)1≤b≤7.
【解析】【分析】
(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;
(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②
【详解】
解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;
点N 在点M 左侧时,点N 表示的数是1-a ;
(2)①b=4时,AB 相距3个单位,
当点A 在点B 左侧时,t=(3-2)÷(3-1)=
12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52
; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,
∴1-d+3×(3-1)≤6,
解得d ≥1,
∴d=1,
当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,
∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7
∴1<d ≤7,
综合两种情况,d 的取值范围是1≤d ≤7.
故答案为(1)1+a 或1-a ;(2)①
12或52;②1≤b≤7. 【点睛】
本题考查了数轴上两点之间的距离和动点问题.
27.(1)图1中∠AOD=60°;图2中∠AOD=10°;
(2)图1中∠AOD=
n m 2+;图2中∠AOD=n m 2-. 【解析】
【分析】
(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;
(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=
n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故
∠AOD=∠BOD ﹣∠AOB=
n m 2
-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;
(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,
如图1中,
∠BOC=∠AOC ﹣∠AOB=n ﹣m ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,
∠BOC=∠AOC+∠AOB=m+n ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-.
【点睛】
本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.
28.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(8
3,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12
=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-
⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=
S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.
29.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)10
3
或4(4)线段MN的长度不
发生变化,都等于11
【解析】
【分析】
(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;
(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;
(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为-14,8-4t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(3) ①点P、Q相遇之前,4t+2+2t =22,t=10
3
,
②点P、Q相遇之后,4t+2t -2=22,t=4,
故答案为10
3
或4
(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=1
2
AB=
1
2
×22=11
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=1
2
AB=11
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
30.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.
【解析】
【分析】
(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;
(2)先求出对称点,即可得出结果;
(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.
【详解】
(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.
∵b是最小的正整数,∴b=1.
故答案为﹣2,1,7.
(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.
故答案为4.
(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则
AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.
故答案为3t+3,5t+9,2t+6.
(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.
【点睛】
本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能
求出两点间的距离.
31.(1)16;(2)①t 的值为3或
143秒;②存在,P 表示的数为314. 【解析】
【分析】
(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,
(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=
143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.
【详解】
(1)16
(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.
当BC =2,点B 在点C 的右边时,
由题意得:32-10-2BC t t =+=(),
解得:t =3,
当AD=2,点A 在点D 的左边时,
由题意得:16--22AD t t ==,
解得:t =143
. 综上,t 的值为3或
143秒 ②存在,理由如下:
当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,
-3BD PA PC =,
()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤
314
x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163
,D 点表示的数为343
.。