新人教版七上第一篇有理数全套教案(共70页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数教案
教学目标
1.知识与技能
①通过生活实例,了解有理数等知识是生活的需要.
②理解并掌握数轴、相反数、绝对值、有理数等有关概念.
③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.
2.过程与方法
通过全章的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力. 3.情感、态度与价值观
①通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.
②通过本章知识的学习,给学生渗透辩证唯物主义思想.
教学重点难点
重点:有理数的运算,这一章的主要学习目标都可以归结到有理数的运算上,诸如有理数的有关概念、运算法则、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,对有理数中的有关概念以及有理数法则的理解,绝对值意义和运算中符号的确定.
课时分配
内容课时
1.1 正数和负数 1
1.2 有理数 4
1.3 有理数的加减法 5
1.4 有理数的乘除法 4
1.5 有理数的乘方 4
单元复习与验收 2
1.1 正数和负数
教学目标
1.知识与技能
①了解正数与负数是实际生活的需要.
②会判断一个数是正数还是负数.
③会用正负数表示互为相反意义的量.
2.过程与方法
通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.
3.情感、态度与价值观
①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.
②通过正负数的学习,渗透对立、统一的辩证思想.
教学重点难点
重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.
难点:负数的引入.
教与学互动设计
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究
1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学任说有关相反的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•自己列举正数、负数.
【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.
(三)应用迁移,巩固提高
例1 举出几对具有相反意义的量,并分别用正、负数表示.
例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?
【答案】表示比标准质量低0.03克.
例3 2001年美国的商品进出口总额比上年减少6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .
备选例题
(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45
【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.
【答案】 B
(四)总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.
1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正.
【点评】本节是对探究问题的训练.
2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1
星期日一二三四五六
(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6 (1)本周小张一共用掉了多少钱?存进了多少钱?
【答案】 6.8元,31元.
(2)储蓄罐中的钱与原来多了还是少了?
【答案】多了.
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
【答案】用文字说明,但前者更简洁.
3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;
(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.
(五)课堂跟踪反馈
夯实基础
1.填空题
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.
(2)如果4年后记作+4,那么8年前记作 -8 .
(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.
(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;
(2)下午5时的水位比中午12时水位高多少?
【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.
4.有没有这样的有理数,它既不是正数,也不是负数?
【答案】有,是0.
5.下列各数中哪些是正数?哪些是负数?
-15,-0.02,6
7
,-
1
71
,4,-2
1
3
,1.3,0,3.14,π
【答案】正数:6
7
,4,1.3,3.14,π;负数:-15,0.02,-
1
71
,-2
1
3
开放探究
6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?
【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.
7.新中考题
(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.
1.2 有理数
1.2.1 有理数
教学目标
1.知识与技能
①理解有理数的意义.
②能把给出的有理数按要求分类.
③了解0在有理数分类的作用.
2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过了解与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的数集的图里.
难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,1
3
,
2
5
,-3
5
6
, -7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.
试一试你能对以上各种类型的数作出一张分类表吗?
有理数⎧⎧
⎪⎨
⎩
⎪
⎨
⎧
⎪
⎨
⎪
⎩
⎩
正整数整数
零
正分数分数
负分数
说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?
做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数⎧⎧
⎪⎨
⎩
⎪
⎪
⎨
⎪⎧
⎪⎨
⎪⎩
⎩
正整数正有理数
正分数零
负整数负有理数
负分数
(3)数的集合
把所有正数组成的集合,叫做正数集合.
试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高
例1 把下列各数填入相应的集合内:
12 7,3.1416,0,2004,-
8
5
,-0.23456,10%,10.l,0.67,-89
正数集合
22
7
,2004,10%,10.1,0.67,...
负数集合
-3.1416,-
8
5
,-0.23456,-89,...
整数集合
0,2004,-89,...
分数集合
127,-3.1416,-85,-0.23456,10%,10.1,0.67,...
例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗?为什么?
有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪
⎨⎪
⎩⎩正整数正有理数正分数
负整数负有理数负分数
有理数⎧⎪⎪⎪
⎨⎪⎪⎪⎩正数
整数分数负数零
【答案】 两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.
【点评】 以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视 (B) ①0是最小的正整数 ②0是最小的有理数 ③0不是负数 ④0既是非正数,也是非负数 A.1个 B.2个 C.3个 D.4个
例4 如果用字母表示一个数,那a 可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.
【答案】 不一定,a 可能是正数,可能是负数,也可能是0.
【点评】 此题开放性较强.同时,要求学生能用分类的思想对a 全面认识. 备选例题
(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.
23,3
4
,
4 5,________,
6
7
,…你的理解是_________.
【点拨】找出各项数的特点是本题关键所在,第一个数为
2
3
,后一个数是前一个数的分子,分母都
加1所得的数.
【答案】5 6
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.
【答案】答案不唯一,如图1-2-2所示.
-12
5
0.4
81
3
2.有理数按正、负可分为⎧
⎪
⎨
⎪
⎩
正有理数零
负有理数
按整数分,可分为⎧
⎨
⎩
整数分数
(1)你能自己再制定一个标准,对有理数进行另一种分类吗?
(2)生活中,我们也常常对事物进行分类,请你举例说明.
【答案】(1)如将有理数分成大于1的数,小于1的数,等于1的数.
(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.
3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?
分数集合
负数集合
答案负分数
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125,1
2
,-3
1
2
,3,0,50%,-0.3
(1)整数集合{-7,3,0}
(2)分数集合{0.125,1
2
,-3
1
2
,50%,-0.3}
(3)负分数集合{-31
2
,-0.3}
(4)非负数集合{0.125,1
2
,3,0,50%}
(5)有理数集合{-7,0.125,1
2
,-3
1
2
,3,0,50%,-0.3}
2.下列说法正确的是(D)
A.整数就是自然数B.0不是自然数
C.正数和负数统称为有理数D.0是整数而不是正数
3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.
提升能力
4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
【答案】a可以表示正整数,正分数,0,负整数或负分数.
5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:
-2 -1 2 -1 3 0 -1 -2 1 0
(1)这10名男生有百分之几达标(即达标率)?
(2)这10名男生共做了多少个引体向上?
【答案】(1)50%;(2)5×10-1=49(个)
开放探究
6.应用创新题
若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?
【答案】在A地西边5米处.
7.新中考题
(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)
A.4℃ B.-4℃ C.8℃ D.-8℃
(六)资料采撷
原始的计算工具
计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.
在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.
古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.
1.2.2 数轴
教学目标
1.知识与技能
①掌握数轴三要素,能正确画出数轴.
②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.。