【冲刺卷】初三数学上期末一模试题带答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【冲刺卷】初三数学上期末一模试题带答案
一、选择题
1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )
A .40︒
B .50︒
C .80︒
D .100︒ 2.下列图形中既是轴对称图形又是中心对称图形的是( )
A .正三角形
B .平行四边形
C .正五边形
D .正六边形 3.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )
A .27
B .36
C .27或36
D .18 4.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则
x 满足等式( )
A .16(1+2x)=25
B .25(1-2x)=16
C .25(1-x)²=16
D .16(1+x)²=25
5.如图中∠BOD 的度数是( )
A .150°
B .125°
C .110°
D .55°
6.一元二次方程x 2+x ﹣14
=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根
C .无实数根
D .无法确定 7.下列诗句所描述的事件中,是不可能事件的是( )
A .黄河入海流
B .锄禾日当午
C .大漠孤烟直
D .手可摘星辰
8.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )
A .3
B .3
C .3
D .8
9.若关于x 的一元二次方程()2
6230a x x --+=有实数根,则整数a 的最大值是( ) A .4 B .5 C .6 D .7
10.“射击运动员射击一次,命中靶心”这个事件是( )
A .确定事件
B .必然事件
C .不可能事件
D .不确定事件
11.以394c x ±+=为根的一元二次方程可能是( ) A .230x x c --=
B .230x x c +-=
C .230-+=x x c
D .230++=x x c 12.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次
方程220ax ax a c -++=的根为( )
A .0,4
B .-3,5
C .-2,4
D .-3,1
二、填空题
13.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .
14.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.
15.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB V 连续作旋转变换,依次得到1234V V V V 、、、,则2019V 的直角顶点的坐标为__________.
16.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.
17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.
18.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.
19.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.
20.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()
A.40° B.50° C.60° D.20°
三、解答题
21.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.
(1)求y与x之间的函数关系;
(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?
22.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
23.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定
采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.
请根据所给信息解答以下问题
(1)请补全条形统计图;
(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?
(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.
25.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.
(1)画出△A'B'C',并写出点A',B',C'的坐标;
(2)求经过点B',B,A三点的抛物线对应的函数解析式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可.
【详解】
解:∵AC 是⊙O 的切线
∴∠CAB=90︒,
又∵50C ∠=︒
∴∠ABC=90︒-50︒=40︒
又∵OD=OB
∴∠BDO=∠ABC=40︒
又∵∠AOD=∠OBD+∠OBD
∴∠AOD=40︒+40︒=80︒
故答案为C.
【点睛】
本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.
2.D
解析:D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A. 是轴对称图形,不是中心对称图形,故错误;
B. 不是轴对称图形,是中心对称图形,故错误;
C. 是轴对称图形,不是中心对称图形,故错误;
D. 是轴对称图形,也是中心对称图形,故正确.
故答案选:D.
【点睛】
本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.
3.B
解析:B
【解析】
试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:
(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
试题解析:分两种情况:
(1)当其他两条边中有一个为3时,将x=3代入原方程,
得:32-12×3+k=0
解得:k=27
将k=27代入原方程,
得:x2-12x+27=0
解得x=3或9
3,3,9不能组成三角形,不符合题意舍去;
(2)当3为底时,则其他两边相等,即△=0,
此时:144-4k=0
解得:k=36
将k=36代入原方程,
得:x2-12x+36=0
解得:x=6
3,6,6能够组成三角形,符合题意.
故k的值为36.
故选B.
考点:1.等腰三角形的性质;2.一元二次方程的解.
4.C
解析:C
【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.
∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.
5.C
解析:C
【解析】
试题分析:如图,连接OC.
∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.
【考点】圆周角定理.
6.A
解析:A
【解析】
【分析】
根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】
∵△=12﹣4×1×(﹣1
4
)=2>0,
∴方程x2+x﹣1
4
=0有两个不相等的实数根.
故选:A.
【点睛】
本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
7.D
解析:D
【解析】
【分析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是必然事件,故选项错误;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是不可能事件,故选项正确.
故选D.
【点睛】
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8.A
解析:A
【解析】
【分析】
【详解】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=1
2
∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴3
3,
∴3.
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
9.B
解析:B
【解析】
【分析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再
求出两不等式的公共部分得到a≤19
3
且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤19
3
且a≠6,
所以整数a的最大值为5.
故选B.
【点睛】
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
10.D
解析:D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.
考点:随机事件.
11.A
解析:A
【分析】
根据一元二次方程根与系数的关系求解即可.
【详解】
设x 1,x 2是一元二次方程的两个根,
∵32
x ±= ∴x 1+x 2=3,x 1∙x 2=-c ,
∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=
故选A.
【点睛】
此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.
12.B
解析:B
【解析】
【分析】
先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含
a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.
【详解】
∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =
∴()2620a c -+=或()2
220a c --+=
∴整理方程即得:160a c +=
∴16c a =-
将16c a =-代入220ax ax a c -++=化简即得:22150x x --=
解得:13x =-,25x =
故选:B .
【点睛】
本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程. 二、填空题
13.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长
解析:1
【解析】
(1)根据180
n R l π=
,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π
=,求圆锥底面半径. 【详解】 该圆锥的底面半径=
()1203=11802cm ππ
⋅⋅ 故答案为:1.
【点睛】
圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 14.4【解析】【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE 即可求解
【详解】令y =0则:x =±1令x =0则y =2则:OB =1BD =2OB =2S 阴影部分图形=S 四边形BDFE =BD×OE=2×2=
解析:4
【解析】
【分析】
由S 阴影部分图形=S 四边形BDFE =BD×
OE ,即可求解. 【详解】
令y =0,则:x =±
1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,
S 阴影部分图形=S 四边形BDFE =BD×OE =2×2=4.
故:答案为4.
【点睛】
本题考查的是抛物线性质的综合运用,确定S 阴影部分图形=S 四边形BDFE 是本题的关键.
15.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201
解析:()8076,0
【解析】
【分析】
根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.
【详解】
解:∵点A (-3,0)、B (0,4),
∴,
由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2019÷
3=673, ∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点, ∵673×
12=8076, ∴△2019的直角顶点的坐标为(8076,0). 故答案为(8076,0). 【点睛】
本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
16.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n =90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键
解析:90 【解析】 【分析】
根据弧长公式列式计算,得到答案. 【详解】
设这个扇形的圆心角为n °, 则
6
180
n π⋅=3π, 解得,n =90, 故答案为:90. 【点睛】
考核知识点: 弧长的计算.熟记公式是关键.
17.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题
解析:1
a 4
>-且a 0≠ 【解析】 【分析】
由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围. 【详解】
Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,
()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,
解得:1a 4
>-
, Q 方程2ax 2x 10-+=是一元二次方程,
a 0∴≠,
a ∴的范围是:1
a 4
>-且a 0≠,
故答案为:1
a 4
>-且a 0≠. 【点睛】
本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0
方程有两个相等的实数根;(3)△<0
方程没有实数根.
18.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x
解析:﹣3
【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.
【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0, 整理得k 2+3k=0,解得k 1=0,k 2=﹣3, 因为k≠0, 所以k 的值为﹣3. 故答案为:﹣3.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
19.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变
解析:(-1010,10102
) 【解析】 【分析】
根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2019的坐标. 【详解】
∵A 点坐标为(1,1), ∴直线OA 为y=x ,A 1(-1,1), ∵A 1A 2∥OA ,
∴直线A1A2为y=x+2,
解
22
y x y x +
⎧⎨⎩=
=
得
1
1
x
y
-
⎧
⎨
⎩
=
=
或
2
4
x
y
⎧
⎨
⎩
=
=
,
∴A2(2,4),
∴A3(-2,4),
∵A3A4∥OA,
∴直线A3A4为y=x+6,
解
26
y x y x +
⎧⎨⎩=
=
得
2
4
x
y
-
⎧
⎨
⎩
=
=
或
3
9
x
y
⎧
⎨
⎩
=
=
,
∴A4(3,9),
∴A5(-3,9)
…,
∴A2019(-1010,10102),
故答案为(-1010,10102).
【点睛】
此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.
20.B【解析】试题分析:根据AE是⊙O的切线A为切点AB是⊙O的直径可以先得出∠BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B 从而得到∠ADB的度数由题意得:∠BAD=90°∵∠B=∠
解析:B.
【解析】
试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度
数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.
考点:圆的基本性质、切线的性质.
三、解答题
21.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元
【解析】
【分析】
(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;
(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.
【详解】
(1)设一次函数解析式为y=kx+b(k≠0),
由图象可知一次函数的过(30,400)和(40,300),
代入解析式可得
30400 40300
k b
k b
+=
⎧
⎨
+=
⎩
,
解得:
10
700
k
b
=-
⎧
⎨
=
⎩
,
∴y与x的函数关系式为y=﹣10x+700;
(2)设利润为p元,由(1)可知每天的销售量为y千克,
∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.
∵﹣10<0,
∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,
∴当x=45时,p有最大值,最大值为6250元,
即销售单价为45元时,每天可获得最大利润,最大利润为6250元.
【点睛】
本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.
22.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】
【分析】
(1)待定系数法列方程组求一次函数解析式.
(2)列一元二次方程求解.
(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.
【详解】
(1)设y与x的函数关系式为y=kx+b.
把(22,36)与(24,32)代入,得
2236 2432.
k b
k b
+=
⎧
⎨
+=
⎩
解得
2
80. k
b
=-⎧
⎨
=
⎩
∴y=-2x+80(20≤x≤28).
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得
(x-20)y=150,即(x-20)(-2x+80)=150.
解得x1=25,x2=35(舍去).
答:每本纪念册的销售单价是25元.
(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.
∵售价不低于20元且不高于28元,
当x<30时,y随x的增大而增大,
∴当x=28时,w最大=-2×(28-30)2+200=192(元).
答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.
23.(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价25元时,商场日盈利可达到2000元.
【解析】
【分析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+250=0,
解得:x1=10,x2=25,
∵商城要尽快减少库存,
∴x=25.
答:每件商品降价25元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
24.(1)详见解析;(2)280人;(3).
【解析】
【分析】
(1) 由总人数以及条形统计图求出喜欢“豆腐干” 的人数,补全条形统计图即可;
(2) 求出喜欢“笋干”的百分比, 乘以1000即可得到结果;
(3) 列表得出所有等可能的情况数, 找出A,B两球分在同一组的情况数, 即可求出所求的概率.
【详解】
解:(1)喜爱豆腐干的人数为50﹣14﹣21﹣5=10,
条形图如图所示:
(2)根据题意得:1000××100%=280(人),
所以估计全校同学中最喜爱“笋干”的同学有280人.
(3)列表如下:
A B C D
A A,
B A,
C A,D
B B,A B,
C B,D
C C,A C,B C,D
D D,A D,B D,C
∴A、B两球分在同一组的概率为=.
【点睛】
本题主要考查条形统计图、用样本估计总体及列表法或树状图求概率.
25.(1)见解析;(2)抛物线的解析式为y=﹣1
2
x2+
1
2
x+3.
【解析】
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可.
(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】
解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)
(2)设抛物线的解析式为y=a(x+2)(x﹣3),
把B(0,3)代入得到a=﹣1
2
,
∴抛物线的解析式为y=﹣1
2
x2+
1
2
x+3.
【点睛】
本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.。