青山湖区民族中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青山湖区民族中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C 的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为()
A.B.C.2 D.
2.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()
P(K2>k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
A.25% B.75% C.2.5% D.97.5%
3.已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A.相离 B.相切 C.相交 D.不能确定
4.已知x>1,则函数的最小值为()
A.4 B.3 C.2 D.1
5.双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为()
A.13 B.15 C.12 D.11
6.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()
A.有无穷多条直线,每条直线上至少存在两个有理点
B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点
C.有且仅有一条直线至少过两个有理点
D.每条直线至多过一个有理点
7.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()
A.B.C.D.
8.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()
A .0
B .1
C .2
D .3
9. 设集合,,则( )
A B
C
D
10.抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
11.已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
12.下列语句所表示的事件不具有相关关系的是( )
A .瑞雪兆丰年
B .名师出高徒
C .吸烟有害健康
D .喜鹊叫喜
二、填空题
13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .
14.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
16.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,
点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.
17.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .
18.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
三、解答题
19.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()
21x
f x x e a =+-.
(1)证明在(上仅有一个零点;
(2)若曲线在点
处的切线与轴平行,且在点
处的切线与直线
平行,(O 是坐标原点),
证明:1m ≤
20.设M 是焦距为2的椭圆E : +=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线
MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.
(1)求椭圆E 的方程;
(2)已知椭圆E : +=1(a >b >0)上点N (x 0,y 0)处切线方程为
+=1,若P
是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
22.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2y
y
a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
23.【常熟中学2018届高三10月阶段性抽测(一)】已知函数
()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.
(1)求实数b 和c 的值;
(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()
00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.
24.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí=+ïî(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C
的参数方程;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
青山湖区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:设F 1(﹣c ,0),F 2(c ,0),则l 的方程为x=﹣c ,
双曲线的渐近线方程为y=±x ,所以A (﹣c , c )B (﹣c ,﹣ c ) ∵AB 为直径的圆恰过点F 2 ∴F 1是这个圆的圆心 ∴AF 1=F 1F 2=2c ∴c=2c ,解得b=2a
∴离心率为==
故选D .
【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.
2. 【答案】D
【解析】解:∵k >5、024,
而在观测值表中对应于5.024的是0.025, ∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,
故选D . 【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们
必得分的题目.
3. 【答案】C
【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02
>4,
求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,
故直线和圆C 相交, 故选:C .
【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
4. 【答案】B
【解析】解:∵x >1∴x ﹣1>0
由基本不等式可得,
当且仅当即x﹣1=1时,x=2时取等号“=”
故选B
5.【答案】A
【解析】解:设点P到双曲线的右焦点的距离是x,
∵双曲线上一点P到左焦点的距离为5,
∴|x﹣5|=2×4
∵x>0,∴x=13
故选A.
6.【答案】C
【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),
由于也在此直线上,
所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;
当x1≠x2时,直线的斜率存在,且有,
又x2﹣a为无理数,而为有理数,
所以只能是,且y2﹣y1=0,
即;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C.
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
7.【答案】D
【解析】解:设F2为椭圆的右焦点
由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,
所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.
又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.
根据椭圆的定义可得|PF 1|+|PF 2|=2a ,
所以|PF 2|=2a ﹣c .
所以2a ﹣c=,所以e=

故选D .
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.
8. 【答案】C
【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题; 故其逆否命题也为真命题;
其逆命题为“设a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”在c=0时不成立,故为假命题 故其否命题也为假命题
故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个 故选C
【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.
9. 【答案】C
【解析】送分题,直接考察补集的概念,,故选C 。

10.【答案】D
【解析】解:抛物线x=﹣4y 2
即为
y 2=﹣x ,
可得准线方程为x=.
故选:D .
11.【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛

=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
12.【答案】D
【解析】解:根据两个变量之间的相关关系,
可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,
名师出高徒也具有相关关系, 吸烟有害健康也具有相关关系,
故选D .
【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.
二、填空题
13.【答案】12 【解析】
考点:分层抽样
14.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
15.【答案】 (﹣1,1] .
【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:
由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1]
-
16.【答案】[]1,1
【解析】
考点:向量运算.
【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.
17.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
18.【答案】 6 .
【解析】解:根据题意可知:f (x )﹣2x
是一个固定的数,记为a ,则f (a )=6,
∴f (x )﹣2x =a ,即f (x )=a+2x ,
∴当x=a 时,
又∵a+2a
=6,∴a=2,
∴f (x )=2+2x

∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x
+4
≥2+4=6,当且仅当x=0时成立,
∴f (x )+f (﹣x )的最小值等于6, 故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
三、解答题
19.【答案】(1)f x ()
在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:
试题解析:
(1)()()
()2
2211x
x f x e
x x e x +='=++,()0f x ∴'≥,
()(
)2
1x
f x x e
a ∴=+-在(),-∞+∞上为增函数.
1a >,()010f a ∴=-<,
又(
)
1f
a a =-=-,
10,1a ->∴>,即0f
>,
由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f
⋅<,
()
f x ∴在(上仅有一个零点。

(2)()()2
1x
f x e x ='+,设点()00,P x y ,则()()0
2
001x f x e
x '=+,
()y f x =在点P 处的切线与x 轴平行,()()0
2
0010x
f x e x ∴+'==,01x ∴=-,
21,P a e ⎛⎫
∴-- ⎪⎝⎭
,2OP k a e ∴=-,
点M 处切线与直线OP 平行,
∴点M 处切线的斜率()()2
21m k f m e m a e
=+'==-

又题目需证明1m ≤
,即()3
21m a e +≤-,
则只需证明()3211m m e m +≤+,即1m
m e +≤。

令()()1m
g m e m =-+,则()1m
g m e '=-,
易知,当(),0m ∈-∞时,()0g m '<,单调递减, 当()0,m ∈+∞时,()0g m '>,单调递增,
()()min 00g m g ∴==,即()()10m g m e m =-+≥,
1m m e ∴+≤,
1m ∴≤,得证。

20.【答案】
【解析】(1)解:设A (﹣a ,0),B (a ,0),M (m ,n ),则
+
=1,
即n 2=b 2•

由k 1k 2=﹣,即
•=﹣

即有
=﹣

即为a 2=2b 2,又c 2=a 2﹣b 2
=1, 解得a 2=2,b 2
=1.
即有椭圆E 的方程为+y 2=1;
(2)证明:设点P (2,t ),切点C (x 1,y 1),D (x 2,y 2),
则两切线方程PC ,PD 分别为:
+y 1y=1,
+y 2y=1,
由于P 点在切线PC ,PD 上,故P (2,t )满足+y 1y=1,
+y 2y=1,
得:x 1+y 1t=1,x 2+y 2t=1,
故C (x 1,y 1),D (x 2,y 2)均满足方程x+ty=1, 即x+ty=1为CD 的直线方程. 令y=0,则x=1, 故CD 过定点(1,0).
【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.
21.【答案】
【解析】【命题意图】本题考查等差数列通项与前n 项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
22.【答案】
【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(]
[),22,-∞-+∞.
由|2|21x m ≤+,得11
22
m x m --
≤≤+,……………………2分 所以,由122m +=,解得3
2
m =.……………………4分
(2)不等式()2|23|2y
y a f x x ≤+
++等价于|21||23|22y
y
a x x --+≤+, 由题意知max (|21||23|)22
y
y a x x --+≤+.……………………6分
23.【答案】(1)1
,14
b c =
=;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 【解析】试题分析:
(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1
,14
b c =
=;
(3)函数
()g x 的导函数()()2132444g x x a x a ⎛
⎫=+--+ ⎪⎝
⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在
()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.
试题解析:
(1)由题意()()01
{ 440
f c f b c =+=-+=,解得1
{ 41
b c =
=;
(2)由(1)可知()()3
2
4f x x a x =+--1414a x ⎛⎫
+
+ ⎪⎝⎭
, ∴()()2132444f x x a x a ⎛⎫=+--+
⎪⎝⎭
'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫
=+--+
⎪⎝

'是一个与a 无关的定值,
即()2
0001
24384
x a x x -+--
是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724
k f ==-'; (3)()()()3
2
4g x f x a x a x =+=+-1414a x a ⎛⎫
-+
++ ⎪⎝⎭
, ∴()()2132444g x x a x a ⎛
⎫=+--+
⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝
⎭()22
4166742510a a a ++=++>,
设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表
1°当0a >时,()010g a =+>,()40g a =>,而()15
2302
g a =--
<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15
202
g =-
<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;
3°当0a <时,()40g a =<,且13024g a ⎛⎫=->
⎪⎝⎭
, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫
⎪⎝⎭
上各有一个零点,
即()g x 在()0,4有两个零点;
②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫
⎪⎝⎭
上有一个零点, 即()g x 在()0,4有一个零点;
综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.
点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 24.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k ==- 故直线l 的斜率的取值范围为]22,32(--.。

相关文档
最新文档