三年级上册数学专项练习题应用题解答问题(含答案)50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级上册数学专项练习题应用题解答问题(含答案)50
一、三年级数学上册应用题解答题
1.放学后李明从学校出发,先到超市买食品,然后回家,他一共走了多少米?合多少千米?
2.
(1)小猴有多少个气球?
(2)如果小猴给小松鼠一个气球,那么小猴的气球数是小松鼠的多少倍?
3.小明家、小红家和书店都在振兴路上,小明家离书店420米,小红家离书店170米。
小明家可能距小红家多少米?
4.16个女同学旅游住旅店,有双人间和三人间,怎样安排能刚好住下?
5.图书馆、体育馆和小华家在中山大道的一旁。
小华家距图书馆450米,小华家距体育馆900米。
图书馆和体育馆相距多少米?
6.游乐场上午有游客643人,中午有384人离去。
下午又来了524人,这时游乐场内有多少游客?全天游乐场内来了多少游客?
7.笑笑一家从成都出发去北海旅游,下面是他们的行程路线图。
路程/千米
成都-A城300
成都-B城680
成都-C城1230
成都-北海1460
(1)笑笑一家先到A城,从A城出发时,笑笑写了一个算式:1460-300=1160(千米)。
笑笑是在计算( )到( )的路程。
(2)笑笑一家从A城出发,行驶了500千米后吃午餐,请你在图中用“△”标出笑笑一家吃午餐的大概位置。
(3)估一估,这条路线上相邻两个城市之间的路程最长的一段大约是多少千米?
(4)笑笑一家从成都出发的时间是早上7时,到达北海的时间是当日晚上10时,笑笑一家路上一共用了多长时间?
8.马小虎计算40加一个数时,不小心把这个数末尾的“0”丢了,算出的得数是43,正确的得数应该是多少?
9.一根2米长的绳子,剪去2分米,剩下的平均分成3段,每段长几分米?
10.三(2)班有20人去秋游,如果每辆车都坐满,可以怎样租车?
出租车限乘4人面包车限乘6人
11.有22名同学在公园游玩,游园面包车每辆限坐6人,游园小轿车每辆限坐4人。
怎样租车没有空座位?如果租一辆游园面包车6元,租一辆游园小轿车5元,哪个租车方案最省钱?
12.
从体育场到学校500米,从公园到学校有多少米?
13.小马虎在做一道减法题的时候,把减数72错写成27,这时得到的差是309,正确的差是多少?
14.一桶油连桶共重230千克,用去一半油后连桶共重125千克,请问这个桶重多少千克?
15.一个三位数,个位数字是4,如果把个位数字移作百位数字,原来的百位数字移作十位数字,原来的十位数字移作个位数字,那么得到的数比原来的数少171,原来的数是多少?
16.粗心的明明在做一道加法算式时,错把24写成了42,结果算出来的结果是68,你能
帮他改正,求出正确的结果吗?
17.下面的货物要用卡车从北京运到天津。
(1)这辆卡车能一次运走这些货物吗?
(2)运输这些货物一共需要付运费多少钱?
18.三年三班有55名学生,其中爱好数学的有22人,爱好英语的有22人,爱好语文的有22人,三科都爱好的有6人,都不爱好的有8人.只爱一科的有几人?
19.小红期末考试语文和数学的平均分是97分,数学比语文多4分,语文、数学各得多少分?
20.有一串24颗珠子的手串,按下面的排列方式,算一算黑珠子是白珠子的几倍。
答:黑珠子是白珠子的倍。
21.小冬今年12岁,五年前爷爷的年龄是小冬年龄的9倍,爷爷今年多少岁?
22.体重大比拼:
(1)4只小狗=8只小猫,那么5只小狗等于多少只小猫的体重?
(2)2只小狗=4只小猫,1只小猫=2只鸭子,那么12只小狗等于多少只鸭子的体重?(3)3只小狗=4只小兔,5只小兔=7只小鸡,那么12只小狗加4只小兔等于多少只小鸡的体重?
23.孙悟空、猪八戒、沙僧三人去海里比赛捕鱼,沙僧捕的数量比猪八戒的2倍多3条,猪八戒捕的是孙悟空的2倍,且三人一共捕了59条。
请问:猪八戒捕了多少条鱼?24.羊村里住了一些羊和狼,羊的数量比狼的5倍多2只,且羊比狼多42只。
请问:羊村里羊和狼分别有多少只?
25.学校合唱团成员中,女生人数是男生的3倍,而且女生比男生多80人,合唱团里男生和女生各有多少人?
26.妈妈买来桃子和猕猴桃共12个,如果再买6个桃子,桃子的个数就是猕猴桃的2
倍,那么妈妈买来桃子和猕猴桃各多少个?
27.小区花坛周围摆放了58盆红花,比黄花的7倍多16盆,黄花摆了多少盆?
28.
29.
小白猫钓了多少条鱼?
30.用下面两种卡车运14吨的水果,如果每次每辆车都装满,可以怎样安排恰好能运完?请写出所有的方法。
大车:载质量4吨小车:载质量2吨
31.将10张边长为10厘米的正方形纸片按顺序一张一张地摆放着地板上,摆放时要求后摆的纸片必须有一个顶点与前一张纸片的中心重合(下图表示已经摆好的5张)。
请问:地板被10张纸片所覆盖的部分的周长是多少厘米?
32.一个大正方形,被分成4个相等的小正方形,每个小正方形的周长是60厘米,大正方形的周长是多少厘米?
33.把两个大小相同的正方形拼成一个长方形后,周长比原来两个正方形周长的和减少12厘米,原来一个正方形的周长是多少厘米?
34.有一张长方形纸,长12厘米,宽8厘米,从这张纸上剪下一个最大的正方形,将这张纸分成两部分,这个最大的正方形的周长是多少?剪后余下部分的周长是多少?
35.四个同样大小的长方形正好拼成一个正方形,正方形的周长为64厘米,长方形周长是多少?
36.一位青年将自己的月薪按照下列方式支配:月薪的一半存入银行,剩下钱的一半少300元还房贷,再将余下的钱的一半多300元用于餐费,这样还剩余800元,请问这位青年月薪是多少元?
37.李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有鸡蛋多少个?
38.某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩下10个西瓜,原有西瓜多少只?
39.下面是某铁路沿线A站到E站的火车里程表.
到站情况里程/千米
A站﹣B站164
A站﹣C站322
A站﹣D站448
A站﹣E站1142
(1)根据上图完成下表
到站情况里程/千米
B站﹣C站
C站﹣D站
D站﹣E站
(2)从B站到E站一个来回多少千米?
(3)从C站到E站和B站到D站哪段路程长?长多少千米?
40.甲、乙两地相距850千米。
一列火车早上7时从甲地出发,平均每小时行150千米,中午12时能到达乙地吗?如果不能到达,距乙地还有多少千米?
41.把一根竹竿插入水中,浸湿的部分是6分米,掉过头来把它的另一端插入水中.这时,这根竹竿有一半还多4分米的部分是干的.请你计算这根竹竿的长度是多少分米.
42.
(1)如果每条船都坐满,可以怎样租船?
(2)怎样租船最省钱?至少需要多少元?
43.秋季运动会中,手持鲜花的队员在彩车的四周围成每边两层的方阵,最外面一层每边13人,彩车周围有多少队员?
44.小马虎在计算一道两位数减两位数的减法时,不小心把被减数个位的3抄成8,减数十位的5抄成2,算出来的得数是72。
正确的得数是多少呢?
45.1条裤子78元,1双皮鞋的价钱是1条裤子的2倍,1件上衣的价钱是1双皮鞋的2倍,爸爸想买这3样东西,需要准备多少钱?
46.下图是由6个边长是4厘米的正方形拼成的,这个图形的周长是多少?
47.梅梅用两个同样的正方形和一个长方形拼成一个图形(三个图形之间没有重叠),如图所示。
(1)这个图形的周长是多少厘米?
(2)明明也用这三个图形拼出一个新图形(图形之间没有重叠),新图形的周长比梅梅拼的图形的周长要短。
明明是怎样拼的呢?在左边画出明明拼出图形的示意图(一种即可),在右边写出检验过程(所画示意图的周长是否符合题目要求)。
画好示意图后,标出数据有助于你进行检验。
示意图:________;检验:________。
48.如下图所示,一个正方形被分成了三个相同的长方形,如果其中一个长方形的周长是16米,那么这个正方形的周长是多少米?
49.一根铁丝围成一个边长为7厘米的正方形,余下的正好围成一个长为12厘米、宽为10厘米的长方形。
这根铁丝长多少厘米?
50.一个周长为20厘米的正方形,从中间剪开成两个大小相等的长方形,这两个长方形的周长共多少厘米?
51.一个周长是72厘米的长方形,它是由3个大小相等的正方形拼成的,每个小正方形是周长是多少?
52.下图是由三个相同的长方形纸片组成的一个“5”字,已知长方形长4厘米,宽2厘米,“5”字周长是多少厘米。
53.三(1)班同学种了64棵树,第一天种了总数的2
8
,第二天种了总数的
4
8
,剩下的第
三天种完。
(1)第一天和第二天共种了总数的几分之几?
(2)第三天种了总数的几分之几?第三天种了多少棵?
54.妈妈买了16个苹果,爸爸吃了其中的3
8,妈妈吃了其中的
5
8
,妈妈比爸爸多吃了多少
个?
55.一共钓了16条鱼。
小黄猫拿走了多少条鱼?
56.华华的两条彩带各用去了一部分,它们剩下的部分一样长,其中第一条彩带剩下全长
的1
3
,第二条彩带剩下全长的
1
4
,原来这两条彩带哪条长?为什么?(借助画图来说明)
57.三个小朋友学习剪纸布置教室.小红剪了5张剪纸,占全部小朋友所剪剪纸总数的
1
4
.小明剪了7张剪纸,那么小丽剪了多少张剪纸?
58.聪聪和妈妈一起做了一个大蛋糕,聪聪吃了整个蛋糕的,妈妈吃了整个蛋糕的,他们两人吃了整个蛋糕的几分之几?
59.丽丽家和明明家与学校在同一条街上,丽丽家距学校520米,明明家距学校390米,丽丽家距明明家有多远?
60.一箱牛肉共24袋,其中有6个大袋,每袋9元;余下的是小袋,每小袋5元。
如果1大袋相当于2小袋,那么这箱牛肉干的价格比全价小袋包装便宜多少元?
【参考答案】***试卷处理标记,请不要删除
一、三年级数学上册应用题解答题
1.1000米,1千米
【详解】
528+236+236=1000(米)
1000米=1千米
答:他一共走了1000米,合1千米.
【点睛】
把所走的三段路程相加求出一共走的路程,然后把米换算成千米,1千米=1000米.2.(1)36个
(2)7倍
【详解】
(1)9×4=36(个)
(2)36-1=35(个)4+1=5(个)35÷5=7
3.250米或590米。
【详解】
当小明家和小红家在书店的同一侧:
420-170=250(米)
当小明家和小红家在书店的两侧:
420+170=590(米)
4.安排2间双人间,4间三人间;或5间双人间,2间三人间;或8间双人间
【详解】
略
5.1350米或450米
【详解】
如果图书馆,体育馆在小华家两侧:
450+900=1350(米)
如果图书馆,体育馆在小华家同一侧:
900-450=450(米)
6.783人;1167人
【详解】
643-384+524=783(人)
643+524=1167(人)
答:这时游乐场内有游客783人,全天游乐场内来了游客1167人。
7.(1)A城北海
(2)
(3)500千米
(4)15小时
【详解】
(1)成都到北海的路程是1460千米,成都到A城的路程是300千米,1460-300=1160(千米)求的是A城到北海的路程。
(2)因为从A城到B城的路程是680-300=380(千米),从A城到C城的路程是1230-300=930(千米),所以笑笑一家从A城出发,行驶500千米后的位置应该在B城与C城之间,靠近B城一些。
(3)观图可知,相邻两个城市之间的路程最长的一段是B城到C城,求这两个城市之间的路程用减法计算,列式为1230-680,1230可以看作1200,680可以看作700,所以1230-680≈1200-700=500(千米)。
(4)从早上7时到中午12时经过了5小时;从中午12时到当日晚上10时经过了10小时,所以从早上7时到当日晚上10时一共经过了15小时。
8.43-40=3 40+30=70
【解析】
【详解】
略
9.6分米
【详解】
2米=20分米
20-2=18(分米)
18÷3=6(分米)
答:每段长6分米。
10.方案一:租5辆出租车;
方案二:租2辆出租车和2辆面包车;
【分析】
本题用列表法找出方案即可。
【详解】
2×4+2×6
=8+12
=20(人)
答:方案一:租5辆出租车;方案二:租2辆出租车和2辆面包车;
【点睛】
本题考查优化问题,用列表法解决比较简单直观。
11.(1)租3辆面包车和1辆小轿车或者1辆面包车和4辆小轿车;(2)租3辆面包车和1辆小轿车。
23元
【分析】
(1)面包车和小轿车的载客人数分别为6人和4人,可以只安排一种车,也可以两种车同时安排,但要每次都坐满。
用列表的方法把不同的运送方案一一列举出来,再选择最优方案。
(2)根据总价=单价×数量,分别求出各方案花费的钱数,再进行比较解答。
【详解】
(1)
(2)租3辆面包车和1辆小轿车:
=18+5
=23(元)
租1辆面包车和4辆小轿车:
1×6+4×5
=6+20
=26(元)
23<26
答:租3辆面包车和1辆小轿车时总费用最少,为23元。
【点睛】
根据已知条件和数量关系将所有可能的方案一一列举出来,然后再从各种方案中选择最优方案。
再根据公式总价=单价×数量解答。
12.1080米
【详解】
略
13.264
【分析】
把减数72错写成27,减数减少了45,被减数不变,那么差增加45,309减去45得到正确的差。
【详解】
-=
722745
30945264
-=
答:正确的差是264。
【点睛】
也可以根据差是309,减数是27,先求出被减数336,再减去72,得到正确的差。
14.20千克
【分析】
先求出一半油重多少千克,接着用桶和剩下一半油的重量减去一半油的重量,就等于这个油桶的重量。
【详解】
油的一半:230-125=105(千克)
油的重量:105+105=210(千克)
桶的重量:230-210=20(千克)
答:这个桶重20千克。
【点睛】
明确这桶油的一半重105千克是解决本题的关键。
15.634
【分析】
先假设出百位和十位上的数字,按照题意列竖式,求出竖式中的未知数即可。
假设原来三位数的百位数字是A,十位数字是B,则依题意可得竖式
个位4减B得1,则B为3;十位3减A得7,可知3减A不够减,从百位退1当10,13减A得7,A为6;百位6退1为5,5减4得1,所以原数为634。
答:原来的数是634。
【点睛】
对于此类问题,一般要采用设数法,再根据题目所给的条件,进行推理或论证,得出结论。
16.50
【分析】
把24错写成了42,结果得68,也就是68比正确的结果多(42-24),据此解答即可。
【详解】
68-(42-24)
=68-18
=50
答:正确的结果是50。
【点睛】
此题考查的目的是理解掌握整数加、减法的计算法则及应用。
17.(1)能
(2)910元
【详解】
(1)456+347+528+431+238=2000(千克)
3吨=3000千克 2000<3000
答:这辆卡车能一次运走这些货物。
(2)2000千克=2吨 455+455=910(元)
答:运输这些货物一共需要付运费910元。
18.34人
【解析】
【详解】
55-8-6=41(人)
(22-6)×3=48(人)
48-41=7(人)
41-7=34(人)
19.语文:95分数学:99分
【详解】
语文:(97×2-4)÷2=95(分)数学:95+4=99(分)
答:语文得了95分,数学得了99分。
20.2倍
【分析】
根据题意每2个白珠子和4个黑珠子为一组,则24颗珠子里有24÷6=4组,所以白珠子有2×4=8个,黑珠子有4×4=16个,再用除法计算出黑珠子是白珠子的几倍。
【详解】
÷+
24(24)
÷
=246
=(组)
4
⨯=(个)
黑珠子:4416
⨯=个
白珠子:248()
÷=
1682
答:黑珠子是白珠子的2倍。
【点睛】
找出几颗珠子为一组是解答本题的关键。
21.68岁
【分析】
先求出小冬五年前的年龄,再计算爷爷五年前的年龄,最后求爷爷今年的年龄。
【详解】
-=(岁)
1257
⨯=(岁)
7963
+=(岁)
63568
答:爷爷今年68岁。
【点睛】
本题较为简单,直接利用倍数关系求解即可,注意两个人的年龄同时增加,同时减少。
22.(1)10只;(2)48只;(3)28只
【分析】
第(1)、(2)问中利用等量代换中的倍数关系,找清楚1只小狗等于几只小猫。
第(3)问中可将12只小狗加4只小兔变为全是小兔,由此推算解答。
【详解】
(1)4只狗=8只猫,则1只狗=2只猫,所以5只狗=10只猫;
(2)2只狗=4只猫,则12只狗=24只猫,因为1只猫=2只鸭,则24只猫=48只鸭,所以12只狗=48只鸭;
(3)3只狗=4只兔,则12只狗=16只兔,那么12只小狗加4只小兔=20只兔,5只兔=7只鸡,所以20只兔=28只鸡。
【点睛】
巧用等量代换是解答此题的关键。
23.16条
首先根据倍数关系画出线段图:
由图可知,59-3条鱼就是孙悟空捕鱼条数的1+2+4倍,用除法求出孙悟空的捕鱼条数,再乘2就是猪八戒捕鱼条数,据此解答。
【详解】
(59-3)÷(1+2+4) =56÷7 =8(条) 2×8=16(条)
答:猪八戒捕了16条鱼。
【点睛】
此题的数量关系较为复杂,通过画图可以帮助理解题意梳理其中的关系。
24.狼有10只;羊有52只 【分析】
首先根据倍数关系画出线段图(“5”份多2的画法要注意),羊比狼多的42只表示的是“4”份多2只,去掉多的2只,()422-就表示是整“4”份。
接下来就可以求出“1”份是多少了。
狼“1”:(422)(51)10-÷-=只 羊:105252⨯+=只 【详解】
(42-2)÷(5-1) =40÷4 =10(只) 10×5+2 =50+2 =52(只)
答:羊村里羊有52只,狼有10只。
【点睛】
解答此题的关键是找出羊比狼多的份数所对应的量,再根据差倍问题的数量关系式解答。
25.男生有40人;女生有120人
首先还是根据倍数关系画出线段图,找出女生比男生多的80人表示的线段,根据份数和数之间的关系求出“1”份表示多少。
“”人
÷-=
1:80(31)40
女:403120
⨯=人
【详解】
80÷(3-1)
=80÷2
=40(人)
40×3=120(人)
答:合唱团里男生有40人,女生有120人。
【点睛】
此题是一道差倍问题,根据差÷(倍数-1)=一倍的量求解。
26.桃子6个;猕猴桃6个
【分析】
把猕猴桃的个数看作1份,桃子的个数是2份,共3份,3份是(12+6)个,先求出一份即猕猴桃的个数是多少。
【详解】
猕猴桃的个数:(12+6)÷(2+1)
=18÷3
=6(个)
-=(个)
桃子个数:1266
答:妈妈买来桃子和猕猴桃各6个。
【点睛】
和倍问题
已知大、小两个数的和与它们的倍数关系,求大、小两个数的问题。
解答方法:
小数=和÷(倍数+1)
大数=小数×倍数=和-小数
27.6盆
【详解】
(58-16)÷7=6(盆)
28.2年爸爸的年龄是小华的5倍; 再过4年爷爷的年龄是小华的7倍.
【详解】
略
【详解】
8+1=9(条)9×2=18(条)
18+1=19(条)
30.大车运3次小车运1次或大车运2次小车运3次或大车运1次小车运5次或小车运7次
【分析】
两辆车的载质量分别为4吨和2吨,可以只安排一辆车,也可以两辆车同时安排,但要每次都装满。
用列表的方法把不同的运送方案一一列举出来,再选择最优方案。
【详解】
派车方案大车小车运送产品吨数
①4次0次16吨
②3次1次14吨
③2次3次14吨
④1次5次14吨
⑤0次7次14吨
答:大车运3次小车运1次或大车运2次小车运3次或大车运1次小车运5次或小车运7次都能恰好运完这些水果。
【点睛】
根据已知条件和数量关系将所有可能的方案一一列举出来,然后再从各种方案中选择最优方案。
31.220厘米
【分析】
如图,分别向左、向右、向上、向下平移,可以得到一个正方形,计算正方形的周长,即为原图形的周长。
【详解】
如图所示:
÷=(厘米)
1025
=+
1045
=(厘米)
55
⨯=(厘米)
554220
答:周长是220厘米。
【点睛】
本题考查的是巧求周长,平移法是求解不规则图形的周长最常用的方法。
32.120厘米
【分析】
如图,大正方形的边长是小正方形边长的2倍,小正方形边长是15厘米,大正方形边长是30厘米,大正方形周长是120厘米。
【详解】
如图所示:
÷=(厘米)
60415
⨯=(厘米)
15230
⨯=(厘米)
304120
答:大正方形的周长是120厘米。
【点睛】
把大正方形切成4个小长方形,需要切两刀,增加4条边长,也可以根据这一点求解。
33.24厘米
【分析】
如图,把两个大小相同的正方形拼成一个长方形,周长减少了两个边长,求出正方形边长是6厘米,那么一个正方形的周长是24厘米。
【详解】
如图所示:
÷=(厘米)
1226
⨯=(厘米)
6424
答:原来一个正方形的周长是24厘米。
【点睛】
在平面几何中,每拼接一次,减少两条边,在立体几何中,每拼接一次,减少两个面。
34.32厘米;24厘米 【分析】
剪下的最大的正方形的边长是8厘米,剩下的长方形的长是8厘米,宽是4厘米。
【详解】
8432⨯=(厘米) 1284-=(厘米)
()842+⨯
122=⨯ 24=(厘米)
答:最大的正方形的周长是32厘米;剪后余下部分的周长是24厘米。
【点睛】
类似于木桶原理,这里最大的正方形的边长取决于长方形的宽。
35.40厘米 【分析】
正方形的边长是16厘米,即小长方形的长是16厘米,小长方形的宽是4厘米。
【详解】
64416÷=(厘米) 1644÷=(厘米)
()1642+⨯
202=⨯ 40=(厘米)
答:长方形周长是40厘米。
【点睛】
本题主要是考查长方形和正方形的周长公式,()2=+⨯长方形周长长宽, 4=⨯正方形周长边长。
36.7600元 【分析】
最终剩余的800元相当于是余下的钱的一半少300元,那么余下的钱的一半是1100元,那么余下的钱是2200元;2200元相当于是剩下钱的一半多300元,余下的钱是1900元,那么剩下的钱是3800元;3800元是总数的一半,求得月薪是7600元。
【详解】
8003001100+=(元) 110022200⨯=(元) 22003001900-=(元) 190023800⨯=(元) 380027600⨯=(元)
答:这位青年月薪是7600元。
【点睛】
本题考查的是还原问题,倒推法是求解还原问题最常用的方法。
37.320个
【分析】
最后剩的65个是上午卖完后剩下的一半少10个,那么上午卖完后剩下的一半是75个,上午卖完后剩下150个;这150个是总数的一半少10个,那么总数的一半是160个,总数是320个。
【详解】
+=(个)
651075
⨯=(个)
752150
+=(个)
15010160
⨯=(个)
1602320
答:李奶奶原来有鸡蛋320个。
【点睛】
求解还原问题时,需要从后往前进行倒推,每一步变为原来的逆运算。
38.40个
【分析】
最后剩的10个相当于是第一次卖完后剩下的一半,那么第一次卖完后剩下的一半是20个;20个相当于是总数的一半,总数是40个。
【详解】
⨯=(个)
10220
⨯=(个)
20240
答:原有西瓜40个。
【点睛】
求出总数后,可以按照正向的过程进行验算,以确保结果的准确性。
39.(1)
(3)从C站到E站的路程长,长536千米
【分析】
(1)B站到C站的里程=A站到C站的里程-A站到B站的里程;C站到D站的里程=A站到D站的里程- A站到C站的里程;D站到E站的里程=A站到E站的里程-A站到D站的里程,据此代入数据作答即可.
(2)从B站到E站一个来回的距离=(A站到E站的里程- A站到B站的里程)×2,据此代入数据作答即可;
(3)C站到E站的里程=A站到E站的里程-A站到C站的里程,B站到D站的里程=A站到D站的里程-A站到B站的里程,哪个数大说明哪段路长,长出的千米数=远的那段路程的长度-短的那段路程的长度,据此代入数据作答即可.
【详解】
(1)B站﹣C站:322﹣164=158(千米),
C站﹣D站:448﹣322=126(千米),
D站﹣E站:1142﹣448=694(千米),
(2)(1142﹣164)×2
=978×2
=1956(千米)
答:从B站到E站一个来回有1956千米.
(3)C站﹣E站:1142﹣322=820(千米)
B站﹣D站:448﹣164=284(千米)
820﹣284=536(千米)
答:从C站到E站的路程长,长536千米.
40.中午12时不能到达乙地,距乙地还有100千米
【分析】
根据题意,假设中午12时能到达,到达的时刻-出发的时刻=经过的时间,根据速度×时间=路程,即可求出火车行驶的距离,若行驶距离小于两地距离,则中午12时不能到达,再用两地距离-行驶距离=距乙地还有多少千米。
代入数据计算即可。
【详解】
如果中午12时能到,则经过时间为5小时。
路程:150×5=750(千米)
750<850,故不能到达
850-750=100(千米)
答:中午12时不能到达乙地,距乙地还有100千米。
【点睛】
41.32分米
【分析】
根据题意,可得两次竹竿浸湿的部分是6×2=12(分米),然后根据竹竿只有一半还多4分米是干的,可得浸湿的部分有一半还少4分米;最后用12加上4,求出竹竿的一半是多少米,再乘以2,求出这根竹竿长多少分米即可.
【详解】
(6×2+4)×2
=(12+4)×2
=16×2
=32(分米)
答:这根竹竿的长度是32分米.
【点睛】
解答此题的关键是判断出浸湿的部分有一半还少4分米
42.(1)租5大1小(答案不唯一)
(2)租5大1小,至少需要115元。
【分析】
(2)把每一种方案都计算一次,然后再找出最划算的即可。
【详解】
(1)租5大1小:5×8+5=45(人)
答:租5大1小。
(2)租5大1小:20×5+15×1=115(元)
答:租5大1小,至少需要115元。
【考点】
43.88人
【详解】
(13-2)×2×4=88(人)
44.37
【分析】
假设:被减数的十位是方框,减数的个位是圆圈,根据题意列出算式,推算出方框和圆圈各代表多少,进而推算出正确的被减数和减数,从而得出正确的得数。
【详解】
□8-2○=72,那么○=6,□=9,则正确的被减数是93,减数是56。
93-56=37
答:正确的得数是37。
【点睛】
准确找出被减数的十位和减数的个位上的数字是解答此题的关键。
45.546元
【分析】
根据题意可知,用1条裤子的钱乘2求出1双皮鞋的钱,再用1双皮鞋的钱乘2得到1件上衣的钱,再将三者的钱求和即可求出需要准备多少钱。
【详解】
78+78×2+78×2×2
=78+156+156×2
=78+156+312
=234+312
=546(元)
答:需要准备546元。
【点睛】
本题考查的是倍的认识和掌握,求一个数的几倍是多少用乘法计算,先计算出1双皮鞋的价钱,和1件上衣的价钱是关键。
46.48厘米
【分析】
如图,分别向上、向下、向左、向右平移,得到一个长是16厘米,宽是8厘米的长方形,长方形的周长也就是这个不规则图形的周长。
【详解】
如图所示:
⨯=(厘米)
428
⨯=(厘米)
4416
+=(厘米)
16824
⨯=(厘米)
24248
答:这个图形的周长是48厘米。
【点睛】
平移法求解不规则图形的周长,主要依据的是平移的性质,平移不改变图形的形状和大小。
47.(1)60厘米;(2)见详解;
【分析】
(1)根据图形可得,其周长是2条12厘米的边和6条6厘米的边长组合而成。
(2)图形组合的公共边越多,最终的周长越短,据此画图。
【详解】
(1)12×2+6×6
=24+36
=60(厘米)
答:这个图形的周长是60厘米。
(2)画图如下:
检验:12×4=48(厘米)
48厘米﹤60厘米;
答:符合题目要求,拼图正确。
【点睛】
本题考查长方形和正方形知识,掌握二者的特征和周长公式是解题的关键。
48.24米
【分析】
长方形是长是宽的3倍,把宽看成1份,长看成3份,那么长加宽是4份,而长加宽的和是8米,求得1份是2米,3份是6米,即正方形边长是6米,然后再计算正方形的周长。
【详解】
()
16231
÷÷+
=÷
84
=(米)
2
⨯=(米)
236
⨯=(米)
6424
答:这个正方形的周长是24米。
【点睛】
三个长方形的周长之和比正方形的周长多四条边长的长度,也可以根据这一点进行理解。
49.72厘米
【分析】
正方形的周长加上长方形的周长,正好是这根铁丝的长度,正方形边长为7厘米,长方形长为12厘米、宽为10厘米,分别求出正方形和长方形的周长,相加得到铁丝的长度。
【详解】
⨯=(厘米)
7428
+=(厘米)
121022
⨯=(厘米)
22244。