人教中考数学压轴题之锐角三角函数(中考题型整理,突破提升)含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)
【答案】22.4m
【解析】
【分析】
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.
【详解】
解:在Rt △AFG 中,tan ∠AFG =3,
∴FG =tan 3
AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =
AG CG , ∴CG =tan AG ACG
∠=3AG . 又∵CG ﹣FG =24m ,
即3AG ﹣3
=24m , ∴AG =123m ,
∴AB =123+1.6≈22.4m .
2.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
【答案】故大坝的截面的周长是(634+305+98)米,面积是1470平方米.
【解析】
试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.
试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,
∴AE=18米,
在RT△ADE中,AD=22
+=634米
DE AE
∵背水坡坡比为1:2,
∴BF=60米,
在RT△BCF中,BC=22
+=305米,
CF BF
∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米,
面积=(10+18+10+60)×30÷2=1470(平方米).
故大坝的截面的周长是(634+305+98)米,面积是1470平方米.
3.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,AP BP
=,求PD的长.
310
【答案】(1)证明见解析;(2
【解析】
【分析】
(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到AD AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;
(2)连接OP ,由AP BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED
=,然后根据勾股定理即可得到结果.
【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径,
∴AD AC =,
∴∠ACD =∠B =∠ADC ,
∵∠FPC =∠B ,
∴∠ACD =∠FPC ,
∴∠APC =∠ACF ,
∵∠FAC =∠CAF ,
∴△PAC ∽△CAF ;
(2)连接OP ,则OA =OB =OP =
1522AB =, ∵AP BP =,
∴OP ⊥AB ,∠OPG =∠PDC ,
∵AB 是⊙O 的直径,
∴∠ACB =90°,
∵AC =2BC ,
∴tan ∠CAB =tan ∠DCB =BC AC
, ∴
12
CE BE AE CE ==, ∴AE =4BE ,
∵AE+BE =AB =5, ∴AE =4,BE =1,CE =2,
∴OE =OB ﹣BE =2.5﹣1=1.5,
∵∠OPG =∠PDC ,∠OGP =∠DGE ,
∴△OPG ∽△EDG ,∴
OG OP GE ED =, ∴ 2.52
OE GE OP GE CE -==,
∴GE=2
3,OG=
5
6
,
∴PG=225
OP OG
6
+=,
GD=222 3
DE GE
+=,
∴PD=PG+GD=310
2
.
【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得
△OPG∽△EDG是解题的关键.
4.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.
(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;
(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.
【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3
BE=
【解析】
【分析】
(1)①补全图形即可,
②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=
2GH=26,得出
DF=2DG=43,在Rt△DCF中,由勾股定理得出CF=23,即可
得出结果.
【详解】
解:(1)①补全图形如图1所示,
②FG=DG,FG⊥DG,理由如下,
连接BG,如图2所示,
∵四边形ABCD是正方形,
∴∠ACB=45°,
∵EG⊥AC,
∴∠EGC=90°,
∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,
∴∠BEG=∠GCF=135°,
由平移的性质得:BE=CF,
在△BEG和△GCF中,
BE CF
BEG GCF EG CG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BEG≌△GCF(SAS),
∴BG=GF,
∵G在正方形ABCD对角线上,
∴BG=DG,
∴FG=DG,
∵∠CGF=∠BGE,∠BGE+∠AGB=90°,
∴∠CGF+∠AGB=90°,
∴∠AGD+∠CGF=90°,
∴∠DGF=90°,
∴FG⊥DG.
(2)过点D作DH⊥AC,交AC于点H.如图3所示,在Rt△ADG中,
∵∠DAC=45°,
∴DH=AH=2
在Rt △DHG 中,∵∠AGD =60°,
∴GH =3=32
3=6,
∴DG =2GH =26, ∴DF =2DG =43,
在Rt △DCF 中,CF =
()22436-=23,
∴BE =CF =23.
【点睛】
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.
5.如图,建筑物
上有一旗杆,从与相距的处观测旗杆顶部的仰角为,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:
,,)
【答案】旗杆
的高度约为.
【解析】
【分析】 在Rt △BDC 中,根据tan ∠BDC=
求出BC ,接着在Rt △ADC 中,根据tan ∠ADC=
=即可求出AB 的长度
【详解】
解:∵在Rt △BDC 中,tan ∠BDC=
=1,∴BC=CD= 40m 在Rt △ADC 中,tan ∠ADC==
∴tan50°=
=1.19 ∴AB 7.6m 答:旗杆AB 的高度约为7.6m.
【点睛】
此题主要考查了三角函数的应用
6.如图,在ABC △中,10AC BC ==,3
cos
5C =
,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .
()1当P 与边BC 相切时,求P 的半径;
()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;
()3在()2的条件下,当以PE 长为直径的
Q 与P 相交于AC 边上的点G 时,求相交
所得的公共弦的长. 【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】
【分析】 (1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45
,即可求解; (2)PD ∥BE ,则EB PD =BF PF ,即:2248805x x x y x
y --+=,即可求解; (3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解.
【详解】
(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,
连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409
; (2)在△ABC 中,AC=BC=10,cosC=
35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,
则BH=ACsinC=8,
同理可得:
CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=255x ,则BD=45-255
x , 如下图所示,
PA=PD ,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则cosβ=
5,sinβ=
5
,
EB=BDcosβ=(45-
25
x)×
5
=4-
2
5
x,
∴PD∥BE,
∴EB
PD
=
BF
PF
,即:2
2
4880
5
x x x y
x y
--+-
=,
整理得:y=()
2
5x x8x80
0x10
-+
<<;
(3)以EP为直径作圆Q如下图所示,
两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,
∵点Q时弧GD的中点,
∴DG⊥EP,
∵AG是圆P的直径,
∴∠GDA=90°,
∴EP∥BD,
由(2)知,PD∥BC,∴四边形PDBE为平行四边形,
∴AG=EP=BD,
∴5
设圆的半径为r,在△ADG中,
55
AG=2r,
5
5
51
+
,
则:
5
5
相交所得的公共弦的长为5
【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
7.关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ﹣sinαsinβ②
tan(α+β)=③
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)==﹣
(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.
【答案】建筑物CD的高为84米.
【解析】
分析:
如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,
∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.
详解:
如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,
CD=BE,∠ADE=60°,
∴在Rt△ABC和Rt△ADE
AB=BC•tan75°=42tan75°=,
AE=,
∴CD=AB﹣AE=(米).
答:建筑物CD的高为84米.
睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.
8.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)
(1)如果∠A=30°,
①如图1,∠DCB等于多少度;
②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;
(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)
【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=
2DE•tanα.理由见解析.
【解析】
【分析】
(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;
②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,
(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.
【详解】
(1)①∵∠A=30°,∠ACB=90°,
∴∠B=60°,
∵AD =DB ,
∴CD =AD =DB ,
∴△CDB 是等边三角形,
∴∠DCB =60°.
②如图1,结论:CP =BF .理由如下:
∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,
∴△CDB 为等边三角形.
∴∠CDB =60°
∵线段DP 绕点D 逆时针旋转60°得到线段DF ,
∵∠PDF =60°,DP =DF ,
∴∠FDB =∠CDP ,
在△DCP 和△DBF 中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩
,
∴△DCP ≌△DBF ,
∴CP =BF.
(2)结论:BF ﹣BP =2DEtanα.
理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,
∴DC =DB =AD ,DE ∥AC ,
∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,
∴∠BDC =∠A+∠ACD =2α,
∵∠PDF =2α,
∴∠FDB =∠CDP =2α+∠PDB ,
∵线段DP 绕点D 逆时针旋转2α得到线段DF ,
∴DP =DF ,
在△DCP 和△DBF 中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩
,
∴△DCP ≌△DBF ,
∴CP =BF ,
而 CP=BC+BP,
∴BF﹣BP=BC,
在Rt△CDE中,∠DEC=90°,
∴tan∠CDE=CE
DE
,
∴CE=DEtanα,
∴BC=2CE=2DEtanα,
即BF﹣BP=2DEtanα.
【点睛】
本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.
9.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)
【答案】潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用
BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD=
tan AD ACD
=
tan30
x
3x
在Rt△BCD中,BD=CD•tan68°,
∴325+x=3x•tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
10.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).
【答案】1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出
在Rt△ACD中,米,CD=2AD=3
米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是,
∴
∵
在Rt△ACD中, (米),∴CD=2AD=3米,
又
∴△BOD是等边三角形,
∴(米),
∴BC=BD−CD=4.5−3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.。