2022年京改版七年级数学下册第九章数据的收集与表示章节训练试题(含详细解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

京改版七年级数学下册第九章数据的收集与表示章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
a的平均数是5,则a的值()
1、如果一组数据3,7,2,,4,6
A.8 B.5 C.4 D.2
2、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的()
A.平均数B.众数C.中位数D.最高分与最低分的差
3、已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()
A.4,4 B.3.5,4 C.3,4 D.2,4
4、下列调查中,最适合采用全面调查(普查)方式的是()
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查D.对某班学生肺活量情况的调查
5、数据处理过程中,以下顺序正确的是()
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
6、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的()
A.平均数B.中位数C.众数D.方差
7、以下是某校九年级10名同学参加学校演讲比赛的统计表:
则这组数据的中位数和众数分别为()
A.90,89 B.90,90 C.90,90.5 D.9
8、某校航模兴趣小组共有50位同学,他们的年龄分布如表:
由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A.平均数、众数B.众数、中位数
C.平均数、方差D.中位数、方差
9、已知一组数据3,7,5,3,2,这组数据的众数为()
A.2 B.3 C.4 D.5
10、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是()
A.100分B.95分C.90分D.85分
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)
2、若一组数据85、x、80、90、95的平均数为85,则x的值为________.
3、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:
将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是____分.
4、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.
5、下列抽样调查较科学的有________.
①小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝;
②小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况;
③小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;
④小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查.
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.
答辩、笔试成绩统计表
根据以上信息,请解答下列问题.
(1)参加投票的共有________人,乙的得票率是________.
(2)补全条形统计图.
(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.
2、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)
(1)求这10名男同学的达标率是多少?
(2)这10名男同学的平均成绩是多少?
(3)最快的比最慢的快了多少秒?
3、一段时间内,一家鞋店销售了某种品牌的女鞋30双,各种尺码的销售量如下表所示:
(1)求出这30双女鞋尺码的平均数(结果精确到0.01cm)、中位数和众数;
(2)在(1)中求出的三个数据中,你认为鞋店老板最感兴趣的是哪一个?说说你的理由.
4、某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下:
(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;
(2)请你将表格补充完整;
(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.
5、为响应“双减”政策,老师们都精心设计每天的作业,兴华学校调查了部分学生每天完成作业所用
时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:
(1)将条形统计图补充完整;
(2)抽查学生完成作业所用时间的众数是______;
(3)求所有被抽查学生完成作业所用的平均时间.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据平均数的计算公式计算即可;
【详解】
∵数据3,7,2,,4,6
a的平均数是5,
∴37246
5
6
a
+++++
=,
∴8
a=;故选A.【点睛】
本题主要考查了平均数的计算,准确计算是解题的关键.
2、C
【解析】
【分析】
根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
3、C
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这组数据从小到大排列:1,2,3,4,4,
最中间的数是3,
则这组数据的中位数是3;
4出现了2次,出现的次数最多,则众数是4;
故选:C.
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
4、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
6、B
【解析】
【分析】
由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数.
故选:B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
7、B
【解析】
【分析】
先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.
【详解】
在这一组数据中90是出现次数最多的,故众数是90,
而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,
那么由中位数的定义可知,这组数据的中位数是90.
【点睛】
本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.
8、B
【解析】
【分析】
根据众数、中位数的定义进行判断即可.
【详解】
解:一共有50人,中位数是从小到大排列后处在第25、26位两个数的平均数,而13岁的有5人,14岁的有23人,因此从小到大排列后,处在第25、26位两个数都是14岁,因此中位数是14岁,不会受15岁,16岁人数的影响;
因为14岁有23人,而13岁的有5人,15岁、16岁共有22人,因此众数是14岁;
故选:B.
【点睛】
此题考查应用统计量解决实际问题,正确掌握众数的定义,中位数的定义是解题的关键.
9、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
10、C
【解析】
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.【详解】
解:∵这组数据的平均数数是90,
∴1
4
(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
二、填空题
1、样本
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.
【详解】
解:1500名考生的数学成绩是总体的一个样本,
故答案为:样本
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.
2、75
【解析】
【分析】
只要运用求平均数公式即可求出.
【详解】
由题意知,1
5
⨯(85+x+80+90+95)=85,
解得x=75.
故填75.
【点睛】
本题考查了平均数的概念.熟记公式是解决本题的关键.
3、78
【解析】
【分析】
根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.
【详解】
解:根据题意,该应聘者的总成绩是:
532
70908078
101010
⨯+⨯+⨯=(分)
故答案为78
【点睛】
此题考查加权平均数,解题的关键是熟记加权平均数的计算方法.
4、95
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将这组数据从小到大排列得:70,78,85,95,98,127,191,
中间位置的数为:95,所以中位数为95.
故答案为:95.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
5、①④.
【解析】
【分析】
根据抽样调查的方式逐个分析即可
【详解】
小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝,故①的调查方法合适,符合题意;
琪为了了解某市2007年的平均气温,应该查询每个月的气温情况,故②的调查方法不科学,不符合题意;
小明为了了解初中三个年级学生的平均身高,应该在七、八、九年级各抽一个班学生做调查,故③的调查方法不科学,不符合题意;
小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查,故③的调查方法符合题意.
综上所述,符合题意的有①④.
故答案为①④.
【点睛】
本题考查了抽样调查,理解抽样调查的方式是解题的关键.
三、解答题
1、(1)600;36%;(2)见解析;(3)乙当选
【解析】
【分析】
(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;
(2)求出丙的人数,补全图(2)的条形统计图;
(3)由题意可分别求得三人的得分,比较得出结论.
【详解】
解:(1)参加投票的人数20434%600
=÷=,
乙的得票率134%30%36%
=--=.
故答案为:600;36%;
(2)丙的得票数600204216180
=--=,补全的条形统计图见下图所示:
(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:
x=⨯+⨯+⨯=
950.4800.42040.2110.8
(分);

x=⨯+⨯+⨯=
880.4860.42160.2112.8
(分);

x=⨯+⨯+⨯=
860.4900.41800.2106.4
(分).

因为112.8110.8106.4
>>,所以乙当选.
【点睛】
本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键.
2、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒
【解析】
【分析】
(1)求这10名男同学的达标人数除以总人数即可求解;
(2)根据10名男同学的成绩即可求出平均数;
(3)分别求出最快与最慢的时间,故可求解.
【详解】
解(1)从记录数据可知达标人数是7
∴ 达标率=7÷10×100%=70%
(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)
∴这10名男同学的平均成绩是15.1秒
(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)
17-13.6=3.4(秒)
∴最快的比最慢的快了3.4秒.
【点睛】
此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.
3、(1)这30双女鞋尺码的平均数、中位数和众数分别是23.57cm,23.5сm,23.5сm;(2)众数,理由见解析
【解析】
【分析】
(1)把给出的这30个数据加起来再除以30就是这30双女鞋尺码的平均数;把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于最中间的两个数的平均数就是这30双女鞋尺码的中位数;这组数据中出现次数最多的那个数就是这30双女鞋尺码的众数;
(2)鞋店老板最关心哪种尺码的鞋子最畅销,所关心的即为众数.
【详解】
解:(1)(22×1+22.5×2+23×5+23.5×11+24×7+24.5×3+25×1)÷30
=707÷30
≈23.57(cm),
∴这30双女鞋尺码的平均数约为23.57cm;
∵共有30个数据,
∴中位数为由小到大的排列中第15个和第16个的平均数,
由表格可知:第15个和第16个数均为23.5,
∴这30双女鞋尺码的中位数为(23.5+23.5)÷2=23.5(cm);
由表格可知:此组数据中出现次数最多的是23.5,
∴这30双女鞋尺码的众数是23.5cm,
答:这30双女鞋尺码的平均数、中位数和众数分别是23.57cm,23.5сm,23.5сm;
(2)对鞋店老板而言,他需要考虑各种尺码鞋子的进货数量.大多数人的鞋子尺码所对应的货就要多进,少数人鞋子尺码对应的货就要少进些,因此,在这三个数据中,鞋店老板最感兴趣的是众数.
【点睛】
此题主要考查了求平均数、中位数、众数的方法的运用,熟练掌握平均数、中位数和众数的定义是解题的关键.
4、(1)17人;(2)①88;②85;③90;(2)答案不唯一,见解析
【解析】
【分析】
(1)根据(1)班求得参加竞赛的人数,再根据(2)班成绩在C级以上的比重求解即可;
(2)根据众数、中位数以及平均数的方法,求解即可;
(3)从平均数、众数以及中位数等方面对两个班进行评价即可.
【详解】
解:(1)参加竞赛的人数有:592420
+++=(人)
初三(2)班成绩在C级以上所占的比重为115%85%
-=
则人数有85%2017
⨯=(人)
故答案为17人
(2)根据题意可得:(2)班的平均成绩为
2015%702035%80205%902045%1008820
⨯⨯+⨯⨯+⨯⨯+⨯⨯= 70分的人数有20173-=人
80分的人数有2035%7⨯=人
90分的人数有205%1⨯=人
参加竞赛的人数为20人,从小到大取第10、11位的成绩,其平均数为
8090852
+= ∴(2)班的中位数为85
观察统计图可以得出,(1)班的80分的人数有9人,最多,∴众数为90
故答案为①88;②85;③90;
(3)角度1:因为(2)班成绩的平均数、众数比(1)班高,
所以(2)班的成绩比(1)班好
角度2:因为(1)班成绩的中位数比(2)班高,所以(1)班的成绩比(2)班好
【点睛】
此题考查了统计的综合应用,涉及了统计量的计算以及统计量的意义,解题的关键是从统计图中获取到相关的量.
5、(1)见解析;(2)1.5;(3)1.32小时
【解析】
【分析】
(1)根据每天完成作业所用的平均时间为1小时的占30%,共30人,即可求得总人数;根据总数减去其他三项即可求得每天完成作业所用的平均时间为1.5小时的人数进而补充条形统计图;
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多;
(3)根据求平均数的方法,求得100个完成作业所用时间的平均数
【详解】
(1)总人数为:3030%100÷=(人);
每天完成作业所用的平均时间为1.5小时的人数为:10012301840---=(人)
补充条形统计图如下:
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多,故学生每天完成作业所用的平均时间的众数为1.5,
(3)被抽查学生完成作业所用的平均时间为
()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=小时 【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、平均数,从统计图中获取信息是解题的关键.。

相关文档
最新文档