初中数学八年级下册《15.1函数》PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1函数
例1 用等式填空
(1)圆的半径为r,则它的面积s为 (2)汽车的速度为每小时60千米,
则t小时的路程s为
函数的概念:一般地,在一
个变化过程中,有两个变量x 和y,对于变量x的每一个值, 变量y都有唯一确定的值和它 对应,我们就把x称为自变量, y称为因变量,y是x的函数。
50 例2 在公式s=vt中,当s=50时,则在t= v 中, (1)常量是 ,变量是
一般地说,一个函数的自变量允许取
值例的3.范求围下叫列做函这学科网数个的函定数义的定域义:域。
1. y 3x2 2x 4
x 1,
2.
x 2
x 1
学科网
6. y x0
函数关系式中定义域即:使函数关 系式有意义的自变量的取值范围。
利用函数的解学科网析式既可以由定义域 内的任意一个自变量的值求出相应 的函数值,也可以由一个确定的函 数只求出相应的自变量的值。
例:已知两个函数的解析式分别为
y 2x 5 , y 1 x2 ,
学科网
2
当x=-4时,分别求出这两个函数的 函数值;
当这两个函数的函数值都为y=18时, 自变量x分别取什么值?
函数关系式中定义域的确定方法:
1.当关系式为.整式时,定义域为全体 实数;
2.当关系式为.分式时,定义域为使分 母不为零的实数;
3.当关系式为.二次根式时,定义域为 被开方数不小于零的实数;
用含有表示自变量的字母的代数式表 示因变量的式子学科网 叫做函数的解析式。
即函数的解析式就是用关于表示自变 量的字母的式子表示函数的等式。 1.解析法:用解析式表示函数的 方法称为解析法。
(2) 是 的函数
例3 判断下列关系是不是函数关系
(1)长方形的宽一定时,其长与面积
(2)等腰三角形的底边长与面积
(3)某人的年龄与身高
(4)关系式 y =x中的x与y
对函数概念的理解应抓住以下 三点: ①有两个变量
②一个变量的数值随着另一个 变量的数值变化而变化
③自变量每确定一个值,函数
函数定义域的概念
相关文档
最新文档