九年级数学上期中考试复习
江苏省南京市金陵中学河西分校2024-2025学年九年级上学期数学期中复习试卷
![江苏省南京市金陵中学河西分校2024-2025学年九年级上学期数学期中复习试卷](https://img.taocdn.com/s3/m/6792bf06cbaedd3383c4bb4cf7ec4afe04a1b128.png)
江苏省南京市金陵中学河西分校2024-2025学年九年级上学期数学期中复习试卷一、单选题1.已知一组数据3,7,5,3,2,这组数据的众数为()A .2B .3C .4D .52.已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为10cm ,直线l 与圆O 的位置关系为()A .相交B .相切C .相离D .无法确定3.用配方法解方程241x x -=时,配方所得的方程为()A .()221x +=B .()221x -=C .()225x +=D .()225x -=4.下列说法中,正确的有()(1)长度相等的弧是等弧;(2)三点确定一个圆;(3)平分弦的直径垂直于弦;(4)三角形的内心到三角形三边的距离相等A .4个B .3个C .2个D .1个5.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A .2πB .πC .12πD 6.如图,ABCD 中,AD BC ,8,4,60AD CD B ==∠=︒,若点P 在线段BC 上,且ADP 为直角三角形,则符合要求的点P 的个数有()A .4个B .3个C .2个D .1个二、填空题7.某招聘考试分笔试和面试两项,笔试成绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是分.8.设12,x x 是方程240x x m -+=的两个根,且12x x +-21x x =1,则m=.9.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.10.如图,在扇形OAB 中,C 为 AB 上的点,连接AC 、BC ,若∠ACB =2∠O ,则∠O 的度数为°.11.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,OC ⊥OA ,OC 交AB 于点D .若∠BDC =68°,则∠ABC 的度数为°.12.如图,在O 的内接五边形ABCDE 中,210B E ∠+∠=︒,则CAD ∠=°.13.⊙O 是△ABC 的外接圆,连接OB ,∠ABO =38°,则∠C 的度数为.14.如图,AB BC CD DA 、、、都是O 的切线,2,8AD AB CD =+=,则BC =.15.若关于x 的一元二次方程20ax bx c ++=(a 、b 、c 都为有理数)的一个解是14x =-,则方程的另一个解是.16.如图,在矩形ABCD 中,4,6AD AB ==,P 为CD 的中点,连接BP .在矩形ABCD 内部找一点E ,使得BEC BPC ∠=∠,则线段DE 的最小值为.三、解答题17.解下列方程:(1)x 2﹣6x ﹣5=0;(2)3x (x +2)=2x +418.某品牌汽车2月份至6月份销售的月增量(单位:万辆)折线统计图如下.注:月增量=当月的销售量一上月的销售量,月增长率100⨯且的销售量=上月的销售量%,例如,8月份的销售量为2万辆,9月份的销售量为2.4万辆,那么9月份销售的月增量为2.420.4-=(万辆),月增长率为20%.(1)下列说法正确的是()A .2月份的销售量为0.4万辆B .2月份至6月份销售的月增量的平均数为0.26万辆C .5月份的销售量最大D .5月份销售的月增长率最大(2)6月份的销售量比1月份增加了多少万辆?(3)2月份至4月份的月销售量持续减少,你同意这种观点吗?说明理由.19.如图,AB 是⊙O 的直径,AC 、BC 分别交⊙O 于点D 、E ,连DE ,AD =BE .求证:(1)DE ∥AB ;(2)DC =EC .20.如图,在一个长16m ,宽12m 的矩形花圃外围铺设等宽的小路,且铺设小路的面积为花圃面积的三分之二,求小路的宽度.21.如图,ABC V 中,AB AC =,以A 为直径的O 交BC 于D ,交AC 于E .(1)求证:BD CD =;(2)若50BAC ∠=︒,求EBC ∠和EDC ∠的度数.22.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.23.已知:BC 是O 的直径,A 是O 上一点,AD BC ⊥,垂足为D , AB AE =,BE 交A 的延长线于点F ,延长BE AC 、交于点G .求证:BF FG =.24.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AD 是⊙O 的弦,AD ∥OC ,延长CD 、BA 相交于点E .(1)求证CE 是⊙O 的切线;(2)若A 恰好是OE 的中点,AD =3,则阴影部分的面积为.25.某商店经销的某种商品,每件成本价为40元,经市场调研,售价为50元/件,可销售150件;销售单价每提高1元,销售量将减少5件.如果商店将一批这种商品全部售完,盈利了1500元,问:该商店销售了这种商品多少件?每件售价多少元?26.已知点A 在O 上.(1)在图①中,点B 在O 上,用尺规作图:在AB上找点C ,使得ABC 为等腰三角形;(2)用无刻度的直尺在O 上画出B 、C 两点,分别满足下列要求:①在图②中,使得ABC 为直角三角形;②在图③中,使得ABC 为等腰三角形,且AB AC =.27.在一次数学探究活动中,王老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…小华画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决:①该弧所在的圆的半径长为_____;②ABC V 面积的最大值为_____.(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形的外部,我们记为P ,请你利用图1证明45BPC ∠<︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长4AB =,BC =M 在直线CD 的左侧,且30DMC ∠=︒.①用尺规作出点M 的运动路径,并求线段MB 长的最小值;②过点M 作MH CD ⊥,垂足为H ,若MCD S △不小于,则DH 长的范围是.。
黑龙江省哈尔滨第一一三中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)
![黑龙江省哈尔滨第一一三中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)](https://img.taocdn.com/s3/m/0ccaa35630126edb6f1aff00bed5b9f3f80f7277.png)
.如图所示的由六个小正方体组成的几何体的俯视图是().....如图,点A⊙O上的三点,已知∠AOB=100∘的度数是(C.50∘C.213D.,则下列比例式正确的是(C.AEEC =BFFC图象的一部分,图象过点③+c=0;④abc<.其中正确的个数是(C.3D.21~22题各7分,23~24题各,其中x=3tan30∘++1的方格纸中,有线段AB和线段为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,为底边画出等腰三角形CDK,点K在小正方形的顶点上,且FK,请直接写出线段FK的长x的图象与反比例函数的图象交于.如图,在平面直角坐标系中,已知正比例函数y=13)如图1,求证:∠EAC=∠ABO;)如图2,延长AE交⊙O于点D,连接OD交BC于点F,CD=CF,求证:AB=AD;)在(2)的条件下,延长BC至点I,连接AI交⊙O于点H,连接CH、DH、DI,连接AO并延长交=3OF,∠BAI=2∠HDI,CI=5,求⊙O的半径长..如图在平面直角坐标系中抛物线y=ax2+bx+4经过点A(−2,0)、B(4,0),点D为抛物线顶点.)如图1,求a、b的值;)如图2,横坐标为t的点P在第一象限对称轴右侧抛物线上,连接PA、PD、AD,△PAD的面积为S 与t之间的函数关系式,直接写出自变量t的取值范围;)在(2)的条件下,AP交y轴于点E,连接BC,点F在线段BC上,且在PE上方,连接PF、EF,∠PFE 90∘,S△PEF=9AE2,点Q在第四象限抛物线上,连接AQ,DQ,∠AQD=2∠PDQ,求线段PQ的长.16=1a,⇒a=−6.∴3≠0)把A(−6,−2)代入∵C(4,1),∴PC=4−1=3.OD=3∴S△POC=1/2PC×OD=1/2×2×2=9/224.(1)证明:∵CE,CF分别平分∠ACB,∠ACD∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180∘,∴2∠1+2∠3=180∘∴∠1+∠3=90∘,∵EF//BC∴∠5=∠2=∠1,∴EO=OC∵Rt△ECF中,∠5+∠6=90∘∵∠1+∠3=90,∴∠1=∠5,∴∠3=∠6∴OC=OF,∵EO=OC,OC=OF,∴EO=OF(2)当O运动到AC中点时,四边形AECF是矩形∵O为AC中点,∴AO=OC∵EO=OF,∴四边形AECF是平行四边形∵∠ECF=∠1+∠3=90∘∴平行四边形AECF是矩形25.(1)解:y=−10x+520,(2)(x−20)(−10x+520)=2520解得,x1=38,x2=34答:略(3)设,获利w元。
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)
![沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)](https://img.taocdn.com/s3/m/4c7f01fbd4bbfd0a79563c1ec5da50e2524dd1a3.png)
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)AC51.将抛物线y=x^2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为哪一个?A。
y=(x-1)^2+2B。
y=(x+1)^2+2C。
y=(x-1)^2-2D。
y=(x+1)^2-22.已知二次函数y=ax^2-1的图象经过点(1,-2),那么a的值为多少?A。
a=-2B。
a=2C。
a=1D。
a=-13.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是哪一个?A。
b=a*(3/2)B。
b=a*(2/3)C。
b=-a*(3/2)D。
b=-a*(2/3)4.在四边形ABCD中,若AB=a,AD=b,BC=c,则CD等于哪一个?A。
a-b-cB。
-a+b-cC。
a-b+cD。
-a+b+c5.在直角三角形ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于哪一个?A。
3sinαB。
3cosαC。
sinα/3D。
cosα/36.在直角三角形ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为多少?A。
3/4B。
4/3C。
5/3D。
3/57.在直角三角形ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是哪一个?A。
sinA=3/2B。
tanA=1/2C。
cosB=3/2D。
tanB=3/48.抛物线y=-3x^2+2x-1的图象与x轴交点的个数是多少?A。
没有交点B。
只有一个交点C。
有且只有两个交点D。
有且只有三个交点9.关于二次函数y=(x+1)^2的图象,下列说法正确的是哪一个?A。
开口向下B。
经过原点C。
对称轴右侧的部分是下降的D。
顶点坐标是(-1,0)10.在三角形ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是哪一个?A。
DE^2/BC^2=3/2B。
数学九年级期中上册知识点
![数学九年级期中上册知识点](https://img.taocdn.com/s3/m/bca5634459fafab069dc5022aaea998fcc2240b4.png)
数学九年级期中上册知识点【导语】学习是一架保持安稳的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳一定无获!要想获得理想的成绩,勤奋至关重要!只有勤奋学习,才能成绩美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永久鼓励我们不断寻求、不断探索。
有书好好读,有书赶快读,读书的时间不多。
只要我们刻苦拼搏、一心向上,就一定能获得令人中意的成绩。
下面是作者为您整理的《数学九年级期中上册知识点》,仅供大家参考。
1.数学九年级期中上册知识点一元二次方程1、认识一元二次方程只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的情势,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一样情势,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程①配方法配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一样情势;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的情势;两边开方求其根。
3、用公式法求解一元二次方程②公式法(注意在找abc时须先把方程化为一样情势)4、用因式分解法求解一元二次方程③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)5、一元二次方程的根与系数的关系①根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。
②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:③一元二次方程的根与系数的关系的作用:已知方程的一根,求另一根;不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:已知方程的两根x1、x2,可以构造一元二次方程:x2-(x1+x2)x+x1x2=0已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根6、运用一元二次方程在利用方程来解运用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情形只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面推敲);寻觅等量关系(一样地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
河北省保定市2024届九年级上学期期中考试数学复习试卷(含解析)
![河北省保定市2024届九年级上学期期中考试数学复习试卷(含解析)](https://img.taocdn.com/s3/m/1fc658b2760bf78a6529647d27284b73f342367a.png)
2023—2024学年第一学期期中考试九年级数学试题注意事项:考试时间120分钟,满分120分.一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 方程的解是()A. B. C. D. ,解析:解:,解得,,故选:C.2. 已知:如图,正方形网格中,如图放置,则的值为()A B. 2 C. D.解析:解:由网格图可得:CD=2,OD=1,则OC=,,故选D.3. 如图,在6×6的菱形网格中,连结两网格线上的点A,B,线段AB与网格线的交点为M,N,则AM:MN:NB为()A. 3:5:4B. 1:3:2C. 1:4:2D. 3:6:5解析:解:如图,∵AE∥MF∥NG∥BH,∴AM:MN:BN=EF:FG:GH=1:3:2故选:B.4. 一个不透明的盒子中装有红、黄两种颜色的小球共10个,它们除颜色外其他都相同.小明多次摸球后记录并放回小球重复试验,发现摸到红色小球的频率稳定在0.4左右,由此可知盒子中黄色小球的个数可能是( )A. 3B. 4C. 5D. 6解析:解:设袋中有黄色小球x个,由题意得,解得:.故选:D.5. 如图,在坡度为的山坡上种树,如果相邻两树之间的水平距离是4米,那么斜坡上相邻两树的坡面距离是()A. 米B. 米C. 4米D. 米解析:解:如图,构造直角三角形,在中,由题意可知,,∵米,米,由勾股定理得:(米).故选:B.6. 若点、都在反比例函数的图象上,则有()A. B. C. D.解析:解:∵反比例函数y=中k<0,∴函数图象的两个分支位于二四象限,且在每一象限内y随x的增大而增大,∵﹣2<﹣1<0,∴y2>y1>0,∵1>0,∴y3<0,∴y2>y1>y3.故选:C.7. 大自然巧夺天工,一片小枫叶也蕴含着“黄金分割”,如图,P是线段的黄金分割点,且,,则的长约为()A. B. C. D.解析:解:为的黄金分割点,,故选:B .8. 如图,点P 是反比例函数图象上的一点,垂直y 轴,垂足为点A ,垂直x 轴,垂足为点B .若矩形的面积为6,则k 的值是( )A. 3B. -3C. 6D. -6解析:∵矩形的面积为6,∴,∵反比例函数的图象过第二象限,∴,∴;故选:D .9. 根据下列表格的对应值:判断方程一个解的取值范围是( )A. B.C.D.解析:解:由题意得:当时,,当时,,∴方程一个解x 的取值范围为.故选:C .10. 如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与相似的是( )A. B. C. D.解析:根据题意得:,,,,A 、三边之比为,图中的三角形(阴影部分)与相似;B 、三边之比,图中的三角形(阴影部分)与不相似;C 、三边之比为,图中的三角形(阴影部分)与不相似;D 、三边之比为,图中的三角形(阴影部分)与不相似.故选:A .11. 已知方程可以配方成,则( )A. 1B. -1C. 0D. 4解析:解:由(x +m )2=3,得:x2+2mx+m2﹣3=0,∴2m=4,m2﹣3=n,∴m=2,n=1,∴(m﹣n)2015=1,故选:A.12. 设a,b是方程的两个实数根,则的值是()A. 2021B. 2020C. 2019D. 2018解析:解:∵a,b是方程的两个实数根,∴,,即,∴.故选:C.13. 如图2是图1中长方体的三视图,若用S表示面积,,,则().A. B. 20 C. D. 9解析:解:∵S主=5x,S左=4x,且主视图和左视图的宽为x,∴俯视图的长为5,宽为4,则俯视图的面积S俯=5×4=20,故选:B.14. 解是的一元二次方程是()A. B. C. D.解析:解:A、因为,所以,故不符合题意;B、因为,所以,故不符合题意;C、因为,所以,故不符合题意;D、因为,所以,故符合题意;故选:D15. 反比例函数与一次函数(k为常数,且)在同一平面直角坐标系中的图象可能是()A. B. C. D.解析:解:当∴比例函数的图象在一、三象限,∴,∴一次函数的图象经过一、三、四象限,故A,B选项错误;当,则,∴反比例函数在二四象限,一次函数经过一、二、四象限,故C选项错误,D选项正确,故选:D.16. 对于一元二次方程,正确的结论是()①若,则;②若方程有两个不相等的实根,则方程必有两个不相等的实根;③若是一元二次方程的根,则.A. ①②B. ①③C. ②③D. ①②③解析:解:①若,则是原方程的解,即方程至少有一个根,由一元二次方程的实数根与判别式的关系与判别式的关系可知:,故①正确;②方程有两个不相等的实根,,,又方程的判别式为,,方程有两个不相等的实数根,故②正确;③若是一元二次方程的根,则根据求根公式得:或,或,,故③正确;综上,①②③正确.故选:D.二、填空题(本大题有3个小题,17、18每小题3分,19题每空2分,共12分,请把正确答案填在题中的横线上)17. 计算:tan60°﹣cos30°=_____.解析:根据特殊角的三角函数值,直接计算即可得tan60°﹣cos30°==.故答案为.18. 如图,在平面直角坐标系中,点、的坐标分别为、,点、的坐标分别为、.若线段和是位似图形,且位似中心在轴上,则位似中心的坐标为_____.解析:解:如图所示,连接与轴交于点,则点是位似中心,∵,,∴设所在直线的解析式为,∴,解得,,∴直线的解析式为,当时,,∴位似中心的坐标是,故答案为:.19. 如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.解析:解:(1)由图像可知T1(-16,1)又∵.函数()的图象经过T1∴,即k=-16;(2)由图像可知T1(-16,1)、T2(-14,2)、T3(-12,3)、T4(-10,4)、T5(-8,5)、T6(-6,6)、T7(-4,7)、T8(-2,8)∵过点∴k=-10×4=40观察T1~T8,发现T5符合题意,即m=5;(3)∵T1~T8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于的两侧,k必须满足-36<k<-28∴k可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20. 解方程:(1);(2);(3);(4).【小问1解析】解:,,或,解得,,;【小问2解析】解:,,,或,解得,,;【小问3解析】解:,,∴,解得,;【小问4解析】解:,,,或,解得,.21. 如图,在网格图中(小正方形的边长为1),的三个顶点都在格点上.(1)以点O为位似中心,将扩大为原来的2倍,得到,点B的对应点在第一象限;(2)的内部一点M的坐标为,写出点在中的对应点的坐标;(3)直接写出的面积是多少.【小问1解析】如图所示:【小问2解析】解:根据“以点O为位似中心,将扩大为原来的2倍,得到,点B的对应点在第一象限”可知,横纵坐标都变为原来的2倍且符号相反,∴;【小问3解析】解:的面积:.22. 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【小问1解析】解:根据题意得:(名).答:在这项调查中,共调查了150名学生.【小问2解析】本项调查中喜欢“立定跳远”的学生人数是;(名),所占百分比是:,补充两个统计图如下:【小问3解析】用,,分别表示三个男生,用,分别表示两个女生,画树状图如下:由图知共有20种情况,同性别学生的情况是8种,故:刚好抽到同性别学生的概率是.23. 淇淇和嘉嘉在习了利用相似三角形测高之后分别测量两个旗杆高度.(1)如图1所示,淇淇将镜子放在地面上,然后后退直到她站直身子刚好能从镜子里看到旗杆的顶端E,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,已知淇淇的身高是1.54m,眼睛位置A距离淇淇头顶的距离是4cm,求旗杆DE的高度.(2)如图2所示,嘉嘉在某一时刻测得1 m长的竹竿竖直放置时影长2m,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10m,落在斜坡上的影长为m,∠DCE=45°,求旗杆AB的高度?解析:解:(1)由题意可知:AB=1.54-0.04=1.5(m);BC=0.5m;CD=4m∵ΔABC∽ΔEDC∴即∴m答:DE的长为12m.(2)延长AD交BC的延长线于点F,过点D作DE⊥BC于点E∵CD=m,∠DCE=45°∴DE=CE=2m∵同一时刻物高与影长成正比∴∴EF=2DE=4m∴BF=EF+CE+BC=16(m)∴AB=FB=8(m)答:旗杆的高度约为8m.24. 如图,在平面直角坐标系中,一次函数与反比例函数交于第一象限内A,两点(B在A右侧),分别交x轴,y轴于C,D两点.(1)求k和b的值;(2)求点A的坐标;(3)在y轴上是否存在一点P,使以A,D,P为顶点的三角形与相似?若存在,求出点P的坐标.若不存在,请说明理由.【小问1解析】解:∵一次函数与反比例函数交于点,∴,解得:,∴,;【小问2解析】由(1)知一次函数的解析式为,反比例函数的解析式为,解方程组,解得:,,∴点的坐标为;【小问3解析】∵∵一次函数与轴,轴交于,两点,∴当时,,当时,,即:,,∴,,设,∵,当点在点上方时为钝角,显然不符合题意,则点在点下方,可知,①当时,,∵点的坐标为,∴,,∴点的坐标为;②当时,,∴,∵,,,,∴,解得,∴点的坐标为;综上,点的坐标为或.25. 某商场将进货价为30元的台灯以40元售出,1月份销售400个,2月份和3月份这种台灯销售量持续增加,在售价不变的基础上,3月份的销售量达到576个,设2月份和3月份两个月的销售量月平均增长率不变.(1)求2月份和3月份两个月的销售量月平均增长率;(2)从4月份起,在3月份销售量的基础上,商场决定降价促销.经调查发现,售价在35元至40元范围内,这种台灯的售价每降价元,其销售量增加6个.若商场要想使4月份销售这种台灯获利4800元,则这种台灯应降价多少元?【小问1解析】设2,3两个月的销售量月平均增长率为,依题意,得:,解得:(不符合题意,舍去).答:2,3两个月的销售量月平均增长率为.【小问2解析】设这种台灯每个降价元时,商场四月份销售这种台灯获利4800元,依题意,得:,整理,得:,解得(不符合题意,舍去),答:该这种台灯应降价2元.26. 问题提出(1)如图,在等腰直角中,,点D、E分别在边上,连接,有.求证:.问题探究(2)如图,将矩形沿折叠,使点D落在边的点F处,若,__________;变式拓展(3)如图,如果,将三角板的直角顶点E放在矩形纸片的边上移动,的长应为___________时,恰好存在两直角边所在的直线分别经过点A,D;问题解决(4)如图,菱形是一座避暑山庄的平面示意图,其中米,现计划在山庄内修建一个三角形花园,点P、Q分别在线段上,根据设计要求要使,且,问能否建造出符合要求的三角形花园,若能,请直接写出的长,若不能,请说明理由.解析:(1)证明:∵,∴,∵,∴,即,∵,,∴;(2)解:由矩形的性质可知,,,由折叠的性质可知,,,由勾股定理得,,∴,设,则,,由勾股定理得,,即,解得,,故答案为:;(3)解:由矩形的性质可知,,由题意知,,∴,即,∵,,∴,∴,即,整理得,,解得,或,故答案为:2或8;(4)解:能,;∵菱形,,∴,,,如图,在上截取,使,连接,则为等边三角形,∴,∵,∴,∵,,∴,∴,即,解得,,∵,∴,解得,,∴,如图,作的延长线于,∴,,∴,,∴,由勾股定理得,∴能,.。
上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)
![上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)](https://img.taocdn.com/s3/m/066e6d0b7f21af45b307e87101f69e314332fadc.png)
2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。
九年级数学上册期中复习知识点
![九年级数学上册期中复习知识点](https://img.taocdn.com/s3/m/c822dd879b89680202d8251e.png)
九年级数学上册期中复习知识点第一章 反比例函数(一)反比例函数 1.一般形式:(),也可以写成()的形式,注意:自变量x 的指数为,比例系数2.()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式; (二)反比例函数的图象与性质 1.函数解析式:()2.自变量的取值范围:3.图象: (1)图象的形状:双曲线,越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:自变量,函数图象与x 轴、y 轴无交点,两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,若(a ,b )在双曲线的一支上,(,)在双曲线的另一支上. 图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在 双曲线的另一支上.4、反比例函数y =kx(k ≠0)中比例系数k 的意义: (1)代数意义:双曲线上任一点的两坐标之积等于比例系数k , 即P (),b a 在双曲线y =kx上⇔k=xy (2)k 的几何意义: 如图1,设点P (a ,b )是双曲线上任意一点, 图1作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则则k S OAPB =矩 ,=AOP S ▲k S BOP 21▲=如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在 双曲线上,作QC ⊥PA 的延长线于C ,则有K S PQC 2▲=图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(三)反比例函数的应用 1、求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2、反比例函数与一次函数的联系.3、充分利用数形结合的思想解决问题.第二章 一元二次方程(一)一元二次方程1、只含有一个未知数且未知数的最高次数为2的整式方程,叫一元二次方程。
九年级上学期数学期中考试试卷及答案解析
![九年级上学期数学期中考试试卷及答案解析](https://img.taocdn.com/s3/m/58e344b23086bceb19e8b8f67c1cfad6195fe9da.png)
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
初三上册数学期中考试知识点
![初三上册数学期中考试知识点](https://img.taocdn.com/s3/m/a02d777cabea998fcc22bcd126fff705cd175c1e.png)
初三上册数学期中考试知识点1.初三上册数学期中考试知识点单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式公式I平方差公式a+ba—b=a^2—b^2两个数的和与这两个数的差的积等于这两个数的平方差。
2023-2024学年北师大新版九年级上册数学期中复习试卷(含答案)
![2023-2024学年北师大新版九年级上册数学期中复习试卷(含答案)](https://img.taocdn.com/s3/m/44a240c2c9d376eeaeaad1f34693daef5ef71387.png)
2023-2024学年北师大新版九年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一元二次方程x2+px+2p=0的一个根为2,则p的值为( )A.1B.2C.﹣1D.﹣22.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为( )米.A.6B.8C.9D.103.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率4.如图是某几何体的三视图,该几何体是( )A.正方体B.圆锥C.四棱柱D.圆柱5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )A.4B.C.4D.286.如图,矩形ABCD中,BD=2,AB在x轴上.且点A的横坐标为﹣1,若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为( )A.(2+,0)B.(2+1,0)C.(2﹣1,0)D.(2,0)7.下列一元二次方程中,无实数根的是( )A.x2﹣2x﹣3=0B.x2+3x+2=0C.x2﹣2x+1=0D.x2+2x+3=0 8.已知一元二次方程x2﹣8x+c=0有一个根为2,则另一个根为( )A.10B.6C.8D.﹣29.如图,EB为驾驶员的盲区,驾驶员的眼睛点P处与地面BE的距离为1.6米,车头FACD 近似看成一个矩形,且满足3FD=2FA,若盲区EB的长度是6米,则车宽FA的长度为( )米.A.2B.C.D.10.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则下列结论中:①BM=DM;②∠BEC=∠MDC=15°;③∠AMD的度数是75°;④△AMB≌△AMD≌△EMD.正确的有( )个.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.在△ABC中,点D,E分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么AC= .12.今年五月上旬我市空气质量指数如下表,省外某单位组织了一次退休职工到我市旅游3天,则他们在我市旅游3天时,空气质量都是优良(空气质量指数不大于100表示空气质量优良)的概率是 .日期12345678910空气质量指数304236588095701155610113.如图,小芸用灯泡O(看作一个点)照射一个矩形相框ABCD,在墙上形成矩形影子A'B'C'D'.现测得OA=20cm,OA'=50cm,相框ABCD的周长为36cm,则影子A'B'C'D'的周长为 cm.14.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是 m.15.如图,已知四边形ABCD为矩形,且AB=3,AD=4,将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',B'C与AD交于点O,且DO=B'O,则AO的长为 .三.解答题(共7小题,满分75分)16.用适当的方法解一元二次方程:(1)2x2﹣3x=2;(2)x2+6x﹣111=0.17.为推进社会主义新农村建设,东胜区某社区决定组建社区文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全社区范围内随机抽取部分居民进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“纸牌”所在扇形的圆心角的度数为 ;并补全条形统计图;(2)若在“纸牌、象棋、跳棋、军棋”这四个项目中任选两项组队参加元旦节庆典活动,请用列表法或画树状图的方法,求恰好选中“象棋、军棋”这两个项目的概率.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣3,2),B(1,5),C(3,4),画出△ABC,并画出以原点O为位似中心,将△ABC三条边放大为原来的2倍后的△A1B1C1.19.操作作图如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D在边AC上,请用圆规和直尺作菱形DEFG,使点E、F在边AB上,点G在边BC上(不写作法,但要保留作图痕迹).阅读理解我们把图①中的菱形DEFG称为△ABC的有一边平行于AB的内接菱形,简称AB类内接菱形.类似的可得到AB类内接矩形.若公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,求CD的长.深入探究(1)当CD长度满足什么条件时,可作2个AB类内接菱形DEFG?说明理由;(2)直接写出AB类内接菱形DEFG面积的最大值.20.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)直接写出:OA= ,OB= ;(2)若点E为x轴上的点,且△AOE∽△DAO.求此时点E的坐标.21.小琴的父母承包了一块荒山地种植一批香梨树,今年收获一批香梨,小琴的父母打算以m元/斤的零售价销售5000斤香梨;剩余的5000(m+1)斤香梨以比零售价低1元的批发价批给外地客商,总共的销售额为55000元.(1)小琴的父母今年共收获这种香梨多少斤?(2)批发商买回这批香梨后,零售平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的利润,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元使得每天销售利润为600元?22.综合与实践问题情境:在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).操作发现:(1)如图①,当AC=BC时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为 ;②探究发现AD和BE有什么数量关系,请写出你的探究过程;探究证明:(2)如图2,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE.①在点D的运动过程中,请判断AD与BE有什么数量关系?并证明;②若AC=2,在点D的运动过程中,当△CBE的形状为等腰三角形时,直接写出此时△CBE的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵一元二次方程x2+px+2p=0的一个根为2,∴22+2p+2p=0.∴4p=﹣4.∴p=﹣1.故选:C.2.解:过点A作AF∥DE交CD于点F,则DF=AE=4m,△CAF∽△C′CD′.∴D′C′:C′C=CF:CA,即2:3=CF:6.∴CF=4.∴DC=4+4=8(m).即:这棵树高8m.故选:B.3.解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率,故此选项符合题意;故选:D.4.解:该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.故选:D.5.解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.6.解:∵四边形ABCD是矩形,∴BD=AC=2,由题意可知:AM=AC=2,∵OA=|﹣1|=1,∴OM=AM﹣OA=2﹣1,∴点M的坐标为(2﹣1,0),故选:C.7.解:在x2﹣2x﹣3=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;在x2+3x+2=0中,Δ=b2﹣4ac=32﹣4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;在x2﹣2x+1=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;在x2+2x+3=0中,Δ=b2﹣4ac=22﹣4×1×3=﹣8<0,即该方程无实数根,故选项D 符合题意;故选:D.8.解:设方程的另一个根为t,根据题意得2+t=8,解得t=6,即方程的另一个根是6.故选:B.9.解:如图,过点P作PM⊥BE,垂足为M,交AF于点N,则PM=1.6,设FA=x米,由3FD=2FA得,FD=x=MN,∵四边形ACDF是矩形,∴AF∥CD,∴△PAF∽△PBE,∴=,即=,∴PN=x,∵PN+MN=PM,∴x+x=1.6,解得,x=,故选:D.10.解:∵四边形ABCD为正方形,AC为对角线,∴BC=DC,∠BCA=∠DCA=45°,BC=DC,∠BCD=90°,在△BCM和△DCM中,,∴△BCM≌△DCM(SAS),∴BM=DM,故结论①正确;∵△CDE为等边三角形,∴∠DCE=60°,DC=CE,∴BC=CE,∴∠BEC=∠EBC,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴°,∵△BCM≌△DCM,∴∠MBC=∠MDC,即:∠BEC=∠MDC=15°;故结论②正确;∵∠MDC=15°,∠DCA=45°,∴∠AMD=∠MDC+∠DCA=60°,故结论③不正确;在△AMB和△AMD中,,∴△AMB≌△AMD(SAS),∵四边形ABCD为正方形,△CDE为等边三角形,∴AD=ED,∠ADC=90°,∠EDC=60°,∵∠MDC=15°,∴∠ADM=∠ADC﹣∠MDC=75°,∠EDM=∠MDC+∠EDC=75°,∴∠ADM=∠EDM=75°,在△AMD和△EMD中,,∴△AMD≌△EMD(SAS),∴△AMB≌△AMD≌△EMD,故结论④正确,综上所述:正确的结论是①②④,共有3个.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:∵DE∥BC,∴AD:AB=AE:AC,∵AD=2,DB=4,AE=3,∴2:6=3:AC,∴AC=9,故答案为:9.12.解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),其中旅游3天,空气质量都是优良的有5种结果,所以空气质量都是优良的概率是,故答案为:.13.解:∵OA=20cm,OA'=50cm,∴OA:OA′=20:50=2:5,∵AB∥A′B′,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=OA:OA′=2:5,∴矩形ABCD的周长:矩形A′B′C′D′的周长为2:5,又矩形ABCD的周长为36cm,则矩形A′B′C′D′的周长为90cm.故答案为:90.14.解:如图,作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).答:电线杆的高度是6m.故答案为:6.15.解:∵将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',∴AB=CD=3,B′C=BC=AD=4,∠D=90°.设OD=x,则B'O=x,OC=4﹣x.在Rt△COD中,∵∠D=90°,∴OC2=OD2+CD2,即(4﹣x)2=x2+32,解得x=,∴AO=AD﹣OD=4﹣=.故答案为:.三.解答题(共7小题,满分75分)16.解:(1)2x2﹣3x=2,2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,∴2x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2+6x﹣111=0,x2+6x+9=111+9,即(x+3)2=120,∴x+3=,∴x1=﹣3+2,x2=﹣3﹣2.17.解:(1)这次参与调查的居民人数为:24÷20%=120(人);∴喜欢“纸牌”的人数为:120﹣24﹣15﹣30﹣9=42(人),∴扇形统计图中“纸牌”所在扇形的圆心角的度数为360°×=126°,故答案为:126°,补全条形图如图所示:(2)设:纸牌为A,象棋为B,跳棋为C,军棋为D,根据题意画树状图:由树状图可知:一共有12种等可能的情况,其中恰好选中“象棋、军棋”这两个项目的有2种,∴恰好选中“象棋、军棋”这两个项目的的概率是同时选中B、D的概率为=.18.解:如图,△ABC和△A1B1C1为所作.19.解:操作作图:如图所示中的四边形DEFG为符合条件的其中一个菱形.阅读理解:符合条件的图形如图所示:∵公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,∴DG=GF,DC=FM,∠C=∠FMC=90°=∠FMB.∴Rt△DCG≌Rt△FMG(HL).∴CG=MG.∵DG∥AB,∴∠DGC=∠B.∴△DCG≌△DMB(AAS).∴CG=BM.∴.∵△DCG∽△ACB,∴.即,∴DC=2.深入探究:(1)如图所示,当点E与点A重合时,此时存在符合条件的两个菱形.在Rt△ABC中,.∵四边形DEFG为菱形,∵DG∥AB,∴,即.解得DC=.如图,当DE⊥AB时,过点C作CH⊥AB,交DG于点Q,交AB于点H.在Rt△ABC中,.∵DG∥AB,∴△ABC∽△DGC.∴.即,∴.∴.即,∴.∴当<CD≤时,可作2个AB类内接菱形DEFG.(2)如图,过点C作CH⊥AB于点H,交DG于点Q.∵四边形DEFG为菱形,设DG=x,∵DG∥AB,∴△ABC∽△DGC.∴.即,∴CQ=.则QH=.∴S菱形DEFG=DG×CH=.配方得.当点F与点B重合时,可求得DG=,由(1)可知:.在此范围内S菱形DEFG随x的增大而增大,∴当x=时,S菱形DEFG最大,最大值为.∴AB类内接菱形DEFG面积的最大值为.20.解:(1)方程x2﹣7x+12=0,分解因式得:(x﹣3)(x﹣4)=0,可得:x﹣3=0,x﹣4=0,解得:x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;故答案为4,3;(2)设点E的坐标为(m,0),则OE=|m|,∵△AOE∽△DAO,∴=,∴=,∴|m|=,∴m=±,∴点E的坐标为:(,0)或(﹣,0).21.解:(1)依题意,得5000m+(m﹣1)×5000(m+1)=55000,整理,得m2+m﹣12=0,解得:m1=3,m2=﹣4(不合题意,舍去),∴5000+5000(m+1)=25000.答:小琴的父母今年共收获这种香梨25000斤.(2)设降价x元,则每斤的利润为(2﹣x)元,每天的销售量为200+=(200+400x)斤,依题意,得(2﹣x)(200+400x)=600,整理,得2x2﹣3x+1=0,解得:x1=0.5,x2=1,又∵为了加快销售,∴x=1.答:应降价1元使得每天销售利润为600元.22.解:(1)①∵线段CD绕点C逆时针旋转90°得到线段CE,∴∠DCE=90°,DC=CE,∵∠ACB=90°,∴∠ACD=∠BCE,∵AC=BC,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=45°,故答案为:45°;②AD=BE,理由如下:由①知△ACD≌△BCE,∴AD=BE;(2)①,理由如下:∵BC=2AC,CE=2CD,∴,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,∴;②过C作CF⊥AB于F,CG⊥BE于G,如图:∵AC=2,BC=2AC,∴BC=4,AB==2,∴sin∠ABC====,cos∠ABC===,∴=,=,∴CF=,BF=,∵四边形CGBF是矩形,∴CG=BF=,BG=CF=,(Ⅰ)当CB=CE时,如图:∴BE=2BG=,∴△CBE的面积为××=;(Ⅱ)当BC=BE时,如图:此时BE=BC=4,∵CG=BF=,∴△CBE的面积为×BE•CG=×4×=(Ⅲ)当CE=BE时,如图:设BE=CE=t,则EG=t﹣,在Rt△CEG中,t2=()2+(t﹣)2,解得t=2,∴BE=2,∴△CBE的面积为CG•BE=××2=8,综上所述,△CBE的面积为或或8.。
【必考题】九年级数学上期中试题及答案
![【必考题】九年级数学上期中试题及答案](https://img.taocdn.com/s3/m/5ba5eed52b160b4e777fcf96.png)
【必考题】九年级数学上期中试题及答案一、选择题1.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=194.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°5.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A.1B.22C.2D.26.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°7.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 8.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 9.一元二次方程2410x x --=配方后可化为( ) A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对 11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .45二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.已知、是方程的两个根,则代数式的值为______.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.17.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.19.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.20.如图,将ABC 绕点A 逆时针旋转150︒,得到ADE ,这时点B C D 、、恰好在同一直线上,则B 的度数为______.三、解答题21.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.22.如图,四边形ABCD 内接于⊙O ,4OC =,42AC =.(1)求点O 到AC 的距离;(2)求ADC ∠的度数.23.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.24.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB 的面积能否等于27cm ?请说明理由.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.2.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 4.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角,∴∠ACB >∠ASB ,即∠ASB <30°.故选D5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°. 故选D . 点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 8.A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x 2-4x-1=0,x 2-4x=1,x 2-4x+4=1+4,(x-2)2=5,故选:D .【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一 解析:【解析】【分析】 利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k+=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k>﹣34,∴k1=﹣1舍去.∴k=3.故答案为:3.【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.【详解】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴2224OA OB+=∴OA=.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键. 20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1) 14;(2)14【解析】【分析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.2;(2)135°.【解析】【分析】(1)作OM ⊥AC 于M ,根据等腰直角三角形的性质得到2即可得到结论;(2)连接OA ,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【详解】(1)作OM AC ⊥于M ,∵42AC =∴22AM CM ==∵4OC =, ∴2222OM OC MC =-=(2)连接OA ,∵OM MC =,090OMC ∠=,∴045MOC MCO ∠=∠=,∵OA OC =,∴045OAM ∠=,∴090AOC ∠=,∴045B ∠=,∵0180D B ∠+∠=,∴0135D ∠=.【点睛】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.23.(1)a >-1;(2) x 1=-3,x 2=-1.【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a 的取值范围;(2)把a 代入后解方程即可.试题解析:(1)∵方程有两个不相等的实数根∴16-4(3-a )>0,∴a >-1 .(2)由题意得:a =0 ,方程为x 2+4x +3=0 ,解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.(1)3秒后,PQ 的长度等于10;(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=10,利用勾股定理BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,10PQ =,5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(2225210x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于10(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.25.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
九年级上期中考试知识点
![九年级上期中考试知识点](https://img.taocdn.com/s3/m/e92bb4364b7302768e9951e79b89680202d86b46.png)
九年级上期中考试知识点一、数学知识点在数学知识点方面,九年级上期中考试主要涵盖了多元线性方程组、平方根与立方根、解直角三角形、函数概念与函数图像、平面坐标系等内容。
1. 多元线性方程组是九年级上数学考试中较为复杂的一部分内容。
学生需要熟练掌握通过代入、消元法以及高斯消元法来求解多元线性方程组的方法。
此外,学生还需要在解题过程中注意检查解的正确性,防止出现运算错误。
2. 平方根与立方根也是九年级上数学考试中的难点之一。
学生需要了解根号的概念,并能够根据已知条件求解方程或进行运算。
此外,学生还需要通过实际问题来应用平方根与立方根的知识,提高解决实际问题的能力。
3. 解直角三角形是九年级上数学考试的重点内容。
学生需要掌握正弦定理、余弦定理以及正切定理等解直角三角形的方法。
通过掌握这些方法,学生可以准确计算三角形的边长和角度,并解决与直角三角形相关的各种问题。
4. 函数概念与函数图像也是九年级上数学考试的重点内容。
学生需要了解函数的定义、自变量与因变量的关系以及函数图像的特征等知识。
通过理解这些概念,学生可以正确理解函数的含义,并能够准确绘制函数的图像以及解析函数的性质。
5. 平面坐标系是九年级上数学考试的基础知识。
学生需要掌握平面直角坐标系的构建方法,并能够准确表示点的坐标、计算线段长度以及判断点与线的位置关系等。
掌握平面坐标系的知识对于解决各类几何问题具有重要的意义。
二、物理知识点在物理知识点方面,九年级上期中考试主要涵盖了力和压力、机械能与功、声与光的传播、电学与磁学等内容。
1. 力和压力是九年级上物理考试的基础知识。
学生需要了解力的定义、力的作用点、力的大小、力的方向以及力的叠加等概念,并能够应用这些概念解决与力相关的各种问题。
此外,学生还需要了解压力的概念,并能够计算压力的大小。
2. 机械能与功是九年级上物理考试的重点内容。
学生需要了解机械能的概念以及机械能守恒原理,并能够应用机械能的知识解决与能量转化相关的问题。
人教版九年级数学上册期中考试卷
![人教版九年级数学上册期中考试卷](https://img.taocdn.com/s3/m/369567786ad97f192279168884868762cbaebb51.png)
人教版九年级数学上册期中考试卷一、选择题1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是( )A .B .C .D .2.一元二次方程 3x 2−x −2=0 的二次项系数是 3,它的一次项系数是( )A . −1B . −2C . 1D . 03.关于函数y=﹣3,y=的图象及性质,下列说法不正确的是( ). A .它们的对称轴都是y 轴 B .对于函数y=,当x >0时,y 随x 的增大而减小 C .抛物线y=﹣3不能由抛物线y=平移得到 D .抛物线y=﹣3的开口比y=的开口宽4.解方程x 2﹣3x =0较为合适的方法是( )A .直接开平方法B .配方法C .公式法D .分解因式法 5.已知(-3,y 1),(-2,y 3),(1,y 3)是二次函数y=-2x 2-8x+m 图象上的点,则( )A .y 2>y 1>y 3B .y 2>y 3>y 1C .y 1<y 2<y 3D .y 3<y 2<y 1 6.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是A .(1,0)B .(2,0)C .(-2,0)D .(-1,0) 7.三角形两边长分别为2和3,第三边的长是方程2x 2﹣13x +15=0的根,则该三角形的周长为( )A .B .10C .D .或10 22x 212x -212x -22x 212x -22x 212x -8.如图,在△ABC 中∠ACB =90°,将△ABC 绕点C 逆时针旋转得到△A 1B 1C 1,此时点A 的对应点A 1恰好在AB 边上,点B 的对应点为B 1,则下列结论一定正确的是( )A .AB =B 1C B .CA 1=A 1B C .A 1B 1⊥BCD .∠CA 1A =∠CA 1B 19. 如图,抛物线()20y ax bx c a =++≠x 的图象与x 轴交于()2,0-,()1,0x 其中110x -<<.有下列五个结论:①0abc >;②0a b c -+<;③20a c -<;④()()30a b a b --<;⑤若(),m n m n <为关于x 的一元二次方程()()1210a x x x +-+=的两个根,则32m n -<+<-.你认为其中正确的有( )A .4个B .3个C .2个D .1个10.如图,在正方形ABCD 中,AB =4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动.设AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.把点)2,0A 绕着坐标原点顺时针旋转90,得到点B ,那么点B 的坐标是 . 12.将抛物线223y x x =+-化为2()y a x h k =-+的形式是 .13.在平面直角坐标系中,若抛物线226(1)y x x k =++-与x 轴有两个交点,则k 的取值范围是__________.14.若关于x 的一元二次方程x 2+2x ﹣k +3=0有两个不相等的实数根,则k 的取值范围是_______.15.已知二次函数22(1)y x m =--的图象上有三点11,2A y ⎛⎫ ⎪⎝⎭,()22,B y 和()32,C y -,则1y ,2y 和3y 的大小关系为______. 16.一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是31,每个支干长出___个小分支.三、解答题17. 用适当的方法解下列方程(1)(x ﹣2)2﹣5(x ﹣2)+6=0. (2)x (x ﹣2)=10x ﹣20.18.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.19. 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.20.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=2,OC=3,求AO的长.21.某超市新上架一款产品,每个成本为6元,在销售过程中(个)与销售价格x(元/个)的关系如图所示,其图象是线段AB.(1)求y与x之间的函数表达式;(2)若该超市每天销售这款产品的利润为w(元),请写出w与x之间的函数表达式,并求该超市每天销售这款产品的最大利润.(利润=总销售额一总成本).22.如图,二次函数y=ax2+bx+c的图像交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.。
数学九年级上册期中知识点
![数学九年级上册期中知识点](https://img.taocdn.com/s3/m/9df7dd51571252d380eb6294dd88d0d233d43c08.png)
数学九年级上册期中知识点九年级上册数学期中知识点一、有理数的运算1. 加法和减法的运算规则- 同号相加,异号相减- 绝对值大的数减去绝对值小的数,取负数的符号2. 乘法的运算规则- 同号相乘为正,异号相乘为负3. 除法的运算规则- 同号相除为正,异号相除为负4. 有理数的混合运算- 先按照括号内外、乘除法、加减法的顺序进行运算二、分式与整式1. 整式的基本概念- 包括常数、变量、系数和指数2. 分式的基本概念- 分子、分母,真分式和假分式3. 分式的四则运算- 加减乘除三、一次函数1. 一次函数的图像和性质- 斜率的概念,斜率与函数单调性的关系2. 一次函数的解析式- y = kx + b,k为斜率,b为截距3. 一次函数的应用问题- 直线的斜率问题,包括速度问题、单位价格问题等四、面积与体积1. 平行四边形的面积计算- S = 底边长度 ×高2. 长方形、正方形、矩形的面积计算- 长 ×宽3. 三角形的面积计算- S = 1/2 ×底边长度 ×高4. 梯形的面积计算- S = (上底 + 下底) ×高 / 25. 圆的面积计算- S = π × 半径²6. 立体图形的体积计算- 立方体、长方体、正方体的体积计算公式五、几何运动1. 同一圆周上的角- 同弧对应角、同切线截角、同径角的性质2. 设计问题中的角- 平行线、相交线、对顶角、同位角的关系3. 圆的性质- 切线、切点、弦、弧的概念和性质六、统计与概率1. 数据的整理与分析- 频率表、频率分布直方图、频率分布折线图2. 概率的基本概念- 样本空间、事件、概率计算公式3. 事件的几种关系- 互斥事件、对立事件、必然事件、不可能事件七、其他知识点1. 相似三角形- 相似三角形的判定、性质和类比比例2. 实数的开方运算- 平方根、立方根、开方运算的计算方法和性质3. 密立根数的基本概念- 密立根数的定义、性质和运算这些是九年级上册数学的期中考试重点知识点,希望同学们能够认真学习并掌握这些知识,为接下来的学习打下坚实的基础。
扬州市树人学校2022-2023学年九年级上学期期中复习数学试题
![扬州市树人学校2022-2023学年九年级上学期期中复习数学试题](https://img.taocdn.com/s3/m/4c7b9c1d0812a21614791711cc7931b765ce7b12.png)
扬州市树人学校2022-2023学年九年级上学期期中复习数学试题一、选择题:本大题共8小题,共24分.1.已知线段m,n,p,q的长度满足等式mn=pq,将它改成比例式的形式,错误的是()A.=B.=C.=D.=2.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x﹣1)2=1D.(x﹣1)2=73.若关于x的二次三项式x2﹣ax+2a﹣3是一个完全平方式,则a的值为()A.﹣2B.﹣4C.﹣6D.2或64.已知方程x2﹣2(m2﹣1)x+3m=0的两个根是互为相反数,则m的值是()A.m=±1B.m=﹣1C.m=1D.m=05.已知⊙O的半径为r,圆心到点A的距离为d,且r,d分别是方程x2﹣4x+3=0的两根,则点A 与⊙O的位置关系是()A.点A在⊙O内部B.点A在⊙O上C.点A在⊙O外部D.点A不在⊙O上6.如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为()A.36B.24C.18D.727.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米8.如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共8小题,每小题3分,共24分..9.若三角形的三边长分别为6,8,10,则此三角形的外接圆半径是.10.已知a、b是一元二次方程x2﹣2x﹣3=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于.11.如图,已知D,E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE:S四边形DBCE=1:8,那么AE:EC=.12.如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为.13.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.14.如图,Q为正方形ABCD的CD边上一点,CQ=1,DQ=2,P为BC上一点,若PQ⊥AQ,则CP=.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB 交于点D,则AD的长为.16.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD 为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.三、解答题:本大题共11小题,共72分.17.解方程:(1)x2﹣2x=2x+1(2)2(x﹣3)=3x(x﹣3)18.如图,点P在△ABC的边AC上,要使△ABP∽△ACB,还少一个条件,补充一个条件并说明理由.19.已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.21.如图,在⊙O中,直径AB与弦CD相交于点E,连接AC、BD.(1)求证:△AEC∽△DEB;(2)连接AD,若AD=3,∠C=30°,求⊙O的半径.22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.23.如图⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.24.如图,点P在y轴上,⊙P交x轴于A、B两点,连接BP并延长交⊙P于C,过点C的直线y =2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.25.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.(1)求证:CF为⊙O的切线;(2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.27.如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.参考答案一、选择题:本大题共8小题,共24分.1.解:A、两边同时乘以最简公分母pn得mn=pq,与原式相等,正确;B、两边同时乘以最简公分母pn得mq=np,与原式不相等,错误;C、两边同时乘以最简公分母mq得mn=pq,与原式相等,正确;D、两边同时乘以最简公分母mp得mn=pq,与原式相等,正确;故选:B.2.解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B.3.解:根据题意得:a2﹣4(2a﹣3)=0,解得:a=2或6.故选:D.4.解:∵方程x2﹣2(m2﹣1)x+3m=0的两个根是互为相反数,设这两根是α、β,根据根与系数的关系、相反数的定义可知α+β=2(m2﹣1)=0,进而求得m=±1,但当m=1时,原方程为:x2+3=0,方程没有实数根,∴m=﹣1.故选:B.5.解:∵解方程x2﹣4x+3=0得,x1=1,x2=3,∴当r=1,d=3时,点A在圆外;当r=3,d=1时,点A在圆内,∴点A不在⊙O上.故选:D.6.解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=,∴CD=2CE=6,∴四边形ACBD的面积=.故选:A.7.解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.8.解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵=,=,∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,∴∠ADB=∠BDC,故①正确;∵点D是弧AC上一动点,∴与不一定相等,∴DA与DC不一定相等,故②错误;当DB最长时,DB为⊙O直径,∴∠BCD=90°,∵∠BDC=60°,∴∠DBC=30°,∴DB=2DC,故③正确;在DB上取一点E,使DE=AD,如图:∵∠ADB=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴BD=BE+DE=CD+AD,故④正确;∴正确的有①③④,共3个,故选:C.二、填空题:本大题共8小题,共24分.9.解:∵62+82=102,∴此三角形是直角三角形,∴此三角形的外接圆半径是=5,故答案为:5.10.解:∵a、b是一元二次方程x2﹣2x﹣3=0的两个实数根,∴a+b=2,ab=﹣3,∴(a﹣b)(a+b﹣2)+ab=(a﹣b)(2﹣2)+ab=0+ab=﹣3.故答案为:﹣3.11.解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,又∵S△ADE:S四边形DBCE=1:8,∴S△ADE:S△ABC=1:9,∴AE:AC=1:3.AE:EC=1:2、故答案为:1:2.12.解:∵OA:OC=OB:OD=3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm,∴AB=9cm,∵某零件的外径为10cm,∴零件的厚度x为:(10﹣9)÷2=1÷2=0.5(cm),故答案为:0.5cm.13.解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.14.解:∵PQ⊥AQ,∴∠DQA+∠CQP=180°﹣90°=90°;又∵四边形ABCD是正方形,∴∠DAQ+∠DQA=90°,∴∠CQP=∠DAQ,∴ADQ∽△QCP,∴=;∵CQ=1,DQ=2,∴AD=DC=3;∴CP=;故答案为:.15.解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE==,∴AD=2AE=,故答案为.16.解:连接OE、OF,作OM⊥EF于M,作AN⊥BC于N,如图,∵∠EOF=2∠BAC=2×60°=120°,而OE=OF,OM⊥EF,∴∠OEM=30°,EM=FM,在Rt△OEM中,OM=OE,EM=OE,∴EF=2EM=OE,当OE最小时,EF的长度最小,此时圆的直径的长最小,即AD的长最小,∵AD的长度最小值为AN的长,而AN=AB=,∴OE的最小值为,∴EF长度的最小值为×=.故答案为.三、解答题:本大题共11小题,共72分..17.解:(1)x2﹣4x=1,x2﹣4x+4=5,(x﹣2)2=5,x﹣2=±,所以x1=2+,x2=2﹣;(2)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=.18.解:在△ABP和△ACB中,∵∠A=∠A,∴当∠ABP=∠C或∠APB=∠ABC或=时,△ABP∽△ACB,故补充的条件为∠ABP=∠C或∠APB=∠ABC或=.19.解:原式=x2﹣2x+1+x2+x=2x2﹣x+1,∵3x2﹣2x﹣3=0,∴x2﹣x=1,∴原式=2(x2﹣x)+1=2×1+1=3.20.解:∵DE∥BC,EF∥AB,∴∠A=∠FEC,∠AED=∠C,∴△ADE∽△ECF;∴S△ADE:S△ECF=(AE:EC)2,∵S△ADE=4cm2,S△EFC=9cm2,∴(AE:EC)2=4:9,∴AE:EC=2:3,即EC:AE=3:2,∴(EC+AE):AE=5:2,即AC:AE=5:2.∵DE∥BC,∴∠C=∠AED,又∵∠A=∠A,∴△ABC∽△ADE,∴S△ABC:S△ADE=(AC:AE)2,∴S△ABC:4=(5:2)2,∴S△ABC=25cm2.21.(1)证明:∵∠C=∠B,∠AEC=∠DEB,∴△AEC∽△DEB;(2)解:∵∠C=∠B,∠C=30°,∴∠B=30°,∵AB是⊙O的直径,AD=3,∴∠ADB=90°,∴AB=6,∴⊙O的半径为3.22.(1)证明:∵Δ=(2k+1)2﹣4(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:一元二次方程x2﹣(2k+1)x+k2+k=0的解为x=,即x1=k,x2=k+1,∵k<k+1,∴AB≠AC.当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,则k+1=5,解得k=4,综合上述,k的值为5或4.23.(1)证明:连接OA;∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∴AD是⊙O的切线.(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∵OH⊥AB,∴AB=2AH=.24.(1)解:连接AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.25.(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.26.(1)证明:如图,连接OC,OD.∵OC=OD,∴∠OCD=∠ODC,∵FC=FE,∴∠FCE=∠FEC,∵∠OED=∠FEC,∴∠OED=∠FCE,∵AB是直径,D是的中点,∴∠DOE=90°,∴∠OED+∠ODC=90°,∴∠FCE+∠OCD=90°,即∠OCF=90°,∵OC是半径,∴CF是⊙O的切线.(2)解:过点G作GH⊥AB于点H.设OA=OD=OC=OB=r,则OF=r+2,在Rt△COF中,42+r2=(r+2)2,∴r=3,∵GH⊥AB,∴∠GHB=90°,∵∠DOE=90°,∴∠GHB=∠DOE,∴GH∥DO,∴=,∵G为BD的中点,∴BG=BD,∴BH=BO=,GH=OD=,∴AH=AB﹣BH=6﹣=,∴AG===.27.(1)解:△BDE为等腰直角三角形.证明:∵AE平分∠BAC,BE平分∠ABC,∴∠BAE=∠CAD=∠CBD,∠ABE=∠EBC.∵∠BED=∠BAE+∠ABE,∠DBE=∠DBC+∠CBE,∴∠BED=∠DBE.∴BD=ED.∵AB为直径,∴∠ADB=90°,∴△BDE是等腰直角三角形.另解:计算∠AEB=135°也可以得证.(2)解:连接OC、CD、OD,OD交BC于点F.∵∠DBC=∠CAD=∠BAD=∠BCD.∴BD=DC.∵OB=OC.∴OD垂直平分BC.∵△BDE是等腰直角三角形,BE=2,∴BD=2.∵AB=10,∴OB=OD=5.设OF=t,则DF=5﹣t.在Rt△BOF和Rt△BDF中,52﹣t2=(2)2﹣(5﹣t)2,解得t=3,∴BF=4.∴BC=8.另解:分别延长AC,BD相交于点G.则△MBG为等腰三角形,先计算AG=10,BG=4,AD =4,再根据面积相等求得BC.。
人教版九年级数学上册期中复习测试带答案解析
![人教版九年级数学上册期中复习测试带答案解析](https://img.taocdn.com/s3/m/d51b9b9668dc5022aaea998fcc22bcd127ff4256.png)
人教版九年级数学上册期中复习测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“清明”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是()A.B.C.D.3.若方程x2−2x+m=0没有实数根,则m的值可以是()A.−1B.0C.1D.√34.一元二次方程(x+1)(x−1)=2x+3的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.在平面直角坐标系中,若直线y=−x+m不经过第一象限,则关于x的方程mx2+x+ 1=0的实数根的个数为()A.0个B.1个C.2个D.1或2个6.下列一元二次方程有实数解的是()A.2x2﹣x+1=0 B.x2﹣2x+2=0 C.x2+3x﹣2=0 D.x2+2=07.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.78.已知二次函数y=2x2−8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,则m的值是()A.1 B.32C.2 D.49.如图,抛物线y=ax2+bx+c经过点(−1,0),与y轴交于点(0,2),抛物线的对称轴为直线x=1.关于此题,甲、乙、丙三人的说法如下:甲:a+c=b , 2a+b=0;乙:方程ax2+bx+c=0的解为−1和3;丙:c−a>2.下列判断正确的是()A.甲对,乙错B.甲和乙都错C.乙对,丙错D.甲、乙、丙都对10.如图,△ABC和四边形DEFG分别是直角三角形和矩形,∠A=90°,AB=4cm,AC=3cm,FG⊥BC于点B.若矩形DEFG从点B开始以每秒1cm的速度向右平移至点C,且矩形的边FG扫过△ABC的面积为S(cm2),平移的时间为t(秒),则S与t 之间的函数图象可能是()A.B.C.D.11.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多.....x步.,则下列符合题意的方程是()A.(60 - x)x = 864 B.60−x2×60+x2= 864C.(60 + x)x = 864 D.(30 + x)(30 - x)= 86412.已知P1(x1,y1),P2(x2,y2)为抛物线y=−ax2+4ax+c(a≠0)图象上的两点,且x1<x2,则下列说法正确的是()A.若x1+x2<4,则y1<y2B.若x1+x2>4,则y1<y2C.若a(x1+x2−4)<0,则y1>y2D.若a(x1+x2−4)>0,则y1>y2二、填空题(本大题4个小题,每小题4分,共16分)13.二次函数y=ax2-3ax+c(a<0,a,c均为常数)的图象经过A(-2,y1)、B(2,y2)、C(0,y3)三点,则y1,y2,y3的大小关系是______.14.关于x的方程x2−x−1=0的两根分别为x1、x2,则x1+x2−x1x2的值为________.15.若二次函数y=ax2-bx+2有最大值6,则y=-a(x+1)2+b(x+1)+2的最小值为____.16.若等腰三角形的一边长是4,另两边的长是关于x的方程x2−6x+n=0的两个根,则n的值为______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.已知A=(1-2x+1)÷x2-2x+1x+1.(1)化简A;(2)若x是方程x(x+2)=x+2的解,求A的值.18.解方程:x2−16=2(x+4)19.已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为- 1,求m的值;(2)若方程无实数根,求m的取值范围20.2022北京冬奥会期间,冰墩墩和雪容融受到人们的广泛喜爱.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次的调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.(1)若销售价格每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,需尽快将这批冰墩墩和雪容融售出,决定降价出售.经过市场调查发现:销售单价每降价10元,每天多卖出2套,当降价钱数m为多少元时每天的利润W(元)可达到最大,最大利润是多少?21.已知T=(x+2)2x2−4−xx−2.(1)化简T;(2)若点(x,0)在二次函数y=(x+1)(x+2)的图象上,求T的值.22.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?23.如图1是一架菱形风筝,它的骨架由如图2的4条竹棒AC,BD,EF,GH组成,其中E,F,G,H分别是菱形ABCD四边的中点,现有一根长为80cm的竹棒,正好锯成风筝的四条骨架,设AC=xcm,菱形ABCD的面积为ycm2.(1)写出y关于x的函数关系式:BD,那么当骨架AC的长为(2)为了使风筝在空中有较好的稳定性,要求25cm≤AC≤43多少时,这风筝即菱形ABCD的面积最大?此时最大面积为多少?24.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.25.某旅游区的湖边有一个观赏湖中音乐喷泉的区域,该区域沿湖边有一条东西向的长为32m的栏杆,考虑到观景安全和效果,旅游区计划设置一个矩形观众席,该观众席一边靠栏杆,另三边用现有的总长为60m的移动围栏围成,并在观众席内按行、列(东西向为行,南北向为列)摆放单人座椅,要求每个座位占地面积为1m2(如图所示),且观众席内的区域恰好都安排了座位.(1)若观众席内有x行座椅,用含x的代数式表示每行的座椅数,并求x的最小值;(2)旅游区库存的500张座椅是否够用?请说明理由.参考答案:1.D【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.2.D【分析】根据中心对称图形的概念即可求解.【详解】解:A、是轴对称图形而不是中心对称图形,故本选项不符合题意;B、是轴对称图形而不是中心对称图形,故本选项不符合题意;C、是轴对称图形而不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕着某个定点旋转180°后能与原图重合,这样的图形叫做中心对称图形.解题关键是熟记中心对称图形的概念.3.D【分析】直接利用根的判别式进行判断,求出m的取值范围即可.【详解】解:由题可知:“△<0”,∴(−2)2−4m<0,∴m>1,故选:D.【点睛】本题考查了一元二次方程根的判别式,解决本题的关键是掌握当“△<0”时,该方程无实数根,本题较基础,考查了学生对基础知识的理解与掌握.4.D【分析】先把一元二次方程化为一般式,然后利用根的判别式求解即可.【详解】解:∵(x+1)(x−1)=2x+3,∴x2−1=2x+3,即x2−2x−4=0,∴Δ=b2−4ac=(−2)2−4×(−4)=20>0,∴方程有两个不相等的实数根,故选D.【点睛】本题主要考查了一元二次方程根的判别式,熟知判别式符号与一元二次方程根的关系式解题的关键.5.D【分析】直线y=−x+m不经过第一象限,则m=0或m<0,分这两种情形判断方程的根.【详解】∵直线y=−x+m不经过第一象限,∴m=0或m<0,当m=0时,方程变形为x+1=0,是一元一次方程,故有一个实数根;当m<0时,方程mx2+x+1=0是一元二次方程,且△=b2−4ac=1−4m,∵m<0,∴-4m>0,∴1-4m>1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D.【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.C【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A选项中,△=b2−4ac=(−1)2−4⋅2⋅1=−7<0,故方程无实数根;B选项中,△=(−2)2−4⋅1⋅2=−4<0,故方程无实数根;C选项中,△=32−4⋅1⋅(−2)=17>0,故方程有两个不相等的实数根;D选项中,△=−8<0,故方程无实数根;故选C.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.7.C【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及AE=5,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC 的值.【详解】解:由图2可知,当P点位于B点时,PA−PE=1,即AB−BE=1,当P点位于E点时,PA−PE=5,即AE−0=5,则AE=5,∵AB2+BE2=AE2,∴(BE+1)2+BE2=AE2,即BE2+BE−12=0,∵BE>0∴BE=3,∵点E为BC的中点,∴BC=6,故选:C.【点睛】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.8.C【分析】由题意易得点P1,P2,P3的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A在点B的左侧,∵二次函数y=2x2−8x+6的图象交x轴于A,B两点,∴令y=0时,则有0=2x2−8x+6,解得:x1=1,x2=3,∴A(1,0),B(3,0),∴AB=3−1=2,∵图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,∴点P1,P2,P3的纵坐标的绝对值相等,如图所示:∵y=2x2−8x+6=2(x−2)2−2,∴点P1(2,−2),∴m=S△ABP1=12×2×2=2;故选C.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.9.D【分析】甲:把x=−1,y=0代入函数关系式即可求得a+c=b;根据对称轴为x=1,即可求出2a+b=0;乙:根据对称轴为x=1,抛物线与x轴的一个交点坐标为(-1,0),可以得出抛物线与x 轴的另外一个交点坐标为(3,0),即可得出方程ax2+bx+c=0的解为-1和3;丙:根据与y轴交于点(0,2),得出c=2,根据抛物线开口向下,可以得出a<0,即可得出结果.【详解】解:∵函数图象与x轴交于点(-1,0),∴a−b+c=0,∴a+c=b,∵抛物线的对称轴为x=1,∴−b2a=1,∴2a+b=0,故甲正确;∵抛物线的对称轴为x=1,与x轴的一个交点坐标为(-1,0),∴抛物线与x轴的一个交点坐标为(3,0),∴方程ax 2+bx +c =0的解为-1和3,故乙正确; ∵抛物线与y 轴交于点(0,2), ∴c =2,∵抛物线开口向下, ∴a <0,∴c −a >2,故丙正确;综上分析可知,甲、乙、丙都对,故D 正确. 故选:D .【点睛】本题主要考查了二次函数的图形和性质,熟练掌握二次函数图象和性质,对称轴公式x =−b2a ,是解题的关键. 10.A【分析】求出A 点之前和之后的面积表达式,发现都是二次函数,且165之前是开口向上的二次函数,165之后是开口向下的二次函数,再结合这两个函数图像得出答案.【详解】在A 点之前(0<t <165),FG 扫过的三角形面积为:12×t ×34t =38t 2在A 点之后(165<t <5),FG 扫过的面积为: 3×4×12−(5−t )(5−t )×43×12=6−(25−10t +t 2)×23=6−503+203t −23t 2=−23t 2+203t −323所以它的函数图形应该是: t 在0~165时,S =38t 2,a >0,所以图像是开口向上的抛物线; t 在165~5时,S =−23t 2+203t −323,所以图像是开口向下的抛物线.故选A .【点睛】本题考查二次函数在求面积中的应用,根据条件写出各个阶段的面积表达式即可大致判断图像得出正确选项. 11.B【分析】画图分析即可得,宽为60−x 2步,长为60+x 2步,根据面积关系即可得方程.【详解】画图如下:由图知:宽为60−x2步,长为60+x2步则可得方程为:60−x2×60+x2= 864故选:B【点睛】本题考查了一元二次方程的实际应用,弄懂题意并画图分析得到宽与长是关键.12.D【分析】根据函数解析式求出抛物线的对称轴直线,分类讨论a>0及a<0时各自的选项即可求解.【详解】∵y=−ax2+4ax+c(a≠0),∴y=−a(x−2)2+4a+c(a≠0),∴抛物线的对称轴直线为x=2,①当−a>0时,抛物线的开口向上,∵x1<x2,∴当x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1>y2,故选项A错误;②当−a<0时,抛物线的开口向下,∵x1<x2,∴当x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1>y2,故选项B错误;③若a(x1+x2−4)<0,当x1+x2<4时,a>0,则−a<0时,抛物线的开口向下,∵x1<x2,∴当x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1<y2;当x1+x2>4时,a<0,则−a>0时,抛物线的开口向上,∵x1<x2,∴当x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1<y2;故选项C错误;④若a(x1+x2−4)>0,当x1+x2<4时,a<0,则−a>0时,抛物线的开口向上,∵x1<x2,∴x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1>y2;当x1+x2>4时,a>0,则−a<0时,抛物线的开口向下,∵x1<x2,∴x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1>y2;故选项D正确,故选:D【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质,二次函数与方程及不等式的关系.13.y1<y3<y2##y2>y3>y1【分析】将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c,用a,c分别表示出y1,y2,y3,再根据a<0即可比较.【详解】将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c中,可得:y1=a×(-2)2-3a×(-2)+c=10a+c,y2=a×22-3a×2+c=-2a+c,y3=a×02-3a×0+c=c,∵a<0,∴10a<0,-2a>0,∴10a+c<c,-2a+c>c,∴10a+c<c<-2a+c,∴y1<y3<y2,故答案为:y1<y3<y2.【点睛】本题主要考查了二次函数的图象与性质,将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c,用a,c分别表示出y1,y2,y3,是解答本题的关键.14.2【分析】根据根与系数的关系可得出x1+x2=1,x1x2=−1,将其代入x1+x2−x1x2中即可求出结论.【详解】∵方程x2−x−1=0的两根分别为x1和x2,∴x1+x2=1,x1x2=−1,∴x1+x2−x1x2=1+1=2.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.15.−2【分析】根据题意设二次函数y=ax2-bx+2的顶点坐标为(m,6),且开口向下,根据平移可知y=a(x+1)2-b(x+1)+2的顶点坐标为(m−1,6),根据关于y轴对称可知y=-a (x+1)2+b(x+1)-2的顶点坐标为(m−1,−6),且开口向上,有最小值,根据向上平移4个单位即可得到答案.【详解】解:∵二次函数y=ax2-bx+2有最大值6,∴设二次函数y=ax2-bx+2的顶点坐标为(m,6),平移可知y=a(x+1)2-b(x+1)+2的顶点坐标为(m−1,6),根据关于x轴对称可知y=-a(x+1)2+b(x+1)-2的顶点坐标为(m−1,−6),且开口向上,再向上平移4个单位得到:y=-a(x+1)2+b(x+1)+2此时顶点坐标为(m−1,−2),则最小值为−2故答案为:−2【点睛】本题考查了二次函数图象的平移,关于坐标轴对称的点的坐标特征,利用顶点坐标变换是解题的关键.16.8或9【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x的方程x2−6x+n=0的一个根,因此有42−6×4+n=0,解得n=8,则方程为x2−6x+8=0,解得另一个根为x=2,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x的方程x2−6x+n=0有两个相等的实数根,因此,根的判别式Δ=36−4n=0,解得n=9,则方程为x2−6x+9=0,解得方程的根为x1=x2=3,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理;综上,n的值为8或9,故答案为:8或9.【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.17.(1)1x−1(2)−13【分析】(1)A括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)利用因式分解法求出方程的解,代入A中计算即可.(1)A=(x+1x+1−2x+1)÷(x−1)2x+1=x−1x+1·x+1(x−1)2=1x−1;(2)方程移项得:x(x+2)−(x+2)=0,因式分解得:(x−1)(x+2)=0,解得:x=1或x=-2,当x=1时,原式无意义;.当x=-2时,原式=−13【点睛】本题考查了分式化简和解一元二次方程,熟练掌握因式分解法解方程是解题的关键.18.x1=−4,x2=6【分析】运用因式分解法解一元二次方程即可.【详解】解:x2−16=2(x+4)去括号得:x2−16=2x+8,移项合并得:x2−2x−24=0,分解因式得:(x+4)(x−6)=0,∴x+4=0或x−6=0,∴x1=−4,x2=6【点睛】本题考查因式分解法解一元二次方程,注意用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根,正确掌握解一元二次方程的方法是解答本题的关键.19.(1)m的值为−6.(2)m>254【分析】(1)将x=−1代入原方程,即可求出m的值.(2)令根的判别式Δ<0,即可求出m的取值范围.【详解】(1)解:∵方程有一根为- 1,∴x=−1是该方程的根,∴(−1)2−5×(−1)+m=0,解得:m=−6,故m的值为−6.(2)解:∵方程无实数根∴Δ=b2−4ac=(−5)2−4×1×m<0,解得:m>25.4【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.20.(1)20%(2)当降价钱数m为20元时,每天的利润W可达到最大,最大利润是2000元.【分析】(1)设每次上涨的百分率为x,根据“销售单价经过两次的调整,从每套150元上涨到每套216元,”列出方程,即可求解;(2)根据题意列出W 关于m 的函数关系式,再根据二次函数的性质,即可求解. (1)解:设每次上涨的百分率为x ,根据题意得: 150(1+x )2=216,解得:x 1=0.2,x 2=−2.2(不合题意,舍去), 答:每次上涨的百分率为20%; (2)解:根据题意得:W =(216−m −96)(2m 10+16)=−15m 2+8m +1920=−15(m −20)2+2000∴当m =20时,W 最大,最大值为2000,答:当降价钱数m 为20元时,每天的利润W 可达到最大,最大利润是2000元. 【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键. 21.(1)T =2x−2(2)T =−23【分析】(1)根据分式运算,化简求解即可得出答案;(2)将点代入二次函数表达式,可求出x ,在带入原式即可求出T . (1) 解:T =(x+2)2x 2−4−xx−2=(x +2)2(x +2)(x −2)−xx −2=x +2x −2−xx −2=2x−2. (2)解:∵点(x ,0)在二次函数y =(x +1)(x +2)的图象上,∴0=(x+1)(x+2),解得x1=−1或x2=−2,由(1)中分母可知x≠−2,故舍去,把x=−1代入,T=2x−2=2−1−2=−23;故答案为:T=−23.【点睛】本题考查分式的化简求值,二次函数的性质,仔细计算,注意分式有意义的条件.22.(1)y=−5x+550;(2)70元;(3)80元.【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价−成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【详解】解:(1)∵依题意得y=50+(100−x)×12×10,∴y与x的函数关系式为y=−5x+550;(2)∵依题意得y(x−50)=4000,即(−5x+550)(x−50)=4000,解得:x1=70,x2=90,∵70<90∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500∵−5<0,此图象开口向下∴当x=−8002×(−5)=80时,w有最大值为:−5×802+800×80−27500=4500(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.【点睛】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.23.(1)y=−14x2+20x;(2)32;最大面积为384cm2【分析】(1)E,F,G,H分别是菱形ABCD四边的中点,得出BD=40−12x,根据菱形面积公式求出y关于x的函数关系式;(2)求出x的取值范围,整理y=−14x2+20x=−14(x−40)2+400,函数图象开口向下,自变量x的取值在对称轴左侧,所以x取最大值时,面积有最大值;【详解】(1)解:∵E、F为AB、AD中点,∴EF=12BD,同理:GH=12BD,∵EF+BD+GH+AC=80,∴BD=40−12x,∵四边形ABCD是菱形,∴y=12(40−12x)x=−14x2+20x;(2)∵AC≤43BD,∴x≤43(40−12x),∴x≤32,∴25≤x≤32,∵y=−14x2+20x=−14(x−40)2+400,又∵−14<0,∴当x=32即AC为32cm时面积最大,此时最大面积为384cm2.【点睛】本题考查二次函数的实际应用,主要用菱形面积公式(菱形的面积等于对角线乘积的一半)列出函数关系式,解题关键是判断取值范围与对称轴的关系,得出最值对应的自变量的取值.24.(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2)y=−2x2+280x−8000(50≤x≤65),最大利润为1750元【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;(2)根据题意当x =50时,每天可售100盒,猪肉粽每盒售x 元时,每天可售[100−2(x −50)]盒,列出二次函数关系式,根据二次函数的性质计算最大值即可. 【详解】解:(1)设猪肉粽每盒进价a 元,则豆沙粽每盒进价(a −10)元. 则8000a=6000a−10解得:a =40,经检验a =40是方程的解. ∴猪肉粽每盒进价40元,豆沙粽每盒进价30元. 答:猪肉粽每盒进价40元,豆沙粽每盒进价30元. (2)由题意得,当x =50时,每天可售100盒.当猪肉粽每盒售x 元时,每天可售[100−2(x −50)]盒.每盒的利润为(x −40) ∴y =(x −40)·[100−2(x −50)],=−2x 2+280x −8000配方得:y =−2(x −70)2+1800 当x =65时,y 取最大值为1750元.∴y =−2x 2+280x −8000(50≤x ≤65),最大利润为1750元.答:y 关于x 的函数解析式为y =−2x 2+280x −8000(50≤x ≤65),且最大利润为1750元.【点睛】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键. 25.(1)14 (2)够用【分析】(1)表示出列的数量,根据列的长度不大于32求出x 的取值范围即可; (2)根据行与列的乘积等于总座椅数,求出总座椅数的最大值即可. (1)∵观众席内有x 行座椅,且三边用现有的总长为60m 的移动围栏围成 ∴观众席内座椅列数为60−2x ,∴依题意得:{1≤60−2x ≤32x ≥1 ,解得14≤x ≤30.5∴x 的最小值为14 (2)够用,理由如下:设总座椅数为y,则y=x(60−2x)=−2x2+60x=−2(x−15)2+450∵14≤x≤30.5∴当x=15时,y有最大值450;∴旅游区库存的500张座椅够用【点睛】本题考查二次函数的应用,属于围栏面积问题的变种,熟练掌握二次函数的性质是解本题的关键.答案第15页,共15页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学期中考试复习
1.关于x 一元二次方程2x(kx-4)-x2+6=0没有实数根,则k 的最小整数值是______。
2.已知方程x 2+kx+3=0的一个根是-1,则k=______, 另一根为______.
3.已知x 1 x 2是方程x 2-2x-1=0的两根,则x 11+x 21等于 。
4.二次函数c bx ax y ++=2的图象如右图,则点),(a c
b M 在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
5.已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )
A. 042>-ac b
B. 042=-ac b
C. 042<-ac b
D. ac b 42-≤0 6.二次函数c bx ax y ++=2的图象如图所示,若
c b a M ++=24c b a N +-=,b a P -=4,则( )
A. 0>M ,0>N ,0>P
B. 0<M ,0>N ,0>P
C. 0>M ,0<N ,0>P
D. 0<M ,0>N ,0<P
7.解下列方程:(20分)
(1)
(2) (3)
(4)x 2+4x=2 (5))4(5)4(2+=+x x (6)2235x x +-=
(7)x 2+4x-12=0 (用配方法) (8)2y 2 +7y-3=0 (9)(3x-5)(x-1)=1
2 1 -1 O x
y
8.已知关于x的方程2(2)210
+++-=.
x m x m
(1)求证方程有两个不相等的实数根.
(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解。
9、已知kx2+(2k-1)x+k+2=0有两个不相等的实数根,求k的取值范围.
10、已知kx2+(2k-1)x+k+2=0有实数根,求k的取值范围.
11.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.(只解设列)
12.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?(只解设列)
13. 从一块长300cm、宽200cm的铁片中间截取一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的三分之一,求这个宽度。
14.已知抛物线经过(-1,0),(0,-3),(2,-3)三点.
(1).求这条抛物线的表达式;(2).写出抛物线的开口方向、对称轴和顶点坐标.
15.如右图,抛物线n
x
x
y+
+
-
=5
2经过点)0,1(A,与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.
16.如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.
O
x
y
1
-1
B
A
17.有一个抛物线形的桥洞,桥洞离水面的最大高度BM 为3米,跨度OA 为6米,以OA 所在直线为x 轴,O 为原点建立直角坐标系(如图所示).
(1)请你直接写出O 、A 、M 三点的坐标;
(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?
18.有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析
式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?。