数值方法实验报告二
数值分析实验报告2
![数值分析实验报告2](https://img.taocdn.com/s3/m/12458e5233687e21af45a925.png)
实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。
要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。
在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。
在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。
数值分析实验报告
![数值分析实验报告](https://img.taocdn.com/s3/m/b5660b8c6f1aff00bed51ece.png)
实验2.1 多项式插值的振荡现象实验目的:在一个固定的区间上用插值逼近一个函数,显然Lagrange 插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,Ln(x)是否也更加靠近被逼近的函数。
Runge 给出的一个例子是极著名并富有启发性的。
实验容:设区间[-1,1]上函数 f(x)=1/(1+25x 2)。
考虑区间[-1,1]的一个等距划分,分点为 x i = -1 + 2i/n ,i=0,1,2,…,n ,则拉格朗日插值多项式为201()()125nn i i i L x l x x ==+∑. 其中,l i (x),i=0,1,2,…,n 是n 次Lagrange 插值基函数。
实验步骤与结果分析:实验源程序function Chap2Interpolation% 数值实验二:“实验2.1:多项式插值的震荡现象”% 输入:函数式选择,插值结点数% 输出:拟合函数及原函数的图形promps = {'请选择实验函数,若选f(x),请输入f,若选h(x),请输入h,若选g(x),请输入g:'};titles = 'charpt_2';result = inputdlg(promps,'charpt 2',1,{'f'});Nb_f = char(result);if(Nb_f ~= 'f' & Nb_f ~= 'h' & Nb_f ~= 'g')errordlg('实验函数选择错误!');return;endresult = inputdlg({'请输入插值结点数N:'},'charpt_2',1,{'10'});Nd = str2num(char(result));if(Nd <1)errordlg('结点输入错误!');return;endswitch Nb_fcase 'f'f=inline('1./(1+25*x.^2)'); a = -1;b = 1;case 'h'f=inline('x./(1+x.^4)'); a = -5; b = 5;case 'g'f=inline('atan(x)'); a = -5; b= 5;endx0 = linspace(a, b, Nd+1); y0 = feval(f, x0);x = a:0.1:b; y = Lagrange(x0, y0, x);fplot(f, [a b], 'co');hold on;plot(x, y, 'b--');xlabel('x'); ylabel('y = f(x) o and y = Ln(x)--');%--------------------------------------------------------------------function y=Lagrange(x0, y0, x);n= length(x0); m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif(j ~= k)p = p*(z - x0(j))/(x0(k) - x0(j));endends = s + p*y0(k);endy(i) = s;end实验结果分析(1)增大分点n=2,3,…时,拉格朗日插值函数曲线如图所示。
数值计算基础实验报告(3篇)
![数值计算基础实验报告(3篇)](https://img.taocdn.com/s3/m/82443c16a517866fb84ae45c3b3567ec102ddc9d.png)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/7d323d210a1c59eef8c75fbfc77da26925c59633.png)
数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
数值分析Runge现象计算实验
![数值分析Runge现象计算实验](https://img.taocdn.com/s3/m/8ccb616ffad6195f312ba6b5.png)
数值分析实验报告(02)一、实验目的通过上机绘制Runge 函数图像,理解高次插值的病态性质。
二、实验内容在区间[-1,1]上分别取n=10,n=20用两组等距节点对龙格(Runge)函数21()125f x x =+作多项式插值,对每个n 值分别画出()f x 和插值函数的图形。
三、编程思路(相关背景知识、算法步骤、流程图、伪代码)四、程序代码(Matlab 或C 语言的程序代码)function yt=Untitled8(x,y,xt)%UNTITLED5 ´Ë´¦ÏÔʾÓйش˺¯ÊýµÄÕªÒª% ´Ë´¦ÏÔʾÏêϸ˵Ã÷n=length(x);ny=length(y);if n~=nyerror('²åÖµ½ÚµãxÓ뺯ÊýÖµy²»Ò»ÖÂ');endm=length(xt);yt=zeros(1,m);for k=1:nlk=ones(1,m);for j=1:nif j~=klk=lk.*(xt-x(j))/(x(k)-x(j));endend ;yt=yt+y(k)*lk;endn=input('n=');x=linspace(-1,1,n);y=1./(1+25.*x.^2);xf=linspace(-1,1,100);yf=1./(1+25.*xf.^2)xl=xf;yl=Untitled8(x,y,xf);plot(xf,yf,'-b',xl,yl,'-r')五、数值结果及分析(数值运行结果及对结果的分析)当n=10时当n=20六、实验体会(计算中出现的问题,解决方法,实验体会)出现符号错误,代码函数变量不明重新输入,查询错误,找到并改正编码需要认真仔细,一定要头脑清晰,避免出现一些低级错误。
数值分析实验报告--实验2--插值法
![数值分析实验报告--实验2--插值法](https://img.taocdn.com/s3/m/c87eb55d6ad97f192279168884868762caaebbef.png)
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析实验报告模板
![数值分析实验报告模板](https://img.taocdn.com/s3/m/2600a3356529647d272852cf.png)
数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。
即若x0 偏离所求根较远,Newton法可能发散的结论。
并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。
前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。
掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。
熟悉Matlab语言编程,学习编程要点。
体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
程序设计:本实验采用Matlab的M文件编写。
其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。
数值分析实验报告 第二次
![数值分析实验报告 第二次](https://img.taocdn.com/s3/m/6639fed8c1c708a1284a446a.png)
华中科技大学本科实验报告课程名称:数值分析姓名:姜福鑫学号:U201310044专业班级:应数1302指导老师:黄乘明实验题目:多项式的插值解法日期:2015-4-23实验成绩:1.实验目的1.理解插值的基本原理;2.掌握多项式插值的概念、存在唯一性;3.编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象、分析插值多项式的收敛性。
2.实验题目4.1编制拉格朗日插值法MATLAB 程序,求ln0.53的近似值。
已知)(x f =ln x 的数值表如下所示:x0.40.50.60.7ln x -0.916291-0.693147-0.510826-0.3577654.2编制牛顿插值法MATLAB 程序,求)5.0(f 的近似值。
已知的数值如下表所示:ix 0.00.20.40.60.8)(i x f 0.19950.39650.28810.77210.94313.程序文本4.1function yy=malagr(x,y,xx)m=length(x);n=length(y);if m~=n,error('向量x与y的长度必须一致');ends=0;for i=1:nt=ones(1,length(xx));for j=1:nif j~=it=t.*(xx-x(j))/(x(i)-x(j));endends=s+t*y(i);endyy=s;4.2function yi=maNew(x,y,xi)n=length(x);m=length(y);if n~=merror('向量x与y的长度必须一致');endY=zeros(n);Y(:,1)=y';for k=1:n-1for i=1:n-kif abs(x(i+k)-x(i))<epserror('数据错误');endY(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));endendyi=0;for i=1:nz=1;for k=1:i-1z=z*(xi-x(k));endyi=yi+Y(1,i)*z;end4.运行结果与分析4.1xx=0.5300yy=malagr(x,y,xx)yy=-0.63474.2x=[0.00.20.40.60.8];>>y=[0.19950.39650.58810.77210.9461];xi=0.5;>>yi=maNew(x,y,xi)yi=0.6812分析:Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。
数值分析实验报告2——Runge现象
![数值分析实验报告2——Runge现象](https://img.taocdn.com/s3/m/693946e0e009581b6bd9eb8c.png)
数值分析课程实验报告——插值逼近题目一.Runge 函数的插值1. Runge 函数Runge 函数的表达式为:21()125R x x =+ 其在[-1,1]区间上的函数图像如图1.1。
在课程学习中我们知道,对Runge 函数进行高次插值时有可能在两端出现不收敛的情况,即Runge 现象。
下面将分别用四种不同的插值方法在[-1,1]区间上对Runge 函数进行插值,并分析是否产生Runge 现象,比较插值效果。
图1.1.Runge 函数在[-1,1]区间的函数图像2.Newton 插值首先根据课本上的Newton 插值算法进行编程(代码略)。
核心思想就是用符号变量进行中间运算,以便将最终的插值函数用符号表达式表示出来,并进一步生成图像。
此处插值节点选择为等距插值节点,即:0.1(0,1,2,,)i x ih i =-+= (20)其中h=0.1。
插值曲线与原曲线的对比如图1.2(蓝色为原曲线,红色为插值曲线)。
从图中看出,在区间中部,二者吻合较好;但在区间两端二者则产生了明显偏差,甚至可以达到一个非常大的数值(e20量级)。
因此,在等距节点的20次Newton 插值下,产生了明显的Runge 现象。
图1.2.Newton 插值曲线与原曲线对比3. Lagrange 插值此处同样是根据Lagrange 插值的具体算法进行编程。
但插值节点不再是等距分布,而是如下形式:21cos()(0,1,2,,)42i i x i π+==…20 插值曲线与原曲线的对比如图1.3(蓝色为原曲线,红色为插值曲线)。
从图中看出,插值曲线与原曲线吻合的很好,没有产生明显的Runge 现象。
对比产生了明显Runge 现象的20次Newton 插值,Lagrange 插值的最高次数虽然也是20,但由于此处的插值节点不是等距分布的(事实上,此处采用的插值节点正是Chebyshev 多项式的零点),而是中间疏两边密,因此两侧较密的节点很好地抑制了Runge 现象。
山东大学数值计算实验报告2
![山东大学数值计算实验报告2](https://img.taocdn.com/s3/m/30745e04a300a6c30c229f31.png)
山东大学计算机科学与技术学院数值计算课程实验报告2.(1)用MATLAB写出楚列斯基分解函数代码如下所示Cholesky.mfunction [ B ] = Cholesky(A )%UNTITLED2 此处显示有关此函数的摘要% 楚列斯基分解B = A;n = length(A);for k = 1:nB(k,k) = sqrt(B(k,k));for i = k+1:nB(i,k) = B(i,k)/B(k,k);endfor j = k+1:nfor i = k+1:nB(i,j) = B(i,j)-B(i,k)*B(j,k);(3)计算范数和条件数代码如下f222.mfunction [ ] = f222(n )conda1 = fanshua1*max(a)fprintf('%s\n','2范数下矩阵A的2条件数') B = A_'*A_;[v d] = eig(B);conda2 = sqrt(max(max(d)))*fanshua2fprintf('%s\n','无穷范数下矩阵A的条件数') for i = 1:nfor j = 1:nsum = sum + abs(A_(i,j));enda(i) = sum;sum = 0;endconda3 = max(a)*fanshua3endtest222.mclc,clearfprintf('%s\n','n = 2时')f222(2)fprintf('%s\n','n = 5时')f222(5)fprintf('%s\n','n = 10时')f222(10)运行结果截图如下所示3.(1)Jacobi迭代法MATLAB实现代码如下D(i,i)=A(i,i);end;L=-tril(A,-1);U=-triu(A,1);while error>=errorBound & step<maxSp x0=inv(D)*(L+U)*x0+inv(D)*b;vChain(k,:)=x0';k=k+1;error=norm(x0-fx0);fx0=x0;step=step+1;endv=x0;sN=step;可见Jacobi迭代了3次得到的解为x=[111],收敛。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/ee927e40767f5acfa1c7cd96.png)
数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。
问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。
数值分析实(00002)
![数值分析实(00002)](https://img.taocdn.com/s3/m/01a6532f7e21af45b207a82c.png)
数值分析实验报告2实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。
二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力.三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。
(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到10-4。
五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f a b dx x f b a+-≈⎰ (1.1))]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-=(1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη (1.3)其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。
2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4))]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5)),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。
数值分析实验报告--实验2--插值法
![数值分析实验报告--实验2--插值法](https://img.taocdn.com/s3/m/596960775901020206409c05.png)
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/cb9fb95326d3240c844769eae009581b6ad9bd70.png)
数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。
具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。
二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。
(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。
(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。
(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。
(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。
(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。
实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。
数值方法实验报告
![数值方法实验报告](https://img.taocdn.com/s3/m/e9af2975ef06eff9aef8941ea76e58fafab045fa.png)
数值方法实验报告数值方法实验报告引言:数值方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在现代科学和工程领域,数值方法被广泛应用于求解复杂的数学方程、优化问题以及模拟和预测等任务。
本实验报告旨在介绍数值方法的基本原理和应用,并通过实验验证其有效性和可靠性。
一、数值方法的基本原理1.1 近似方法数值方法的核心是通过近似方法来求解问题。
由于大多数实际问题无法用解析方法求解,因此需要使用近似方法来获得问题的数值解。
常见的近似方法包括插值法、拟合法、数值积分和数值微分等。
1.2 数值算法数值算法是实现数值方法的具体计算步骤和流程。
常见的数值算法有牛顿法、迭代法、高斯消元法等。
这些算法通过迭代和逼近的方式,逐步逼近问题的解,并最终得到数值解。
二、数值方法的应用2.1 方程求解数值方法可以用于求解各种类型的方程,如线性方程组、非线性方程、微分方程等。
通过数值方法,可以得到这些方程的数值解,并在实际问题中进行应用。
例如,通过数值方法可以计算电路中的电压和电流分布,从而优化电路设计。
2.2 优化问题数值方法可以用于求解各种优化问题,如线性规划、非线性规划、整数规划等。
通过数值方法,可以找到问题的最优解,并在实际问题中进行决策和优化。
例如,通过数值方法可以确定最佳的生产计划,使得生产成本最小或者利润最大。
2.3 模拟和预测数值方法可以用于模拟和预测实际问题的行为和变化。
通过建立数学模型和使用数值方法,可以模拟天气变化、交通流量、金融市场等复杂系统的行为,并进行预测和分析。
例如,通过数值方法可以预测飓风路径和强度,从而提前做好防灾准备。
三、实验验证为了验证数值方法的有效性和可靠性,我们进行了一系列实验。
以线性方程组求解为例,我们使用高斯消元法和迭代法两种数值方法,并与解析解进行对比。
实验结果表明,高斯消元法和迭代法都可以得到线性方程组的数值解。
与解析解相比,数值解的误差较小,且在实际问题中具有较好的适用性。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/e8b24b00a9956bec0975f46527d3240c8447a1df.png)
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值分析的实验报告
![数值分析的实验报告](https://img.taocdn.com/s3/m/52818decdc3383c4bb4cf7ec4afe04a1b171b077.png)
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/ab830dc1bb0d4a7302768e9951e79b89680268f3.png)
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石家庄经济学院
实验报告
(学院)系: 信息工程学院
专业: 软件工程
姓名: ********
班级: 4081090501
学号:
任课教师:
《数值分析》实验报告
姓名学号日期2010-11-9 1-2节
实验室计算机实验中心152 设备编号15
实验题目实验二用拉格朗日插值多项式和牛顿插值多项式求近似解一实验目的
掌握拉格朗日插值多项式和牛顿插值多项式的基本思想,编程实现用拉格朗日插值多项式和牛顿插值多项式求方程的近似解。
二1、求满足插值条件的拉格朗日插值多项式在x=115处的值
Xi 100 121 144
yi 10 11 12
计算公式
P n(x)=∑f(x k)∏(x-x j)/(xk-x j)= ∑l k(x)f(x k)(k=0,1,2…n k!=j)
●算法分析
由于115大于100小于114,因此在x=115处的值大于10小于11由表中对应值可得出y的近似计算公式,便可得到近似值。
●源程序
%LagangeInt.m
clc;
clear;
X=[100 121 144];
Y=[10 11 12];
xi=115;
n=length(X);%degree of polynomial is n-1
%dxNum=xi-x;
L=zeros(size(Y));
for i=1:n
disp(i);
dxNum=xi-X;
dxDen=X(i)-X(1:n);
for k=1:n;
if i==k
disp(k)
dxNum(i)=1;
dxDen(i)=1;
LNum=prod(dxNum(1:n));
LDen=prod(dxDen(1:n));
L(i)=LNum/LDen
end
end
end
yi=sum(Y.*L)
实验结果:
●实验结果讨论和分析
本题使用拉格朗日插值不等式得到的y=10.72275550536420在10到11之间,满足基本要求。
2、用牛顿插值多项式计算f(0.596)的近似值并估计误差
Xi 0.40 0.55 0.65 0.80 0.90 1.05
Yi 0.41075 0.57815 0.69675 0.88811 1.02652 1.25382
●计算公式
N n(x)=f(x0)+f(x0,x1)(x-x0)+f(x0,x1,…,x n) (x-x0)(x-x1)(x-x(n-1))
f(x,x0)=(f(x)-f(x0))/(x-x0)
f(x,x0,x1)= (f(x,x0)-f(x0,x1))/(x-x1)
f(x,x0,x1)= (f(x,x0,x1,…,x n-1)-f(x0,x1,x2…,x n))/(x- x n)
Rn(x)=f(x,x0,x1,...,xn)∏(x-x j)(j=0,1,2…n)
算法分析
插值的目的是为求f(x)的值,余项中含有f(x)的因素,但事实上无法计算误差,常在
f(xx
0x
1
…x
n
)中用其他节点代替x粗略估计误差。
●源程序
%NewtonInt.m
clc;
clear;
format long;
Xi=[0.40 0.55 0.65 0.80 0.90 1.05];
Y=[0.41075 0.57815 0.69675 0.88811 1.02652 1.25382];
x=0.596;
dx=x-Xi;
n=length(Xi);
yi(1)=Y(1);
D(:,1)=Y(:);
for j=2:n
for i=j:n
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(Xi(i)-Xi(i-j+1));
end
yi(j)=D(j,j)*prod(dx(1:j-1));
end
Pn=sum(yi);
disp(Pn);
●实验结果
●实验结果讨论和分析
0.596在0.55到0.65之间其结果应在0.57815到0.69675之间。
得到结果满足条件。
三本次实验总结
本次实验主要采用拉格朗日插值和牛顿插值来实现求近似解。
由插值多项式的唯一性知,牛顿插值法和拉格朗日插值法得到的插值多项式应当一致,且余项也是一样的。
拉格朗日插值多项式记号紧凑、容易记忆,且∏,∑在计算机上实现方便,因此,程序比牛顿插值简单,但若在拉格朗日插值中改变插值次数,则必须重新计算,而在牛顿插值多项式中增加一个节点,只要在后面添加一项即可。
对于这次实验采用拉格朗日插值法和牛顿插值法求想f(x)的值,主要采用的输入参数0到n,在程序中用到了循环for和选择if等。
本次实验主要收获是:
1、进一步掌握了拉格朗日插值法和牛顿插值法的思想。
在拉格朗日插值中改变插值
次数,则必须重新计算,而在牛顿插值多项式中增加一个节点,只要在后面添加一
项即可。
2、牛顿插值法和拉格朗日插值法得到的插值多项式是一致的。
四教师评语。