15北师大八年级上二元一次方程培优辅导第2讲:二元一次方程组应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组应用题
1、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元。
(2)求钢笔和毛笔的单价各为多少元?
(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变),陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元。
”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了。
”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了。
②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔。
如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元。
(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了50000元,则商场有哪几种购进方案?
(3)在第(2)题的基础上,则应选择哪种购进方案,为使销售时获利最大?并求出这个最大值。
3、某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的A,B,C三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元,现要求安排20辆货车刚好一次装运完这些集装箱。
若设A型货车为x辆,B型货车为y辆。
(1)用含x、y的代数式表示C型货车的辆数,并求出y与x的函数关系式;
(2)问这三种型号的货车各需多少辆?有多少种安排方式?
(3)若设总运费为w元,求出w与x的函数关系式及哪种安排方式的运费最少?最少运费是多少?
4、汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升。
图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系。
(1)汽车行驶h后加油,中途加油 L;
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由。
5、已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨。
某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物。
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次。
请选出最省钱的租车方案,并求出最少租车费。
6、某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元。
(1)求两个服装店提供的单价分别是多少?
(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x 件服装,选择甲店则需要1y 元,选择乙店则需要2y 元,请分别求出1y 、2y 关于x 的函数关系式;
(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价−进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,设甲种手机减少x部,利润为y,求y的解析式。
(3)在(2)的调研下,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
课后作业
1、某旅游商品经销店欲购进A. B两种纪念品,若用380元可购进A种纪念品7件、B种纪念品8件;也可以用380元购进A种纪念品10件、B种纪念品6件。
(1)A、B两种纪念品的进价分别为多少?
(2)若甲产品的售价是25元/件,乙产品的售价是37元/件,该商店准备用不超过900元购进甲、乙两种产品共40件,且这两种产品全部售出总获利不低于216元,问:应该怎样进货,才能使总获利最大?最大利润是多少?。