数学八年级上册 三角形填空选择达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级上册三角形填空选择达标检测卷(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC=1
2
∠ACD−
1
2
∠ABC=
1
2
∠A=21°.
故答案为21°.
2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;
②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
解:
①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;
②∵BE平分
∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;
③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,
∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;
④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.
故答案为①②④.
点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以
及三角形外角的性质是解题的关键.
3.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.
【答案】32
【解析】
【分析】
过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得
∠BDC的度数.
【详解】
过C点作∠ACE=∠CBD,
∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,
∴∠ECD=∠BDC,
∵对角线BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABD=∠ACE,
∴∠BAC=∠CEB=64°,
∴∠BDC=1
2
∠CEB=32°.
故答案为:32.
【点睛】
此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.
4.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.
【答案】17 22
m
<<
【解析】【分析】
作出草图,延长AD 到
E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.
【详解】
解:如图,延长AD 到E ,使DE=AD ,连接CE ,
∵AD 是△ABC 的中线,
∴BD=CD ,
在△ABD 和△ECD 中,
AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABD ≌△ECD (SAS ),
∴CE=AB ,
∵AB=3,AC=4,
∴4-3<AE <4+3, 即1<AE <7,
∴1722
m <<. 故答案为:
1722m <<. 【点睛】
本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.
5.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .
【答案】160.
【解析】
试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.
试题解析:360÷45=8,
则所走的路程是:6×8=48m,
则所用时间是:48÷0.3=160s.
考点:多边形内角与外角.
6.若正多边形的一个外角是45°,则该正多边形的边数是_________.
【答案】8;
【解析】
【分析】
根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.
【详解】
∵多边形外角和是360度,正多边形的一个外角是45°,
∴360°÷45°=8
即该正多边形的边数是8.
【点睛】
本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).
7.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .
【答案】85°.
【解析】
试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向
BD//AE
=45°+15°=60°又
=180°-60°-35°=85°.
考点:1、方向角. 2、三角形内角和.
8.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.
【答案】35
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,
∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=1
2
∠ABC,∠OCE=
1 2∠ACE,然后整理可得∠BOC=
1
2
∠BAC.
【详解】
解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,
∴∠OBC=1
2
∠ABC,∠OCE=
1
2
∠ACE,
∴1
2
(∠BAC+∠ABC)=∠BOC+
1
2
∠ABC,
∴∠BOC=1
2
∠BAC,
∵∠BAC=70°,
∴∠BOC=35°,
故答案为:35°.
【点睛】
本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
9.如图,AB∥CD,∠ABE=66°,∠D=54°,则∠E=____度.
【答案】12
【解析】
【分析】
利用三角形的外角与内角的关系及平行线的性质可直接解答.
【详解】
∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°.
在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.
故答案是:12.
【点睛】
本题考查了三角形外角与内角的关系及平行线的性质,比较简单.
10.如图所示,请将1
2A ∠∠∠、、用“>”排列__________________.
【答案】21A ∠∠∠>>
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】
解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A
∴∠2>∠1>∠A ,
故答案为:∠2>∠1>∠A .
【点睛】
本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
二、八年级数学三角形选择题(难)
11.如图,△ABC 中,E 是 AC 的中点,延长 BC 至 D ,使 BC :CD =3:2,以 CE ,CD 为邻边做▱CDFE ,连
接 AF,BE,BF ,若△ABC 的面积为 9,则阴影部分面积是( )
A .6
B .4
C .3
D .2 【答案】A
【解析】
【分析】
根据三角形中位线性质结合三角形面积去解答. 【详解】 解:在
ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2
▱CDFE 中,CD=EF
1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h 11S BCE 4.52
BC h ∴=⨯⨯= 13h =
12:1:2h h = 26h ∴= S AEF S EFB s ∴=+阴
()2111122
EF h h EF h =⨯⨯-+⨯⨯ 212
EF h =⨯⨯ 1262
=⨯⨯ 6.=
【点睛】
此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.
12.如图P 为ABC ∆内一点,070,BAC ∠=0
120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )
A .085
B .090
C .095
D .0100
【答案】C
【解析】 ∵070,BAC ∠= 0120,BPC ∠=
∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,
∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,
∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,
∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252
⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,
∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.
故选C.
点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.
13.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )
A .270
B .210
C .180
D .150
【答案】B
【解析】
【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.
【详解】
如图,AB 与DE 交于点G ,AB 与EF 交于点H ,
∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,
∠DGA=∠BGE,∠FHB=∠AHE,
在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,
∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.
【点睛】
本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.
14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()
A.20°B.35°C.40°D.45°
【答案】B
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.
【详解】
解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,
∴∠1+∠2+∠3+∠4+215°=4×180°,
∴∠1+∠2+∠3+∠4=505°,
∵五边形OAGFE内角和=(5-2)×180°=540°,
∴∠1+∠2+∠3+∠4+∠BOD=540°,
∴∠BOD=540°-505°=35°,
故选:B.
【点睛】
本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
15.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()
A.35°B.40°C.45°D.55°
【答案】C
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.
【详解】
解:如图,
根据三角形外角性质,可得∠3=∠1+∠4,
∴∠4=∠3-∠1=95°-50°=45°,
∵a∥b,
∴∠2=∠4=45°.
故选C.
【点睛】
本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
16.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()
∠=,则1
244
α-
A.14B.16C.90α
-D.44
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得
∠3=∠1+30°,进而得出结论.
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:
∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
17.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数( )
A .75°
B .135°
C .120°
D .105°
【答案】D
【解析】
如图,
根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.
故选
18.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )
A .180︒
B .210︒
C .360︒
D .270︒
【答案】B
【解析】
【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.
【详解】
如图所示,利用三角形外角性质可知:
∠α=∠1+∠D,∠β=∠4+∠F,
∴∠α+∠β=∠1+∠D+∠4+∠F,
∵∠1=∠2,∠3=∠4,
∴∠α+∠β=∠2+∠D+∠3+∠F
=90°+30°+90°
=210°,
故选:B.
【点睛】
本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.
19.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )
A.13 B.6 C.5 D.4
【答案】B
【解析】
【分析】
首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.
【详解】
解:设这个三角形的第三边为x.
根据三角形的三边关系定理“两边之和大于第三边,两边之差小于第三边”,得:
-<<+,
94x94
<<.
解得5x13
故选:B.
【点睛】
.一定要注意构成三角形的条件:两边之和>第三边,两本题考查了三角形的三边关系定理
边之差<第三边.
20.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=
()
A.110°B.120°C.125°D.135°【答案】D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=1
2
(∠ABE+∠CDE)=1
2
(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.。

相关文档
最新文档