奥数公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一) 时钟问题
一.追及距离(格数)÷速度差(1-
121)= 时间 1.两针重合公式:格数÷(1-12
1) 2.两针垂直公式:(格数±15)÷(1-
12
1) 3.两针成直线公司:(格数±30)÷(1-121) 推广:两针成30°公式:(格数±5)÷(1-
12
1) 两针成60°公式:(格数±10)÷(1-12
1) 两针成120°公式:(格数±20)÷(1-121) 4.两针与某时刻距离相等(假设为相遇问题)公式:格数÷(1+12
1) 5.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。
例:镜子中6点20分即现实中的5点40分。
6.时针与分针成多少度公式:时针点数×5×6°- 分针点数×5.5°
7.从0点到12点时针与分针共重合11次。
(二) 整数的计算公式:
1.求和公式:和=(首项+末项)×项数÷2
2.项数公式:项数=(末项-首项)÷公差+1
3.末项公式:末项=首项+(项数-1)×公差 另有:奇数个数的和除以项数等于中间数
4.从1开始的连续自然数的平方求和公式:21+22+23+ (2)
n = 6
)12()1(+⨯+⨯n n n 从1开始的连续奇数的求平方和公式:21+23+25+……(2n -1)2 = 6
1×n ×(n+1)×(n+2) 从2开始的连续偶数的平方求和公式:22+24+26+……+2n 2 = 61×n ×(n+1)×(n+2) 5.连续自然数的立方求和公式:13+23+33+……+n 3 = (1+2+3+……+n )2
6.平方差公式:a 2-b 2=(a +b )×(a -b ) a -1=(a +1)×(a -1)
7.公比是2的等比数列求和公式:S=2+22+23+24……+2n = 2
1+n -2 8.等差数列的平均数公式:(首项+末项)÷2
9.裂项公式:①)1(1+⨯n n =n 1-1
1+n 211⨯+321⨯+431⨯=1-21+21-31+31-41 ②)
(1k n n +⨯=(n 1-k n +1)×k 1 有公差的分母,分拆成首项与末项的差乘以公差的倒数。
③
b a b a ⨯+=1a +b 1 → 分子是分母两数之和时,可拆成两单位分数之和。
④)2()1(1+⨯+⨯n n n = [)1(1+⨯n n -)
2()1(1+⨯+n n ] ×21 三个连续的分母中,即三个连续的自然数乘积作分母时,分子为1,可拆成前两项之积与后两项之积的单位分数之差,再乘以2
1。
推广:
)2()(1d n d n n +⨯+⨯= [)(1d n n +⨯-)2()(1d n d n +⨯+]×d 21 例:7411⨯⨯+10741⨯⨯+131071⨯⨯+1613101⨯⨯=(411⨯-16131⨯)×6
1 ⑤分子是1,分母是连续的自然数之和的分数等于: n +++++ 43211 = )
1(2+⨯n n 10.单位分数分拆公式:① 加1相乘法:
a 1 = 11+a +)1(1+⨯a a (不同) ② 2倍法: a 1 = a 21+a
21 (相同) ③ 成对约数法(可拆全部情况):
找分母的平方数,找平方数的成对约数用成对约数分别加上原来的分母作为分数单位写成单位分数之和。
11.分子不是1的分数分拆:① 找最大分数单位相减法。
② 把分子写成与分母有约数关系的几个数之和后拆分。
12.计算公式:a ÷a 1+a a =1÷11+a a =21++a a 例:1998÷19981999
1998 = 20001999 (a +b )2= a 2+2ab +b 2 (a -b )2= a 2-2ab +b 2
1×2+2×3+3×4+……+n ×(n +1) = 3
1n ·(n +1) ·(n +2) 13.纯循环小数化分数、混循环小数化分数,另有小数与分数的互化,请同学们自己复习。
(三)图形中的公式应用:
1.正方形面积 = 边长×边长 = 对角线的平方÷2
2.半圆周长 =
πr +2r = r ×(π+2) = 5.14r 扇形面积 = πr 2×360n 3.扇形弧长 = πr n 1801 (n 为圆心角度数) 扇形周长 = 180
rn π+2r 4.圆柱体积 = πr 2h = S 侧 ÷2×r = 2
1S 侧·r 5.正方体涂色公式:n 为正方体被切的刀数。
三面涂色:8块 两面涂色:12×(n -1)块 一面涂色:6×(n -1)2块 全白无涂色:(n -1)3块 共切总数:(n +1)3块 (长方体时可灵活应用)
6.圆柱侧面积 = 底面周长×高 = πd h
7.圆锥体积:V = 31s h = 31底面积×高 = 31πr 2h
圆锥表面积:求扇形面积 + 一个圆的面积 8.正方形面积:内切圆 = 4 :π = 200 :157 月牙公式 = 0.285 r 2
正方形面积:外接圆 = 2 :π = 100 :157 风筝公式 = 0.215 r 2
9.填数阵图:方阵 → 罗伯法,舍法
数阵 → 放射型与封闭型
放射型数阵 → 取头、取尾,取中间放入最中心做重叠数,会有三种和。
封闭型数阵 → 待定数法。
① 先用字母a 、b 、c ……填出重叠数。
② 计算所填数字之和。
③ 每条线或圆上的和。
④ 两和相减则为重叠数之和。
⑤ 试验法填出其它数。
10.n 条直线最多有1+2+3+4+……+n =
2
1n ·(n -1)个交点。
11.直线最多把平面分成多少部分:(切西瓜公式) 1+21n ·(n +1) 12.n 个圆最多有多少个交点公式:n ·(n -1)
13.三角形最多把平面分成多少部分:(3 n 2-3n +2)部分 n 个三角形
14.图形数格点公式:内+外÷2-1
15.拐弯序数公式:1+2
1n ·(n +1) 只适合于2、4、7、11、16、22……拐弯 另一个拐弯序数公式:(参照笔记本)只适合于2、3、5、7、10、13、17拐弯
1+(1+2+3+4+……+
2
n )×2 (n 为偶数) 规律:1+(1+1+2+2+3+3+4+4+……2n +2n )
其它公式:
一.登楼梯有多少种不同的方法公式:
1. 登1级、2级台阶:1、2、3、5、8、13、21、34、55……
2. 登1级、2级、3级台阶:1、2、4、7、13、24……
3. 登2级、3级台阶:0、1、1、1、2、2、3、4、5、7、9、12、16、21、28
4. 登1级、3级台阶:1、1、2、3、4、6、9、13、19、29、41
二.商品利润:进价、售价、定价,叫做三价。
利润率、折扣率,叫两率。
三价:进价 = 售价÷(1+利润率)
售价 = 成本×(1+利润率)= 定价(标价)×折扣率
利润 = 售价-成本 = 卖价-买价
两率:利润率 = 成本成本售价-×100 % = 成本
买价卖价-×100 % = 成本利润×100 % 折扣率 = 售价÷定价×100 %
三.牛吃草:
新草 = (大乘积-小乘积)÷时间差 (再根据题意灵活应用)
旧草= 任一个乘积-时间×新草
= 任一个乘积+时间×新草→死草时
四.数图形的方法:
1.数线段、射线、直线、角的方法:
编号相加,即有几段从1加到几,有n个段则1+2+3+4+……+n
2.数三角形的方法:分类计数,一类一类地数。
3.数长方形的方法:长边上的线段数×宽边上的线段数。
4.数正方形的方法:把长边上分m等份,宽边上n等份,
m×n+(m-1)×(n-1)+(m-2)×(n-2) +……+(m-n+1)×1 (依次减1)
五.浓度问题:溶液溶质溶剂浓度
溶质= 溶液×浓度1、加水属于稀释问题,抓住溶质不变巧解题。
溶液= 溶质÷浓度2、加盐(溶质)属于加浓问题,抓住溶剂不变巧解题。
浓度= 溶质÷溶液3、即加水又加盐,属于混合问题,抓住浓度的变化。
溶剂= 溶液×(1-浓度)混合前的溶质等于混合后的溶质巧解题。
六.行程问题:
1.相遇路程= 速度和×时间2.追及距离= 速度差×时间
3.流水行船:船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 船的顺水速度= 船速+水速逆水速度= 船速-水速
4.列车过桥问题的路程计算方法:
①列车完全通过大桥行:桥长+车长。
②列车完全在桥上没有通过大桥行:桥长-车长。
③追超问题:
A火车追上B火车并超过B火车,追超时间=(A车长+B车长)÷(A车速B车速);
A火车追上路边行人并超过行人,追超时间= A车长÷(A车速-人速度)。
④遇离问题:
A火车遇见B火车并尾离尾,遇离时间=(A车长+B车长)÷(A车速+B车速);
(A火车遇见B火车只需求路程)。
⑤A车和B车行驶,A车中的人看见B车从身旁通过,则两车合行过路车B的车长。
⑥齐头并进时,快追慢,行快车车长快车长÷时间= 速度差;
齐尾并进时,快追慢,行慢车车长慢车长÷时间= 速度差。
⑦列车过桥只要找对行的路程,依据公式路程、速度、时间的关系巧求未知数。
七.智取火柴游戏。
八.周期周期的解题方法。
九.统计表的概念。
十.一个数可以拆成若干个连续自然数的和,有(这个数的奇约数的个数-1)种不同方法。
十一.一个合数有(分解质因数中指数加1的连乘积)个约数;所有的约数求和方法?
十二.平方数的约数一定是奇数个。
十三.把自然数n拆成几个自然数相加的和,要使乘积最大的方法是:
用这个数除以3,余0、1、2三种情况,
余0时,拆成3+3+......+3的形式,乘积最大3×3× (3)
余1时,拆成3+3+……+3+(3+1)时,乘积最大3×3×……×3×(3+1)时乘积最大;
余2时,拆成3+3+……+3+(3+2)时,乘积最大是3×3×……×3×2。
十四.巧求比较大的次方数的尾数方法:用次方除以4,余0、1、2、3四种情况,
余0时,按4次方算;
余1、2、3时即求个位数的1、2、3次方。
十五.分母水大于n的所有真分数求和公式:
2
)1 (
3
2
1-
+
+
+
+n
十六.公式不能死搬硬套,要理解应用,灵活掌握。