昭平县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昭平县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)图中,同旁内角的对数为()
A. 14
B. 16
C. 18
D. 20 【答案】B
【考点】同位角、内错角、同旁内角
【解析】【解答】解:①直线AD与直线BC被直线AB所截,形成2对同旁内角;
②直线AD与直线BC被直线CD所截,形成2对同旁内角;
③直线AB与直线CD被直线AD所截,形成2对同旁内角;
④直线AB与直线CD被直线BC所截,形成2对同旁内角;
⑤直线AB与直线CD被直线AC所截,形成2对同旁内角;
⑥直线AD与直线BC被直线AC所截,形成2对同旁内角;
⑦直线AB与直线BC被直线AC所截,形成2对同旁内角;
⑧直线AD与直线CD被直线AC所截,形成2对同旁内角;
∴一共有16对同旁内角,故答案为:B.
【分析】观察图形可抽象出8个基本图形,每个基本图形有2对同旁内角,即可得出答案。
2、(2分)若a>b,则下列不等式一定成立的是()
A. a+b>b
B. >1
C. ac2>bc2
D. b-a<0 【答案】D
【考点】不等式及其性质,有理数的加法,有理数的减法,有理数的除法
【解析】【解答】解:A、当b<a<0,则a+b<b,故此选项不符合题意;
B、当a>0,b<0,<,1故此选项不符合题意;
C、当c=0,ac2>bc2,故此选项不符合题意;
D、当a>b,b-a<0,故此选项符合题意;
故本题选D
【分析】根据有理数的加法,减法,除法法则,及不等式的性质,用举例子即可一一作出判断。
3、(2分)下列方程组中,是二元一次方程组的是()
A. B. C. D.
【答案】B
【考点】二元一次方程组的定义
【解析】【解答】解:A、方程组中含3个未知数,A不是二元一次方程组;
B、两个未知数,最高次数为是二元一次方程组;
C、两个未知数,最高次数为不是二元一次方程组;
D、两个未知数,一个算式未知数次数为不是二元一次方程组.
故答案为:B.
【分析】二元一次方程组满足三个条件;(1)只含有两个未知数,且未知数的最高次数都是1,且是整式方程。
4、(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()
A. 29
B. 7
C. 1
D. -2
【答案】C
【考点】立方根及开立方
【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴b=3,∴a-b=1,故答案为:C.
【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。
5、(2分)下列说法错误的是().
A.不等式x-3>2的解集是x>5
B.不等式x<3的整数解有无数个
C.x=0是不等式2x<3的一个解
D.不等式x+3<3的整数解是0
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:A.不等式x-3>2的解集是x>5,不符合题意;
B.不等式x<3的整数解有无数个,不符合题意;
C.x=0是不等式2x<3的一个解,不符合题意;
D.不等式x+3<3的解集是x<0,故D符合题意.
故答案为:D.
【分析】解不等式x-3>2可得x>5 可判断A;整数解即解为整数,x<3的整数有无数个,可判断B;把x=0代入不等式成立,所以x=0是不等式2x<3的一个解。
即C正确;不等式x+3<3的解集是x<0,根据解和解集的区别(不等式的解是使不等式成立的一个未知数的值,而不等式的解集包含了不等式的所有解)可判断D;
6、(2分)如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是()
A. 1<BO<11
B. 2<BO<22
C. 10<BO<12
D. 5<BO<6
【答案】A
【考点】一元一次不等式组的应用,三角形三边关系,平行四边形的判定与性质
【解析】【解答】解:如图延长BO到D,使OB=OD,连接CD,AD,
则四边形ABCD是平行四边形,
在△ABD中,AD=10,BA=12,
所以2<BD<22,所以1<BO<11答案。
故答案为:A.
【分析】如图延长BO到D,使OB=OD,连接CD,AD,根据对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,根据平行四边形对边相等得出AD=BC=10,在△ABD中,根据三角形三边之间的关
系得出AB-AD<BD<AB+AD,即2<BD<22,从而得出
7、(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意. 故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
8、(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。
9、(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
10、(2分)不等式组的解集是x>1,则m的取值范围是()
A. m≥1
B. m≤1
C. m≥0
D. m≤0
【答案】D
【考点】解一元一次不等式组
【解析】【解答】解:由①得:-4x<-4
解之:x>1
由②得:解之:x>m+1
∵原不等式组的解集为x>1
∴m+1≤1
解之:m≤0
故答案为:D
【分析】先求出每一个不等式的解集,再根据已知不等式组的解集为x>1,根据大大取大,可得出m+1≤1,解
不等式即可。
11、(2分)股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是()
①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;
②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;
③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为
37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.
A. 0个
B. 1个
C. 2个
D. 3个
【答案】C
【考点】折线统计图
【解析】【解答】解:读图分析可得:③说法不对,账面亏损不含股票交易税;故应为账面亏损为37.5×1000﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.①与②的说法都正确,
故答案为:C
【分析】根据统计图中的数据进行计算,从而进行计算即可判断.
12、(2分)下列计算正确的是()
A. B. C. ±3 D.
【答案】B
【考点】算术平方根,有理数的乘方
【解析】【解答】解:A.∵-22=-4,故错误,A不符合题意;
B.∵-=-3,故正确,B符合题意;
C.∵=3,故错误,C不符合题意;
D.∵(-2)3=-8,故错误,D不符合题意;
故答案为:B.
【分析】A、D根据乘方的运算法则计算即可判断对错;B、C根据算术平方根或者平方根计算即可判断对错.
二、填空题
13、(1分)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=________度.
【答案】110
【考点】平行线的性质
【解析】【解答】解:如图:
∵∠1=70°,
∴∠3=∠1=70°
∵a∥b
∴∠2+∠3=180°
∴
故答案为:110
【分析】根据对顶角相等,得出∠3=∠1=70°,根据两直线平行,同旁内角互补得出∠2=180°-70°=110°14、(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即可。
15、(1分)如图所示,是某校初中三个年级男女生人数的条形统计图,则学生最多的年级是________
【答案】7年级
【考点】条形统计图
【解析】【解答】解:学生数是由女生和男生的和,故学生最多的年级是7年级.
故答案为:7年级.
【分析】此条形图是复合条形图,每部分又包含两个小矩形,同一类的用相同的颜色表示,只要正确理解图形表示的含义,很容易解决问题。
16、(6分)已知AB//DE , CD⊥BF,∠ABC=128°,求∠CDF的度数。
解:过点C作CG//AB
∴∠1+∠ABC=180°(________)
∵AB//DE(已知)
∴CG//DE(________)
∴∠CDF=∠2 (________)
∵∠ABC=128°(已知)∴∠1=180°-________=________°
∵CD⊥DF(已知)∴∠DCB=90°,
∴∠2=90°- ∠1= 38°
∴∠CDF=38°(________)
【答案】两直线平行,同旁内角互补;平行的传递性;两直线平行,内错角相等;128°(或∠ABC);52°;等量代换
【考点】平行线的判定与性质
【解析】【解答】解:过点C作CG//AB
∴∠1+∠ABC=180°(两直线平行,同旁内角互补)
∵AB//DE(已知)
∴CG//DE(平行线的传递性)
∴∠CDF=∠2 (两直线平行,内错角相等)
∵∠ABC=128°(已知)∴∠1=180°-128°=52°
∵CD⊥DF(已知)
∴∠DCB=90°,
∴∠2=90°- ∠1= 38°
∴∠CDF=38°(等量代换)
【分析】根据平行线的性质和判定,以及垂直的定义,解答此题。
17、(1分)比较大小:- ________-
【答案】<
【考点】实数大小的比较
【解析】【解答】解:|- |≈1.73,|- |≈1.57,
∵1.73>1.57,
∴- <- .
故答案为:<
【分析】根据实数大小的比较方法,比较两个负数,再比较它们的绝对值,然后根据绝对值大的反而小得出结论。
18、(1分)已知:关于x,y的方程组的解为负数,则m的取值范围________.
【答案】m<-
【考点】解二元一次方程组,一元一次不等式组的应用
【解析】【解答】解:由得m<-故答案为:.
【分析】先解滚阿玉x,y的二元一次方程组,再利用解为负数可列出关于m的一元一次不等式组,解不等式组即可求得m的取值范围.
三、解答题
19、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。
(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。
【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。
(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。
20、(12分)将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=
45°,直角顶点C保持重合).
(1)①若∠DCE=45°,则∠ACB的度数为________.
②若∠ACB=140°,则∠DCE的度数为________.
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.
【答案】(1)135°;40°
(2)∠ACB+∠DCE=180°.理由如下:
∵∠ACB=∠ACD+∠DCB=90°+∠DCB,
∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.
(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.
【考点】角的运算,平行线的判定
【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,
∴∠DCB=90°-45°=45°,
∴∠ACB=∠ACD+∠DCB=90°+45°=135°.
②∵∠ACB=140°,∠ACD=90°,
∴∠DCB=140°-90°=50°,
∴∠DCE=90°-50°=40°.
【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE =∠ECB-∠DCB即可算出答案;
(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;
(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE=165°时,根据同旁内角互补,二直线平行得出AD ∥BE.
21、(5分)
【答案】解:,
(1)+(2)得:
4x+8z=12 (4),
(2)×2+(3)得:
8x+9z=17 (5),
(4)×2-(5)得:
7z=7,
∴z=1,
将z=1代入(4)得:
x=1,
将x=1,z=1代入(1)得:
y=2.
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】(1)+(2)得4x+8z=12 (4),(2)×2+(3)得8x+9z=17 (5),从而将三元转化成了二元;(4)×2-(5)可解得z的值,将z值代入(4)可得x值,再将x、z的值代入(1)可得y的值,从而可得原方程组的解.
22、(5分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.
【答案】解:∵ AB∥CD,∴∠B+∠BCE=180°(两直线平行,同旁内角互补).
∵∠B=65°,∴∠BCE=115°.
∵ CM平分∠BCE,∴∠ECM= ∠BCE =57.5°.
∵∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,
∴∠NCD=180°-∠ECM-∠MCN=180°-57.5°-90°=32.5°
【考点】平行线的性质
【解析】【分析】因为两直线平行,内错角相等,同旁内角互补,可知∠BCE、∠BCD的度数,又因为MC 为∠BCE的角平分线,且MC⊥NC,即可知∠NCD的度数.
23、(5分)已知x﹣1的平方根为±2,3x+y﹣1的平方根为±4,求3x+5y的算术平方根.
【答案】解:由x﹣1的平方根是±2,3x+y﹣1的平方根是±4,得:
,
解得:,
∴3x+5y=15+10=25,
∵25的算术平方根为5,
∴3x+5y的算术平方根为5.
【考点】平方根
【解析】【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
根据平方根的定义和已知条件可得关于x、y的方程组:x−1=4,3x+y−1=16 ,解方程组即可求得x、y的值,再将其代入3x+5y即可求得3x+5y的算术平方根。
24、(5分)如图所示,已知:BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.
【答案】解:证明∵BE平分∠ABC,∴∠CBE= ∠ABC,∵∠EBF=90°,∴∠CBF=90°- ∠ABC;
∠DBF=180°-∠ABC-∠CBF=180°-∠ABC-(90°- ∠ABC)= 90°- ∠ABC=∠CBF.
故BF平分∠CBD
【考点】对顶角、邻补角
【解析】【分析】因为∠ABD为平角,∠EBF为直角,所以∠AEB和∠FBD互余,因为BF是∠CBD的角平分线,所以BE也是∠ABC的角平分线.
25、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
26、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.。